Математика

Глава. Операционное исчисление

Преподаватель — доцент, к.ф.-м.н. Шерстнёва Анна Игоревна

§1. Оригинал и изображение.

ОПРЕДЕЛЕНИЕ.

Пусть $f(t):\mathbb{R}\to\mathbb{C}$. Функция f(t) называется оригиналом, если

- 1) f(t) и ее производная f'(t) определены и непрерывны на \mathbb{R} за исключением может быть отдельных точек разрыва I рода, число которых на любом интервале конечно;
- 2) f(t) = 0, $\forall t < 0$;
- 3) $|f(t)| \le Me^{s_0t}$, где M,s_0 const, $s_0 \ge 0$ (s_0 называют порядком роста функции f(t)).

ПРИМЕР. Единичная функция Хэвисайда:

$$\eta(t) = \begin{cases} 1, & t \ge 0; \\ 0, & t < 0. \end{cases}$$

Замечание.

Если для функции $\varphi(t)$ выполняются условия 1 и 3 определения 1, то функция $\varphi(t)\cdot\eta(t)$ будет являться оригиналом.

В дальнейшем будем писать $\sin t$, $\cos t$ и т. д. подразумевая $\sin t \cdot \eta(t)$, $\cos t \cdot \eta(t)$ и т. д.

ОПРЕДЕЛЕНИЕ.

Пусть f(t) – оригинал. **Изображением функции** f(t) (преобразованием Лапласа функции f(t)) называется функция комплексного переменного F(p), определяемая равенством $F(p) = \int f(t) \cdot e^{-pt} dt.$

ЗАПИСЫВАЮТ: F(p) = L[f(t)], $F(p) \neq f(t)$, $f(t) \neq F(p)$. TEOPEMA.

Если f(t) — оригинал с показателем роста s_0 , то его изображение F(p) является аналитической функцией в полуплоскости $\operatorname{Re} p > s_0$.

§2. Свойства преобразования Лапласа

Будем обозначать: f(t), g(t), x(t),... – оригиналы, F(p), G(p), X(p),... – их изображения.

1) Линейность изображения.

Если f(t), g(t) — оригиналы, $\alpha, \beta \in \mathbb{C}$, то $\alpha f(t) + \beta g(t)$ — оригинал и $\alpha f(t) + \beta g(t) \not\equiv \alpha F(p) + \beta G(p)$

2) Теорема подобия.

Справедливо утверждение: $f(\alpha t) = \frac{1}{\alpha} F\left(\frac{p}{\alpha}\right), \quad \forall \alpha > 0$

3) Теорема запаздывания (оригинала)

Справедливо утверждение: $f(t-\alpha) = e^{-\alpha p} \cdot F(p)$

Замечание. Напомним, что

$$f(t) = f(t) \cdot \eta(t) = \begin{cases} 0, & t < 0; \\ f(t), & t \ge 0. \end{cases}$$

$$f(t-\alpha) = f(t-\alpha) \cdot \eta(t-\alpha) = \begin{cases} 0, & t-\alpha < 0; \\ f(t-\alpha), & t-\alpha \ge 0. \end{cases}$$

$$\Rightarrow f(t-\alpha) = \begin{cases} 0, & t < \alpha; \\ f(t-\alpha), & t \ge \alpha. \end{cases}$$

4) Теорема смещения (запаздывания изображения).

Справедливо утверждение: $F(p-\alpha) = e^{\alpha t} f(t)$.

5) Дифференцирование оригинала

TEOPEMA.

Если
$$f(t)$$
, $f'(t)$, ..., $f^{(n)}(t)$ — оригиналы, то
$$f''(t) \stackrel{.}{=} p \cdot F(p) - f(0) ,$$

$$f'''(t) \stackrel{.}{=} p^2 \cdot F(p) - p \cdot f(0) - f'(0) ,$$

$$f'''(t) \stackrel{.}{=} p^3 \cdot F(p) - p^2 \cdot f(0) - p \cdot f'(0) - f''(0) ,$$
 ...
$$f^{(n)}(t) \stackrel{.}{=} p^n \cdot F(p) - p^{n-1} \cdot f(0) - p^{n-2} \cdot f'(0) - \dots - p \cdot f^{(n-2)}(0) - f^{(n-1)}(0) ,$$
 где
$$f^{(k)}(0) = \lim_{t \to +0} f^{(k)}(t) \qquad (k = 0,1,2,...,n-1)$$

6) Дифференцирование изображения

Справедливо утверждение:

7) Интегрирование оригинала

Если f(t) – оригинал, то

$$g(t) = \int_{0}^{t} f(t)dt$$

тоже является оригиналом и справедливо утверждение:

$$\int_{0}^{t} f(t)dt \, \mathsf{J} \, \frac{F(p)}{p}$$

8) Интегрирование изображения

ТЕОРЕМА (об интегрировании изображения).

Пусть
$$f(t) \stackrel{.}{=} F(p)$$
,

$$\int\limits_{p}^{\infty}F(p)dp$$
 — сходится абсолютно

(путь интегрирования предполагается целиком лежащим в области аналитичности F(p))

$$T$$
огда функция $\frac{f(t)}{t}$ является оригиналом и

$$\frac{f(t)}{t} \mathsf{J} \int_{p}^{\infty} F(p) dp$$

9) Умножение изображений

ТЕОРЕМА (Бореля, об умножении изображений).

Пусть
$$f(t)$$
, $g(t)$ – оригиналы, $f(t) \neq F(p)$, $g(t) \neq G(p)$.

Тогда функция
$$\varphi(t) = \int_0^t f(\tau)g(t-\tau)d\tau$$

тоже является оригиналом $u \ \varphi(t) \neq F(p) \cdot G(p)$.

ОПРЕДЕЛЕНИЕ. Пусть f(t) и g(t) – оригиналы. Интеграл

$$\varphi(t) = \int_{0}^{t} f(\tau)g(t-\tau)d\tau$$

называется сверткой функций f(t) и g(t).

ОБОЗНАЧАЮТ: f(t) * g(t).

$$f(t) * g(t) = g(t) * f(t).$$

СЛЕДСТВИЕ (формула Дюамеля).

Справедлива формула:
$$f'(t) * g(t) + f(0) \cdot g(t) \neq p \cdot F(p) \cdot G(p)$$
.

$$\int_{0}^{t} f'(\tau)g(t-\tau)d\tau + f(0)\cdot g(t) = p \cdot F(p) \cdot G(p).$$

Таблица оригиналов и изображений

No	f(t)	F(p)
1	1	$\frac{1}{p}$
2	$e^{lpha t}$	$\frac{1}{p-\alpha}$
3	t^n	$\frac{n!}{p^{n+1}}$
4	$t^n e^{\alpha t}$	$\frac{n!}{(p-\alpha)^{n+1}}$
5	$\sin \beta t$	$\frac{\beta}{p^2+\beta^2}$
6	$\cos \beta t$	$\frac{p}{p^2 + \beta^2}$

No	f(t)	F(p)
7	$e^{\alpha t}\sin\beta t$	$\frac{\beta}{(p-\alpha)^2+\beta^2}$
8	$e^{\alpha t}\cos \beta t$	$\frac{p-\alpha}{(p-\alpha)^2+\beta^2}$
9	$t \sin \beta t$	$\frac{2p\beta}{(p^2+\beta^2)^2}$
10	$t\cos \beta t$	$\frac{p^2 - \beta^2}{(p^2 + \beta^2)^2}$
11	$sh\beta t$	$\frac{eta}{p^2-eta^2}$
12	$ch\beta t$	$\frac{p}{p^2 - \beta^2}$

§3. Отыскание оригинала по изображению

Способ 1

ТЕОРЕМА (обращения).

Пусть f(t) – оригинал, $f(t) \neq F(p)$. Тогда в любой точке непрерывности функции f(t) имеет место равенство

$$f(t) = \frac{1}{2\pi i} \int_{C} F(p) \cdot e^{pt} dp$$

 $r\partial e \ C - любая прямая Rep = a > s_0$.

Замечание.

$$\int_{C} F(p) \cdot e^{pt} dp = \lim_{b \to +\infty} \int_{a-bi}^{a+bi} F(p) \cdot e^{pt} dp = \int_{a-\infty i}^{a+\infty i} F(p) \cdot e^{pt} dp$$

$$f(t) = \frac{1}{2\pi i} \int_{a-\infty i}^{a+\infty i} F(p) \cdot e^{pt} dp$$

Способ 2

Изображение представляется в виде суммы более простых функций. Затем с помощью таблицы оригиналов и свойств преобразования Лапласа находят оригиналы для каждого слагаемого.

Способ 3

Изображение представляется в виде произведения двух изображений, оригиналы которых известны. Затем применяется теорема о свёртке.

Способ 4

ТЕОРЕМА (вторая теорема разложения).

Пусть функция F(p) удовлетворяет условиям:

- 1) F(p) аналитична в полуплоскости $\operatorname{Re} p > s_0$ (где s_0 некоторое неотрицательное число);
- 2) в полуплоскости $\operatorname{Rep} < s_0 \, \phi$ ункция F(p) имеет только конечное число полюсов $p_1\,,p_2\,,\ldots\,,p_n$;
- 3) $M(R) = \max_{p \in C_R} |F(p)| \to 0$ $npu \ R \to \infty$

 $a+\infty i$

 $(\it r \it de \ \it C_{\it R} - \it dy \it r \it a \ oкружности \ | \ \it z \ | = \it R \ ,$ лежащая в полуплоскости ${\rm Rep} < s_0 \,)$;

4) интеграл $\int_{a-\infty i} F(p) \cdot e^{pt} dp$ сходится абсолютно для $\forall a > s_0$.

Тогда оригиналом для функции F(p) является функция $f(t) \cdot \eta(t)$, где

$$f(t) = \sum_{k=1}^{n} \underset{p=p_k}{res} [F(p) \cdot e^{pt}]$$

Замечание. Условиям этой теоремы удовлетворяют в частности функции вида

 $\frac{Q_m(p)}{Q_n(p)}$ и $\frac{Q_m(p)}{Q_n(p)} \cdot e^{-\alpha p}$

где $Q_m(p), Q_n(p)$ — многочлены степени m и n соответственно, причем m < n .

Способ 5

ТЕОРЕМА (первая теорема разложения)

Если функция F(p) аналитична в окрестности ∞ и ее ряд Лорана в окрестности ∞ имеет вид

$$F(p) = \sum_{k=1}^{\infty} \frac{c_k}{p^k}$$

то оригиналом для функции F(p) является функция

$$f(t) = \sum_{k=1}^{\infty} \frac{c_k}{(k-1)!} \cdot t^{k-1}$$

§4. Применение преобразования Лапласа

Метод решение задач математического анализа и других разделов математики с помощью преобразования Лапласа, называют *операционным исчислением*.

1. Интегрирование линейных дифференциальных уравнений с постоянными коэффициентами

ПРИМЕР. Найти решение задачи Коши:

$$y' - y = 1$$
, $y(0) = -1$

В случае, если изображение для правой части f(t) найти сложно, решение задачи

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = f(t),$$

$$y(0) = y'(0) = \dots = y^{(n-1)}(0) = 0$$
(1)

можно выразить через решение задачи

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_{n-1} y' + a_n y = 1,$$

$$y(0) = y'(0) = \dots = y^{(n-1)}(0) = 0$$
(2)

Пусть y(t) – решение уравнения (1), $y(t) \neq Y(p)$; $y_1(t)$ – решение уравнения (2), $y_1(t) \neq Y_1(p)$; $f(t) \neq F(p)$;

тогда

$$Y(p) = p \cdot Y_1(p) \cdot F(p)$$

⇒ по формуле Дюамеля

$$y(t) = y'_1(t) * f(t) = \int_0^t y'_1(t-\tau)f(\tau)d\tau = \int_0^t y'_1(\tau)f(t-\tau)d\tau$$

2. Интегрирование систем линейных дифференциальных уравнений с постоянными коэффициентами

ПРИМЕР. Найти решение задачи Коши:

$$\begin{cases} x' + y = 2e^t, \\ y' + x = 2e^t; \end{cases}$$
$$x(0) = y(0) = 1.$$

3. Решение интегральных уравнений типа свертки

ОПРЕДЕЛЕНИЕ.

Уравнение вида

$$y(x) = f(x) + \int_{0}^{x} y(t) \cdot k(x-t)dt$$

где f(x), k(x) — известные функции, y(x) — неизвестная функция, называется **интегральным уравнением типа свертки**.

Пусть
$$y(x), f(x), k(x)$$
 – оригиналы, $y(t) \neq Y(p), f(t) \neq F(p), k(t) \neq K(p).$

Тогда

$$Y(p) = \frac{F(p)}{1 - K(p)}.$$