УT	ВЕРЖДА	М
Ди	ректор Иі	нститута
ки(бернетики	I
	_	Захарова А.А.
<	>>	2014 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ <u>НА УЧЕБНЫЙ ГОД</u> «АВТОМАТИЗАЦИЯ МАШИНОСТРОИТЕЛЬНЫХ ПРОИЗВОДСТВ»

Направление (специальность) ООП <u>15.03.01 Машиностроение</u> Номер кластера (<i>для унифицированных дисциплин</i>)					
Профиль(и) подготовки (специализация, программа) «Технология,					
оборудование и автоматизация машиностроительных производств»					
Квалификация (степень) «Академический бакалавр»					
Базовый учебный план приема 2014 г.					
Курс <u>4</u> семестр <u>8</u>					
Количество кредитов 3					
Код дисциплины <u>Б3.В.1.5</u>					

Виды учебной	Временной ресурс		
деятельности			
Лекции, ч	22		
Практические занятия, ч	5,5		
Лабораторные занятия, ч	16,5		
Аудиторные занятия, ч	44		
Самостоятельная работа, ч	64		
ИТОГО, ч	108		

Вид промежуточной аттестации <u>зачет</u> Обеспечивающее подразделение <u>кафедра ТАМП</u>

Заведующий кафедрой	${\rm Арляпов}{\rm A.IO.}_{\scriptscriptstyle{({\rm ФИО})}}$
Руководитель ООП	Коростелева Е <u>.</u> Н.
Преподаватель	Шибинский К.Г.

1. Цели освоения дисциплины

«Автоматизация машиностроительных производств» Цели освоения дисциплины: формирование у обучающихся основ знаний в общих вопросах автоматизации машиностроительных производств.

- Ц1 Подготовка выпускника к производственно-технологической деятельности в области современного машиностроительного и строительномонтажного производства на основе ресурсоэффективных технологий;
- Ц2 Подготовка выпускника к проектно-конструкторской деятельности с использованием средств автоматизированного проектирования изделий машиностроения и сварочного производства, технологических процессов их производств и средств технологического оснащения этих процессов;
- Ц3 Подготовка выпускника к организационно-управленческой деятельности для обеспечения эффективного функционирования машиностроительного и строительно-монтажного производства;
- Ц4 Подготовка выпускника к научно-исследовательской деятельности в области создания инновационных технологий производства изделий машиностроения и строительно-монтажных объектов, средств их технологического оснащения;
- Ц5 Подготовка выпускника к самостоятельному обучению и освоению новых профессиональных знаний и умений, непрерывному профессиональному самосовершенствованию.

2. Место дисциплины в структуре ООП

Дисциплина «Автоматизация машиностроительных производств» относится к циклу Б3.:Профессиональный цикл; Б3.В: Вариативная часть, составляет основу современной базы знаний технологии машиностроения и является профилирующей и завершающей в системе подготовки бакалавров

Дисциплине «Автоматизация машиностроительных производств» предшествует освоение дисциплин (ПРЕРЕКВИЗИТЫ):

- Технология конструкционных материалов;
- Материаловедение;
- Метрология, стандартизация и сертификация;
- Металлообрабатывающие станки;
- Резание материалов и режущий инструмент;
- Основы технологии машиностроении.

Из дисциплины «Технология конструкционных материалов» студент должен знать и уметь использовать:

- методы получения деталей машин различными технологическими способами.
- точностные и качественные характеристики получаемых поверхностей.

Из дисциплины «Материаловедение» студент должен знать и уметь использовать:

- конструкционные материалы, используемые для изготовления деталей и их механические свойства;
- теорию химико-термической обработки материалов.

Из дисциплины «Метрология, стандартизация и сертификация» студент должен знать и уметь использовать:

- единую систему допусков и посадок ЕСДП;
- виды посадок в соединении деталей машин;
- нормирование шероховатости поверхности;
- нормирование отклонений формы и взаимного расположения элементов детали.

Из дисциплины «Резание материалов и режущий инструмент» студент должен знать и уметь использовать:

- геометрию режущего инструмента;
- процессы, происходящие при резании материалов;
- основные виды режущего инструмента.

Из дисциплины «Металлообрабатывающие станки» студент должен знать и уметь использовать:

- кинематическая структура станков; компоновка станков;
- основные узлы и механизмы станочных систем; понятие об управлении станками.

Из дисциплины «Основы технологии машиностроения» студент должен знать и уметь использовать:

- теория базирования и теория размерных цепей, как средство достижения точности и качества изделия;
- погрешности, появляющиеся в процессе изготовления детали.

Содержание разделов дисциплины «Автоматизация машиностроительных производств» согласовано с содержанием дисциплин, изучаемых параллельно (КОРЕКВИЗИТЫ):

- Технология машиностроения;
- САПР машиностроительных изделий и технологий.

3. Результаты освоения дисциплины

В соответствии с требованиями ООП освоение дисциплины «Автоматизация машиностроительных производств» направлено на формирование у студентов следующих компетенций (результатов обучения), в т.ч. в соответствии с ФГОС:

Составляющие результатов обучения, которые будут получены при изучении данной дисциплины

Результаты	Составляющие результатов обучения					
обучения				<u> </u>		D
(компетенци и из ФГОС)	Код	Знания	Код	Умения	Код	Владение опытом
P2	3.2.2	основных методов, способов и средств получения, хранения и переработки информации для решения комплексных инженерных задач	У.2.1	использовать основные методы, способы и средства получения, хранения и переработки информации для решения комплексных инженерных задач	B.2.1	опытом использования основных методов, способов и средств получения, хранения и переработки информации для решения комплексных инженерных задач
P.7	3.7.3	основ теоретического и экспериментального исследования изделий и конструкций машиностроения, технологий их производства, в том числе с использованием пакетов прикладных программ	У.7.3	проводить теоретические и экспериментальные исследования изделий и конструкций машиностроения, технологий их производства, в том числе с использованием пакетов прикладных	B.7.3	проведения теоретических и экспериментальных исследований изделий и конструкций машиностроения, технологий их производства, в том числе с использованием пакетов прикладных
P.8	3.8.2	новых технологических процессов машиностроительного и строительномонтажного производства	У.8.2	выявлять достоинства и недостатки новых технологических процессов машиностроительного и строительномонтажного производства	B.8.2	освоения новых технологических процессов машиностроительного и строительномонтажного производства
P.11	3.11.4	прогрессивных методов эксплуатации технологического оборудования	У.11.4	обеспечивать прогрессивные методы эксплуатации технологического оборудования	B.11.3	внедрения прогрессивных методов эксплуатации технологического оборудования
P.15	3.15.1	основных мировых тенденций по развитию малоотходных, энергосберегающих и экологически чистых машиностроительных технологий	V.15.1	применять современные методы для разработки малоотходных, энергосберегающих и экологически чистых машиностроительных технологий, обеспечивающих безопасность жизнедеятельности людей и их защиту от возможных последствий аварий, катастроф и стихийных бедствий	B.15.1.	оценки эффективности технологий машиностроительного производства на основе расчета энергетических, материальных и трудовых затрат

В результате освоения дисциплины «Автоматизация машиностроительных производств» студентом должны быть достигнуты следующие результаты:

Таблица 2

Планируемые результаты освоения дисциплины (модуля)

№ п/п	Результат					
РД1	Знать связь технологических задач с автоматизацией					
	производственных процессов					
РД2	Знать уровни автоматизации производства					
РД3	Знать методы достижения точности при автоматической сборки					
РД4	Разрабатывать технологический процесс изготовления деталей					
	в автоматизированном производстве					
РД5	Разрабатывать технологический процесс сборки изделий в					
	машиностроении					
РД6	Уметь определять размерные связи, возникающие при					
	изготовление деталей, в условиях автоматизированного					
	производства					
РД7	Владеть навыками технологической подготовки производства					
	на станках с ЧПУ					

4. Структура и содержание дисциплины

Раздел 1. *История возникновения и тенденции развития автоматизированного производства*.

Исторический обзор создания и развития автоматизации производств. Связь технологических задач с автоматизацией производственных процессов. Механизация производственных процессов. Автоматизация производственных процессов. Три уровня автоматизации производства: частичная, комплексная и полная. Рабочие циклы: полуавтоматический, автоматический и автоматизированный. Малолюдный режим работы в производственных системах.

Лекции:

- 1. Основные определения и задачи автоматизированного производства.
- 2. Размерные, временные и информационные связи в интегрированном производстве.

Лабораторные работы:

- 1. Определение ноля детали на токарном станке с ЧПУ GoodWay GLS-1500LY;
- 2. Настройка вылетов инструмента на токарном станке с ЧПУ GoodWay GLS-1500LY с использованием контактного датчика.

Раздел 2. *Технология сборки изделий в автоматизированном производстве*.

Требования к качеству изделий, обеспечиваемому сборкой. Методы достижения точности при автоматической сборке. Классификация

соединений и составных частей изделия, виды сборки. Организационные формы сборки. Сборка резьбовых соединений. Сборка прессовых и клепанных соединений. Образование погрешностей изделия при сборке. Контроль качества сборки. Основы разработки технологических процессов сборки. Ориентация объектов в сборочном производстве. Совмещение основных и вспомогательных координатных систем деталей при сборке. Способы и средства автоматизации подачи заготовок и деталей. Способы ориентации деталей, предназначенных для сборки. Подача заготовок и деталей из магазинов, кассет, лент к сборочным, обрабатывающим или другим производственным системам. Подача неориентированных заготовок и деталей. Ориентирование присоединяемых деталей относительно базовых.

Лекции:

- 1. Требования к качеству изделий, обеспечиваемому сборкой.
- 2. Классификация соединений и виды сборки.
- 3. Сборка резьбовых соединений.
- 4. Сборка прессовых и клепанных соединений.
- 5. Образование погрешностей изделия при сборке.
- 6. Основы разработки технологических процессов сборки изделия.

Лабораторные работы:

- 1. Настройка вылетов режущего инструмента на DMG VIO MicroSet;
- 2. Настройка механизма подачи прутка для обработки деталей на токарном станке с ЧПУ GoodWay GLS-1500LY.

Раздел 3. Размерные связи, возникающие при изготовлении деталей в условиях автоматизированного производства.

Операционные размерные связи. Межоперационные размерные связи. Последовательность проектирования механической обработки в условиях автоматизированного производства. Последовательность размерного анализа сборки.

Лекции:

- 1. Размерные связи процесса изготовления деталей.
- 2. Операционные и межоперационные размерные связи в автоматизированном производстве.
- 3. Последовательность проведения размерного анализа сборки изделия. *Лабораторные работы:*
 - 1. Установка режущего инструмента в цанговый термозажимной патрон;
 - 2. Разработка технологического процесса обработки партии деталей в условиях автоматизированного производства.

Практические работы:

- 1. Исследование кинематики механизма подачи прутка GoodWay BF-65;
- 2. Разработка технологического процесса сборки изделия в условиях автоматизированного производства.

5. Образовательные технологии

При изучении дисциплины «Автоматизация машиностроительных производств» следующие образовательные технологии:

Таблица 3

Методы и формы организации обучения

истоды и формы организации обутения						
ФОО Методы	Лекц.	Лаб. раб.	Пр. зан./ сем.,	Тр.*, Мк**	CPC	К. пр.***
ІТ-методы		+			+	_
Работа в команде		+			+	
Case-study		+				
Игра						
Методы проблемного		1				
обучения		+	+			
Обучение	+	+	+		+	
на основе опыта	T		T		T	
Опережающая		+	+			
самостоятельная работа		T	T			
Проектный метод			+			
Поисковый метод					+	
Исследовательский			+			
метод			T			
Другие методы						

^{* -} Тренинг, ** - мастер-класс, ***- командный проект

6. Организация и учебно-методическое обеспечение самостоятельной работы студентов

6.1. Виды и формы самостоятельной работы

Самостоятельная работа студентов включает текущую и творческую проблемно-ориентированную самостоятельную работу (TCP).

Текущая СРС направлена на углубление и закрепление знаний студента, развитие практических умений и включает:

- работу с лекционным материалом, поиск и обзор литературы и электронных источников информации по индивидуально заданной проблеме курса;
- выполнение домашнего задания;
- изучение тем, вынесенных на самостоятельную проработку;
- подготовку к лабораторным и практическим занятиям.

Творческая самостоятельная работа направлена на развитие интеллектуальных умений, комплекса универсальных (общекультурных) компетенций, повышение творческого потенциала студентов. Эта работа включает в себя:

- поиск, анализ, структурирование и презентацию информации;
- исследовательскую работу и участие в научных студенческих конференциях, семинарах и олимпиадах;
- анализ научных публикаций по заранее определенной преподавателем теме.

6.2. Содержание самостоятельной работы по дисциплине

Темы, выносимые на самостоятельную проработку:

- История возникновения металлорежущего оборудования;
- Примеры реализации методов достижения точности при автоматизированной сборке;
- Примеры приспособлений для автоматической сборки резьбовых соединений;
- Сборка развальцованных соединений;
- Контроль качества сборки;
- Испытания собранных изделий;
- Контроль деталей в автоматизированном производстве;
- Системы автоматизации производства и их технологические характеристики;
- Автоматизированная сборка клепанных и развальцованных соединений;
- Технология обработки корпусных деталей в автоматизированном производстве;
- Технология обработки деталей типа тела вращения в автоматизированном производстве;
- Технология обработки деталей зубчатых передач в автоматизированном производстве;
- Системы автоматизированного проектирования сборочных процессов;
- Оборудование для автоматизированного сборочного производства.

6.3. Контроль самостоятельной работы

Оценка результатов самостоятельной работы организуется следующим образом:

- Входящий контроль перед проведением лабораторных работ;
- Защита лабораторных работ;
- Подготовка к практическим занятиям;
- Промежуточная аттестация (контрольные работы);
- Итоговая аттестация (зачет).

7. Средства текущей и промежуточной оценки качества освоения дисциплины

Оценка качества освоения дисциплины производится по результатам

следующих контролирующих мероприятий:

Контролирующие мероприятия	Резул	ьтаты
обучен		
	дисци	плине
Входящий контроль перед проведением лабораторных работ	РД1,	ΡД4,
	РД6, Р	Д7
Защита лабораторных работ	РД2,	ΡД3,
	РД6, Р	Д7
Подготовка к практическим занятиям	РД2,	РД3,
	РД4,	
	РД6	
Промежуточная аттестация (контрольные работы)	РД1,	РД2,
	РД3, Р	Д6
Итоговая аттестация (зачет)	РД1,	РД2,
	РД3,	ΡД6,
	РД7	,

Для оценки качества освоения дисциплины при проведении контролирующих мероприятий предусмотрены следующие средства (фонд оценочных средств) (с примерами):

- 1. Благодаря каким факторам в результате автоматизации производства повышается производительность труда?
- 2. За счет чего обеспечивается более высокое качество продукции в автоматизированном производстве, по сравнению с неавтоматизированным?
- 3. Каким образом при автоматизации производства более экономично используются ресурсы?
- 4. Влияние серийности производства на выбор характеристик оборудования для автоматизированного производства.
- 5. Тенденции развития серийного и массового производств.
- 6. Что представляют собой размерные связи автоматизированного сборочного производства?
- 7. Как возникают размерные связи в процессе автоматического изготовления деталей в машиностроении?
- 8. Выбор способа транспортирования деталей на сборку, и ориентация ее в пространстве. Какая информация для этого необходима?
- 9. Какие факторы влияют на выбор способа ориентирования деталей?
- 10. Каким образом может повлиять на конструкцию изделия решение собирать изделие автоматически?
- 11.В каких случаях может потребоваться повышение точности изготовление детали, предназначенной для автоматической сборки по сравнению с параметрами точности, определенными исходя из ее служебного назначения?
- 12. Как классифицируются процессы сборки по стадиям выполнения и уровню механизации и автоматизации?

- 13. Назовите основные организационные формы сборки и дайте их характеристику?
- 14. Назовите достоинства резьбовых соединений.
- 15. Как обеспечивается затяжка резьбовых соединений?
- 16. Как обеспечивается неподвижность шпилек в корпусе?
- 17. Как производится сборка поперечно-прессовых соединений?
- 18. Каковы преимущества поперечно-прессовых соединений перед продольно-прессовыми?
- 19.В чем состоит сущность гидропрессовой сборки-разборки?
- 20. Каковы достоинства клепаных и развальцованных соединений?
- 21. Каковы пути повышения геометрической точности изделий при сборке?
- 22. Какие виды испытаний проходит собранное изделие?
- 23. Какова последовательность разработки технологического процесса сборки изделия?
- 24. Что включает в себя технологический контроль сборочных чертежей?
- 25. Каким требованиям должна удовлетворять конструкция изделия для обеспечения технологичности при сборке?
- 26. Как строится схема сборки изделия?
- 27. Как определяется содержание сборочных операций?
- 28. Что такое размерная цепь?
- 29. Перечислите виды звеньев размерных цепей?
- 30. Как классифицируются размерные цепи?
- 31.В чем состоит отличие решения прямой задачи методом максимумаминимума от ее решения вероятностным методом?
- 32. Как рассчитываются плоские размерные цепи с непараллельными звеньями?
- 33.В чем состоит сущность обеспечения точности замыкающего звена методом полной взаимозаменяемости?
- 34.В чем состоит сущность обеспечения точности замыкающего звена методом неполной взаимозаменяемости?
- 35.В чем состоит сущность обеспечения точности замыкающего звена методом групповой взаимозаменяемости?
- 36.В чем состоит сущность обеспечения точности замыкающего звена методом регулирования?
- 37.В чем состоит сущность обеспечения точности замыкающего звена методом пригонки?
- 38. Какие звенья являются замыкающими в технологических размерных цепях, формирующихся при изготовлении деталей?
- 39. Как строится размерная схема технологического процесса изготовления детали?
- 40.В чем состоит сущность размерного анализа спроектированного технологического процесса изготовления детали?

8. Рейтинг качества освоения дисциплины

Оценка качества освоения дисциплины В ходе текущей промежуточной аттестации обучающихся осуществляется в соответствии с «Руководящими материалами по текущему контролю успеваемости, промежуточной аттестации студентов Томского итоговой политехнического университета», утвержденными приказом ректора № 77/од от 29.11.2011 г.

В соответствии с «Календарным планом изучения дисциплины»:

- текущая аттестация (оценка качества усвоения теоретического материала (ответы на вопросы и др.) и результаты практической деятельности (решение задач, выполнение заданий, решение проблем и др.) производится в течение семестра (оценивается в баллах (максимально 60 баллов), к моменту завершения семестра студент должен набрать не менее 33 баллов);
- промежуточная аттестация (экзамен, зачет) производится в конце семестра (оценивается в баллах (максимально 40 баллов), на экзамене (зачете) студент должен набрать не менее 22 баллов).

Итоговый рейтинг по дисциплине определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. Максимальный итоговый рейтинг соответствует 100 баллам.

9. Учебно-методическое и информационное обеспечение дисциплины

Основная литература:

- 1. Основы автоматизации технологических процессов и производств: уч. пособие для вузов / О.М. Соснин. 2-е изд., стер. Москва: Академия, 2009. 240 с.: ил.
- 2. Средства автоматизации и управления: учебник для вузов / О.М. Соснин, А.Г. Схиртладзе. Москва: Академия, 2014. 236 с.: ил.
- 3. Автоматизация технологических процессов: учебное пособие для среднего профессионального образования / В.Ю. Шишмарев. 5-е изд., стер. Москва: Академия, 2009. 352 с.: ил.
- 4. Автоматизация технологических и производственных процессов в машиностроении: учебник / Ю.З. Житников [и др.]. Старый Оскол: ТНТ, 2014. 656 с.: ил.
- 5. Основы технологии автоматизированных машиностроительных производств: учебник для вузов / А.В. Скворцов, А.Г. Схиртладзе. Москва: Высшая школа, 2010. 589 с.: ил.

Дополнительная литература:

1. Автоматизация сборки в машиностроении: учебное пособие / А.А. Ласуков; Национальный исследовательский Томский политехнический университет (ТПУ). — Томск: Изд-во ТПУ, 2010. — 176 с.: ил.

- 2. Технические средства автоматизации: учебник / Б.В. Шандров, А.Д. Чудаков. 2-е изд., стер. Москва: Академия, 2010. 362 с.
- 3. Автоматизация технологических процессов и производств: учебное пособие для вузов / А.А. Иванов. М.: Форум, 2011. 224 с.: ил.
- 4. Автоматизированные сборочные системы: учебник / А.А. Иванов. Москва: Форум, 2012. 336 с.: ил.
- 5. Проектирование автоматизированных систем манипулирования объектами обработки и сборки: учебное пособие / А.А. Иванов. Москва: Форум, 2012. 352 с.: ил.

10. Материально-техническое обеспечение дисциплины

Указывается материально-техническое обеспечение дисциплины: технические средства, лабораторное оборудование и др.

№ п/п	Наименование (компьютерные классы, учебные лаборатории, оборудование)	Корпус, ауд., количество установок		
1	Токарный станок с ЧПУ GoodWay GLS-1500LY	16 ^a 103,	корп., 1 шт.	ауд.
2	Механизм автоматической подачи прутка GoodWay BF-65	16 ^a 103,	корп., 1 шт.	ауд.

Программа составлена на основе Стандарта ООП ТПУ в соответствии с требованиями ФГОС по направлению и профилю подготовки 15.03.01 «Машиностроение».

Программа одобрена на заседании кафедры ТАМП					
(протокол №	_ OT «	»	_ 2014 г.).		
Автор(ы) Шибинский К.Г.					
Рецензент(ы)					