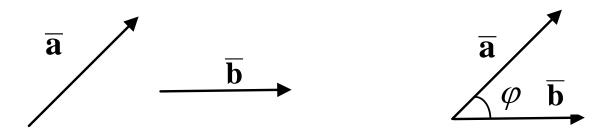

## Линейная алгебра и аналитическая геометрия

## Глава 2. Векторная алгебра

Преподаватель – доцент кафедры ВМ ТПУ, к.ф.-м.н. Шерстнёва Анна Игоревна


Определение. **Вектором** или по-другому **свободным вектором** называется направленный отрезок (т.е. отрезок, у которого одна из ограничивающих его точек принимается за начало, а вторая — за конец).



Расстояние от начала вектора до его конца называется длиной (модулем) вектора.  $| \overline{\bf AB} | | \overline{\bf a} |$ 

Вектор, длина которого равна единице, называется единичным вектором или ортом.

Вектор, начало и конец которого совпадают, называется *нулевым* и обозначается  $\overline{\mathbf{0}}$ . Нулевой вектор не имеет определенного направления и имеет длину, равную нулю.



Под *углом* между векторами  $\overline{\mathbf{a}}$  и  $\overline{\mathbf{b}}$  будем понимать угол, величина которого не превышает  $180^{\circ}$ .

Два вектора  $\overline{\bf a}$  и  $\overline{\bf b}$  называются *ортогональными*, если угол между ними равен  $90^{0}$ .  $\overline{\bf a} \perp \overline{\bf b}$ 

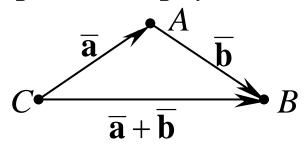
Два вектора  $\overline{\mathbf{a}}$  и  $\overline{\mathbf{b}}$  называются *коллинеарными*, если они лежат на одной или параллельных прямых.  $\overline{\mathbf{a}} \parallel \overline{\mathbf{b}}$ 

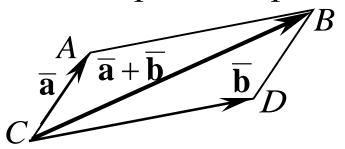
Три вектора, лежащие в одной или в параллельных плоскостях, называются *компланарными*.

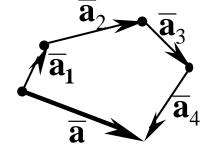
Два вектора называются *равными*, если они сонаправлены и имеют одинаковую длину. Все нулевые векторы считаются равными.

Определение. Произведением вектора  $\overline{\bf a}$  на число  $\alpha \neq 0$  называется вектор, длина которого  $|\alpha| \cdot |\overline{\bf a}|$ , а направление совпадает с направлением вектора  $\overline{\bf a}$  при  $\alpha > 0$  и противоположно ему при  $\alpha < 0$ . Если  $\overline{\bf a} = \overline{\bf 0}$  или  $\alpha = 0$ , то их произведение полагают равным  $\overline{\bf 0}$ .

$$\frac{\overline{a}}{\overline{a}}$$
  $\frac{2\overline{a}}{-2\overline{a}}$ 

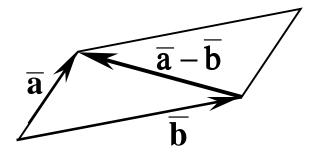

$$(-1)\overline{\mathbf{a}} = -\overline{\mathbf{a}}$$
 противоположный вектору  $\overline{\mathbf{a}}$ 


*Лемма 2.1 (критерий коллинеарности векторов).* Два ненулевых вектора  $\overline{\bf a}$  и  $\overline{\bf b}$  коллинеарны тогда и только тогда, когда  $\overline{\bf a} = \alpha \cdot \overline{\bf b}$ , для некоторого числа  $\alpha \neq 0$ 


Определение. Суммой векторов  $\overline{\bf a}$  и  $\overline{\bf b}$  называется вектор, соединяющий начало вектора  $\overline{\bf a}$  с концом вектора  $\overline{\bf b}$ , отложенного от конца вектора  $\overline{\bf a}$ 

Правило треугольника

Правило параллелограмма








$$\overline{\mathbf{a}} = \overline{\mathbf{a}}_1 + \overline{\mathbf{a}}_2 + \overline{\mathbf{a}}_3 + \overline{\mathbf{a}}_4$$

$$\overline{\mathbf{a}} + (-\overline{\mathbf{b}}) = \overline{\mathbf{a}} - \overline{\mathbf{b}}$$
разность векторов



Определение. Пусть даны векторы  $\overline{a}_1, \ \overline{a}_2, \dots, \overline{a}_k$ . Тогда вектор  $\overline{\mathbf{b}} = \alpha_1 \cdot \overline{a}_1 + \alpha_2 \cdot \overline{a}_2 + \dots + \alpha_k \cdot \overline{a}_k$  называют **пинейной комбинацией** векторов  $\overline{a}_1, \ \overline{a}_2, \dots, \overline{a}_k$ . При этом говорят, что вектор  $\overline{\mathbf{b}}$  **пинейно выражаемся** через вектора  $\overline{a}_1, \ \overline{a}_2, \dots, \overline{a}_k$ , или другими словами **разложен по векторам**  $\overline{a}_1, \ \overline{a}_2, \dots, \overline{a}_k$ .

*Пемма 2.2 (критерий компланарности векторов)*. Три ненулевых вектора  $\overline{\bf a}$ ,  $\overline{\bf b}$  и  $\overline{\bf c}$  компланарны тогда и только тогда, когда один из них линейно выражается через другие (например,  $\overline{\bf c} = \lambda_1 \, \overline{\bf a} + \lambda_2 \, \overline{\bf b}$ ).

Свойства линейных операций над векторами

1. 
$$\overline{\mathbf{a}} + \overline{\mathbf{b}} = \overline{\mathbf{b}} + \overline{\mathbf{a}}$$

2. 
$$(\overline{a} + \overline{b}) + \overline{c} = \overline{a} + (\overline{b} + \overline{c})$$

3. 
$$\overline{a} + \overline{0} = \overline{a}$$

$$4. \ \overline{\mathbf{a}} + (-\overline{\mathbf{a}}) = \overline{\mathbf{0}}$$

5. 
$$\alpha(\beta \overline{\mathbf{a}}) = (\alpha \beta) \overline{\mathbf{a}}$$

**6.** 
$$(\alpha + \beta)\overline{\mathbf{a}} = \alpha \overline{\mathbf{a}} + \beta \overline{\mathbf{a}}$$

7. 
$$\alpha(\overline{\mathbf{a}} + \overline{\mathbf{b}}) = \alpha \overline{\mathbf{a}} + \alpha \overline{\mathbf{b}}$$

8. 
$$1\overline{\mathbf{a}} = \overline{\mathbf{a}}$$

Определение. Говорят, что векторы  $\overline{a}_1$ ,  $\overline{a}_2$ , ...,  $\overline{a}_k$  линейно зависимы, если существуют числа  $\alpha_1$ ,  $\alpha_2$ , ...,  $\alpha_k$ , не равные нулю одновременно, такие, что линейная комбинация  $\alpha_1 \cdot \overline{a}_1 + \alpha_2 \cdot \overline{a}_2 + ... + \alpha_k \cdot \overline{a}_k = 0$ .

Если же равенство  $\alpha_1 \cdot \overline{a}_1 + \alpha_2 \cdot \overline{a}_2 + \ldots + \alpha_k \cdot \overline{a}_k = 0$  возможно только при условии  $\alpha_1 = \alpha_2 = \ldots = \alpha_k = 0$ , то векторы  $\overline{a}_1$ ,  $\overline{a}_2$ , ...,  $\overline{a}_k$  называют линейно независимыми.

**Пемма 3.1.** Векторы  $\bar{a}_1$ ,  $\bar{a}_2$ , ...,  $\bar{a}_k$  линейно зависимы тогда и только тогда, когда хотя бы один из них линейно выражается через оставшиеся.

**Пемма 3.2** (критерий линейной зависимости двух векторов). Два ненулевых вектора  $\overline{\mathbf{a}}$  и  $\overline{\mathbf{b}}$  линейно зависимы тогда и только тогда, когда они коллинеарны.

**Пемма 3.3** (критерий линейной зависимости трёх векторов). Три ненулевых вектора  $\overline{\mathbf{a}}$ ,  $\overline{\mathbf{b}}$  и  $\overline{\mathbf{c}}$  линейно зависимы тогда и только тогда, когда они компланарны.

Определение. **Базисом** некоторой системы векторов называется любая максимальная линейно независимая подсистема этой системы векторов.

Иначе говоря  $\overline{e}_1$ ,  $\overline{e}_2$ , ...,  $\overline{e}_n$  – базис, если

- 1)  $\bar{e}_1$ ,  $\bar{e}_2$ , ...,  $\bar{e}_n$  линейно независимы;
- 2)  $\bar{e}_1$ ,  $\bar{e}_2$ , ...,  $\bar{e}_n$ ,  $\bar{a}$  линейно зависимы для любого вектора  $\bar{a}$  из данной системы векторов.

Базис можно выбрать не единственным образом.

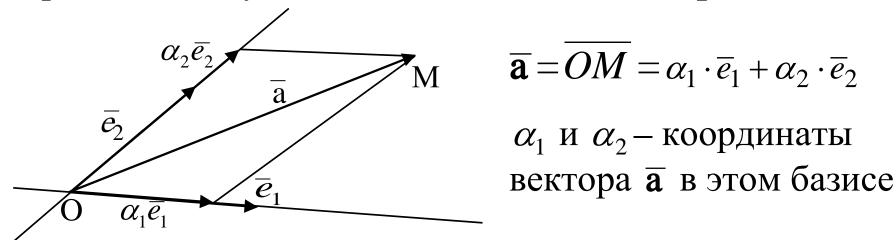
Например, если  $\overline{e}_1$ ,  $\overline{e}_2$ , ...,  $\overline{e}_n$  – базис, то при  $\alpha \neq 0$   $\alpha \overline{e}_1$ ,  $\alpha \overline{e}_2$ , ...,  $\alpha \overline{e}_n$  – также базис.

**Теорема 3.4.** Любые два базиса данной системы векторов состоят из одного и того же числа векторов.

**Теорема 3.5.** 1) Базисом на плоскости являются любые два неколлинеарных вектора.

2) Базисом в пространстве являются любые три некомпланарных вектора.

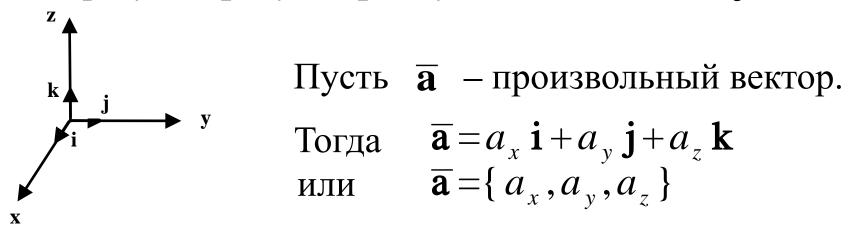
**Теорема 3.6** (о базисе). Каждый вектор линейно выражается через базис, причем единственным образом.


 $\overline{e}_1,\ \overline{e}_2,\ \dots,\ \overline{e}_n$  — базис,  $\overline{\mathbf{a}}$  — произвольный вектор  $\Rightarrow$   $\overline{a} = \alpha_1 \cdot \overline{e}_1 + \alpha_2 \cdot \overline{e}_2 + \dots + \alpha_n \cdot \overline{e}_n$ 

При этом  $\alpha_1, \alpha_2, ..., \alpha_n$  называют *координатами* вектора  $\overline{\bf a}$  в базисе  $\overline{e}_1, \overline{e}_2, ..., \overline{e}_n$ 

Зафиксируем произвольную точку О в пространстве и выберем некоторый базис.

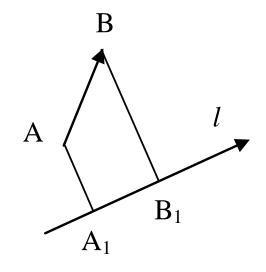
Совокупность этой точки и этого базиса называется декартовой системой координат.


При этом точку О называют – началом координат.



Также говорят, что  $\alpha_1$  и  $\alpha_2$  – *координаты точки* М. *Координатами точки* называют координаты вектора, имеющего конец в этой точке, а начало – в начале координат.

**Декартовой прямоугольной системой координат** в пространстве называют систему координат, базисом в которой являются единичные векторы, попарно ортогональные друг с другом.

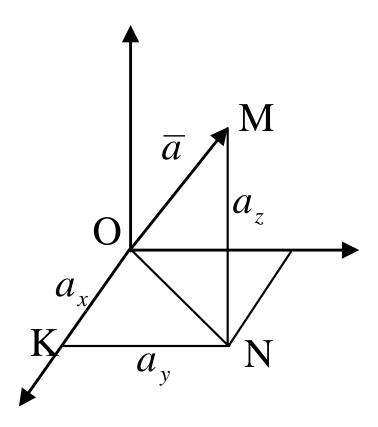

**Правая** система координат, в которой векторы базиса образуют *правую тройку*, обозначают i, j, k:



Замечание. Иногда в качестве базиса берут левую mpoйкy векторов (i, j, -k). Тогда такую систему координат называют левой.

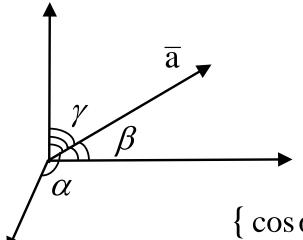
Пусть в пространстве задана ось l, то есть направленная прямая,  $\overline{\bf AB}$  – произвольный вектор.

Обозначим через  $A_1$  и  $B_1$  — проекции на ось l точек A и B соответственно.




Проекцией вектора AB на ось l называется положительное число  $|\overline{A_1B_1}|$ , если вектор  $\overline{A_1B_1}$  и ось l одинаково направлены, и отрицательное число  $-|\overline{A_1B_1}|$ , если вектор  $\overline{A_1B_1}$  и ось l противоположно направлены.

Если точки  $A_1$  и  $B_1$  совпадают, то проекция вектора  $\overline{AB}$  равна 0.


## Свойства проекций:

- **1.** Проекция вектора  $\overline{\bf a}$  на ось l равна произведению длины вектора  $\overline{\bf a}$  на косинус угла  $\varphi$  между вектором и осью: пр $_{l}\overline{\bf a} = |\overline{\bf a}| \cdot \cos \varphi$ .
- **2.** Проекция суммы нескольких векторов на ось l равна сумме их проекций на эту ось.
- **3.** При умножении вектора  $\overline{\bf a}$  на число  $\lambda$  его проекция на ось l также умножается на это число:  ${\rm пp}_l(\lambda \cdot \overline{\bf a}) = \lambda \cdot {\rm пp}_l \overline{\bf a}$ .
- $\overline{\mathbf{a}} = a_x \, \mathbf{i} + a_y \, \mathbf{j} + a_z \, \mathbf{k}$  координата  $a_x$  это проекция вектора  $\overline{\mathbf{a}}$  на ось Ox координата  $a_y$  проекция вектора  $\overline{\mathbf{a}}$  на ось Oy координата  $a_z$  проекция вектора  $\overline{\mathbf{a}}$  на ось Oz.



$$|\overline{\mathbf{a}}| = \sqrt{a_x^2 + a_y^2 + a_z^2}$$

 $\overline{\mathbf{a}} = \{a_x, a_y, a_z\}$  Рассмотрим вектор  $\{\cos\alpha, \cos\beta, \cos\gamma\}$ .



$$a_x = \operatorname{пp}_{Ox} \overline{a} = |\overline{a}| \cdot \cos \alpha$$
 (по свойству 1 проекций)

$$a_{y} = \pi p_{Oy} \overline{a} = |\overline{a}| \cdot \cos \beta$$
  
 $a_{z} = \pi p_{Oz} \overline{a} = |\overline{a}| \cdot \cos \gamma \implies$ 

$$\{\cos\alpha, \cos\beta, \cos\gamma\} = \frac{a_x}{|\overline{a}|} \mathbf{i} + \frac{a_y}{|\overline{a}|} \mathbf{j} + \frac{a_z}{|\overline{a}|} \mathbf{k} = \frac{1}{|\overline{a}|} \overline{\mathbf{a}},$$

то есть вектор  $\{\cos\alpha, \cos\beta, \cos\gamma\}$  — единичный и направлен также, как и  $\overline{\mathbf{a}}$ . Этот вектор называют *ортом вектора*  $\overline{\mathbf{a}}$ .

 $\cos \alpha$ ,  $\cos \beta$ ,  $\cos \gamma$  — *направляющие косинусы* вектора  $\overline{\bf a}$   $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$  — *свойство* направляющих косинусов.

Пусть 
$$\overline{\mathbf{a}} = \{a_x, a_y, a_z\}, \overline{\mathbf{b}} = \{b_x, b_y, b_z\}.$$

$$\overline{\mathbf{a}} + \overline{\mathbf{b}} = (a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}) + (b_x \mathbf{i} + b_y \mathbf{j} + b_z \mathbf{k}) =$$

$$= (a_x + b_x) \mathbf{i} + (a_y + b_y) \mathbf{j} + (a_z + b_z) \mathbf{k} =$$

$$= \{a_x + b_x, a_y + b_y, a_z + b_z\}$$

$$\alpha \cdot \overline{\mathbf{a}} = \alpha \cdot (a_x \mathbf{i} + a_y \mathbf{j} + a_z \mathbf{k}) =$$

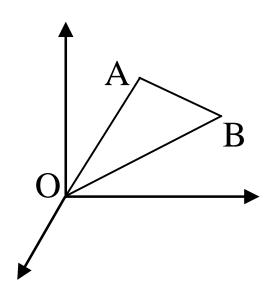
$$= (\alpha \cdot a_x) \mathbf{i} + (\alpha \cdot a_y) \mathbf{j} + (\alpha \cdot a_z) \mathbf{k} =$$

$$= \{\alpha \cdot a_x, \alpha \cdot a_y, \alpha \cdot a_z\}$$

**Теорема 4.1.** Если 
$$\overline{\mathbf{a}} = \{a_x, a_y, a_z\}, \ \overline{\mathbf{b}} = \{b_x, b_y, b_z\}, \$$
то 1)  $\overline{\mathbf{a}} + \overline{\mathbf{b}} = \{a_x + b_x, a_y + b_y, a_z + b_z\},$ 2)  $\alpha \cdot \overline{\mathbf{a}} = \{\alpha \cdot a_x, \alpha \cdot a_y, \alpha \cdot a_z\}.$ 

**Пемма 4.2** (критерий коллинеарности векторов в координатной форме). Два ненулевых вектора  $\overline{\mathbf{a}}$  и  $\overline{\mathbf{b}}$  коллинеарны тогда и только тогда, когда их координаты пропорциональны.

## Пример


$$\overline{\mathbf{a}} = \{2, 4, 0\}$$
 $2 = \alpha \cdot 1$ 
 $\mathbf{b} = \{1, 2, 0\}$ 
 $4 = \alpha \cdot 2$ 
 $0 = \alpha \cdot 0$ 

 $\Rightarrow \alpha = 2 \Rightarrow$  векторы  $\overline{\mathbf{a}}$  и  $\mathbf{b}$  коллинеарны

$$a_x = \alpha \cdot b_x, \ a_y = \alpha \cdot b_y, \ a_z = \alpha \cdot b_z \Rightarrow$$

$$\alpha = \frac{a_x}{b_x}, \ \alpha = \frac{a_y}{b_y}, \ \alpha = \frac{a_z}{b_z} \Rightarrow \frac{a_x}{b_x} = \frac{a_y}{b_y} = \frac{a_z}{b_z}$$

 $\mathbf{A}(x_1, y_1, z_1), \ \mathbf{B}(x_2, y_2, z_2).$  Найдем координаты  $\overline{\mathbf{AB}}$ .



Вектор 
$$\overline{\mathbf{AB}} = \overline{\mathbf{OB}} - \overline{\mathbf{OA}}$$
.

Так как 
$$\overline{\mathbf{OB}} = \{x_2, y_2, z_2\},\ \overline{\mathbf{OA}} = \{x_1, y_1, z_1\},\$$
то  $\overline{\mathbf{AB}} = \{x_2 - x_1, y_2 - y_1, z_2 - z_1\}.$ 

**Пемма 4.3.** Если **A** имеет координаты  $(x_1, y_1, z_1)$ , точка **B** – координаты  $(x_2, y_2, z_2)$ , то вектор  $\overline{\mathbf{AB}}$  имеет координаты  $\{x_2 - x_1, y_2 - y_1, z_2 - z_1\}$ .

Разделим отрезок **AB** в отношении  $\lambda$ , то есть на прямой, проходящей через точки **A** и **B**, найдём такую точку **M**, что  $\overline{AM} = \lambda \overline{MB}$ .

1) 
$$\lambda = 1/2$$
,  $\overline{AM} = \frac{1}{2}\overline{MB}$ .  $A$  1  $M$  2  $B$ 
2)  $\lambda = -2$ ,  $\overline{AM} = -2\overline{MB}$ .  $A$   $B$   $M$ 

3) 
$$\lambda = -1$$
, то есть  $\overline{AM} = -\overline{MB}$  — невозможно

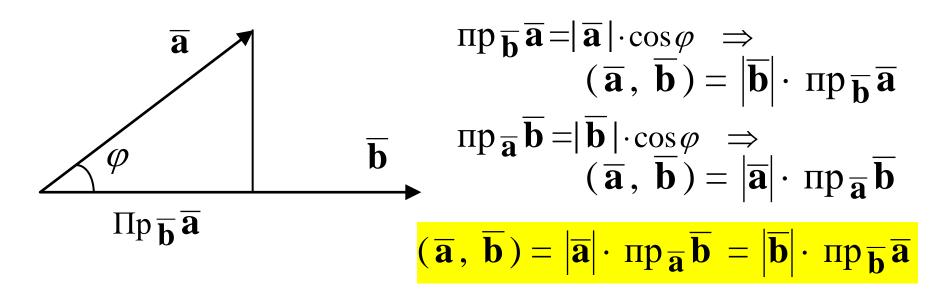
- $\lambda > 0 \implies \overline{AM}$  и  $\overline{MB}$  одинаково направлены  $\implies$  точка **M** лежит внутри отрезка **AB**
- $\lambda < 0 \Rightarrow \overline{AM}$  и  $\overline{MB}$  противоположно направлены  $\Rightarrow$  точка  $\mathbf{M}$  лежит вне отрезка  $\mathbf{AB}$

Пусть **A**  $(x_1, y_1, z_1)$ , **B**  $(x_2, y_2, z_2)$ .

Обозначим координаты точки  $\mathbf{M}(x, y, z)$ .

Тогда 
$$\overline{AM} = \{x-x_1, y-y_1, z-z_1\}, \overline{MB} = \{x_2-x, y_2-y, z_2-z\}.$$

Так как 
$$\overline{AM} = \lambda \overline{MB}$$
, то  $x - x_1 = \lambda (x_2 - x)$ ,  $y - y_1 = \lambda (y_2 - y)$ ,  $z - z_1 = \lambda (z_2 - z)$ .


Откуда получаем, что

$$x = \frac{x_1 + \lambda x_2}{1 + \lambda}, \quad y = \frac{y_1 + \lambda y_2}{1 + \lambda}, \quad z = \frac{z_1 + \lambda z_2}{1 + \lambda}.$$

Определение. Скалярным произведением двух ненулевых векторов  $\overline{\bf a}$  и  $\overline{\bf b}$  называется число, равное произведению их длин на косинус угла между ними. Записывают  $\overline{\bf a} \cdot \overline{\bf b}$  или  $(\overline{\bf a}, \overline{\bf b})$ .

$$(\overline{\mathbf{a}}, \overline{\mathbf{b}}) = |\overline{\mathbf{a}}| \cdot |\overline{\mathbf{b}}| \cdot \cos \varphi$$

Если один из двух векторов является нулевым, их скалярное произведение считается равным нулю.



Свойства скалярного произведения

1. 
$$(\overline{\mathbf{a}}, \overline{\mathbf{b}}) = (\overline{\mathbf{b}}, \overline{\mathbf{a}})$$

2. 
$$(\lambda \overline{\mathbf{a}}, \overline{\mathbf{b}}) = (\overline{\mathbf{a}}, \lambda \overline{\mathbf{b}}) = \lambda (\overline{\mathbf{a}}, \overline{\mathbf{b}})$$

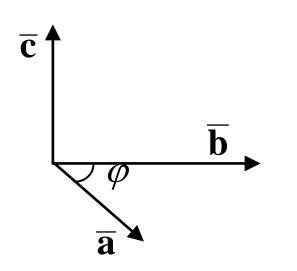
3. 
$$(\overline{a} + \overline{b}, \overline{c}) = (\overline{a}, \overline{c}) + (\overline{b}, \overline{c})$$

4. 
$$(\overline{\mathbf{a}}, \overline{\mathbf{a}}) = |\overline{\mathbf{a}}|^2$$

**Пемма 5.1** (критерий ортогональности векторов). Два ненулевых вектора ортогональны тогда и только тогда, когда их скалярное произведение равно нулю. **Пемма 5.2.** Скалярное произведение векторов равно сумме произведений соответствующих координат:

$$(\overline{\mathbf{a}}, \overline{\mathbf{b}}) = a_x b_x + a_y b_y + a_z b_z.$$

Найдем угол между  $\overline{\mathbf{a}} = \{ a_x, a_y, a_z \}$  и  $\overline{\mathbf{b}} = \{ b_x, b_y, b_z \}$ .


Имеем  $(\overline{\mathbf{a}}, \overline{\mathbf{b}}) = |\overline{\mathbf{a}}| \cdot |\overline{\mathbf{b}}| \cdot \cos \varphi$ , следовательно,

$$\cos \varphi = \frac{(\overline{\mathbf{a}}, \overline{\mathbf{b}})}{|\overline{\mathbf{a}}| \cdot |\overline{\mathbf{b}}|} = \frac{a_x b_x + a_y b_y + a_z b_z}{|\overline{a}| \cdot |\overline{b}|}$$

Определение. Векторным произведением двух ненулевых векторов  $\overline{\mathbf{a}}$  и  $\overline{\mathbf{b}}$  называется вектор  $\overline{\mathbf{c}}$  , для которого выполняются следующие условия:

1) 
$$|\overline{\mathbf{c}}| = |\overline{\mathbf{a}}| \cdot |\overline{\mathbf{b}}| \cdot \sin \varphi$$
,

- 2)  $\overline{\mathbf{c}}$  ортогонален векторам  $\overline{\mathbf{a}}$  и  $\overline{\mathbf{b}}$ ,
- 3)  $\overline{\mathbf{c}}$  направлен так, что тройка векторов  $\overline{\mathbf{a}}$ ,  $\mathbf{b}$ ,  $\overline{\mathbf{c}}$  правая, то есть ориентирована одинаково с базисной тройкой  $\mathbf{i}$ ,  $\mathbf{j}$ ,  $\mathbf{k}$ .



 $[\overline{\mathbf{a}},\overline{\mathbf{b}}]$ 

Если хотя бы один из векторов нулевой, то полагают, что векторное произведение равно нулевому вектору.

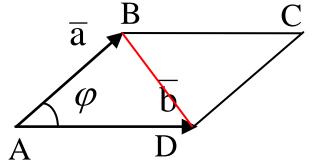
$$[i, j] = k$$
  $[j, i] = -k$   
 $[j, k] = i$   $[k, j] = -i$   
 $[i, k] = -j$   $[k, i] = j$ 

Свойства векторного произведения

1. 
$$[\overline{a}, \overline{b}] = -[\overline{b}, \overline{a}]$$

2. 
$$[\alpha \overline{a}, \overline{b}] = [\overline{a}, \alpha \overline{b}] = \alpha [\overline{a}, \overline{b}]$$

3. 
$$[\overline{\mathbf{a}}_1 + \overline{\mathbf{a}}_2, \overline{\mathbf{b}}] = [\overline{\mathbf{a}}_1, \overline{\mathbf{b}}] + [\overline{\mathbf{a}}_2, \overline{\mathbf{b}}]$$


4. 
$$[\overline{\mathbf{a}}, \overline{\mathbf{a}}] = \overline{0}$$

**Пемма 6.1.** Векторное произведение двух ненулевых векторов есть нулевой вектор тогда и только тогда, когда сомножители коллинеарны.

$$[\overline{\mathbf{a}}, \overline{\mathbf{b}}] = \mathbf{i} \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} - \mathbf{j} \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} + \mathbf{k} \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix}$$

$$[\overline{\mathbf{a}}, \overline{\mathbf{b}}] = \begin{vmatrix} i & j & k \\ a_{x} & a_{y} & a_{z} \\ b_{x} & b_{y} & b_{z} \end{vmatrix}$$

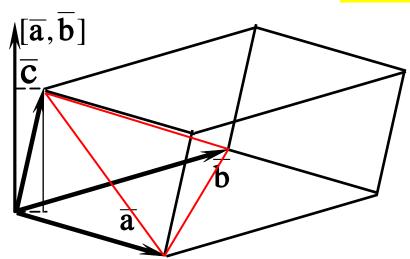
**Пемма 6.2.** Пусть  $\overline{\bf a}$  и  $\overline{\bf b}$  – неколлинеарные вектора. Тогда площадь параллелограмма, построенного на этих векторах, равна модулю векторного произведения векторов  $\overline{\bf a}$  и  $\overline{\bf b}$ :  $S = |[\overline{\bf a}, \overline{\bf b}]|$ .



Пусть  $\overline{ABCD}$  — параллелограмм, где  $\overline{AB}$  =  $\overline{\mathbf{a}}$ ,  $\overline{AD}$  =  $\overline{\mathbf{b}}$ .

$$S = AB \cdot AD \cdot \sin \varphi$$

Ho AB = 
$$|\overline{\mathbf{a}}|$$
, AD =  $|\overline{\mathbf{b}}| \Rightarrow S = |\overline{\mathbf{a}}| \cdot |\overline{\mathbf{b}}| \cdot \sin \varphi = |[\overline{\mathbf{a}}, \overline{\mathbf{b}}]|$ .


*Следствие 6.3.* Пусть  $\bar{\bf a}$  и  $\bar{\bf b}$  – неколлинеарные вектора. Тогда площадь треугольника, построенного на этих векторах, равна половине модуля векторного произведения векторов  $\bar{\bf a}$  и  $\bar{\bf b}$ :

Определение. Смешанным произведением трёх векторов  $\overline{\bf a}$ ,  $\overline{\bf b}$  и  $\overline{\bf c}$  называется число, получаемое следующим образом: векторное произведение  $[\overline{\bf a}, \overline{\bf b}]$  умножаем скалярно на  $\overline{\bf c}$ :

$$(\overline{\mathbf{a}}, \overline{\mathbf{b}}, \overline{\mathbf{c}}) = ([\overline{\mathbf{a}}, \overline{\mathbf{b}}], \overline{\mathbf{c}}).$$

**Пемма 7.1.** Пусть  $\overline{\bf a}$ ,  $\overline{\bf b}$  и  $\overline{\bf c}$  – некомпланарные вектора. Тогда объём параллелепипеда, построенного на этих векторах, равен модулю смешанного произведения векторов  $\overline{\bf a}$ ,  $\overline{\bf b}$  и  $\overline{\bf c}$ :

$$V = |(\overline{a}, \overline{b}, \overline{c})|.$$



$$V = S_{OCH} \cdot H$$

Основание параллелепипеда – параллелограмм, построенный на векторах  $\overline{\mathbf{a}}$  и  $\overline{\mathbf{b}}$ .

По лемме 6.2  $S_{och} = |[\overline{\mathbf{a}}, \mathbf{b}]|$ .

Высота параллелепипеда  $H = |\Pi p_{\overline{[a,b]}} \overline{c}|$ .

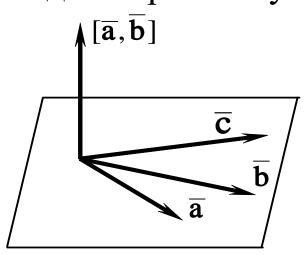
$$V = S_{och} \cdot H = \left| |[\overline{\mathbf{a}}, \overline{\mathbf{b}}]| \cdot \prod_{[\overline{\mathbf{a}}, \overline{\mathbf{b}}]} \overline{\mathbf{c}} \right| = |([\overline{\mathbf{a}}, \overline{\overline{\mathbf{b}}}], \overline{\mathbf{c}})| = |(\overline{\mathbf{a}}, \overline{\overline{\mathbf{b}}}, \overline{\mathbf{c}})|$$

**Пемма 7.1.** Пусть  $\overline{\bf a}$ ,  $\overline{\bf b}$  и  $\overline{\bf c}$  – некомпланарные вектора. Тогда объём параллелепипеда, построенного на этих векторах, равен модулю смешанного произведения векторов  $\overline{\bf a}$ ,  $\overline{\bf b}$  и  $\overline{\bf c}$ :

$$V = |(\overline{a}, \overline{b}, \overline{c})|.$$

*Следствие 7.2.* Пусть  $\overline{\bf a}$ ,  $\overline{\bf b}$  и  $\overline{\bf c}$  — некомпланарные вектора. Тогда объём пирамиды, построенной на этих векторах, равен одной шестой модуля смешанного произведения векторов  $\overline{\bf a}$ ,  $\overline{\bf b}$  и  $\overline{\bf c}$ :

$$\mathbf{V} = \frac{1}{6} \cdot |(\overline{\mathbf{a}}, \overline{\mathbf{b}}, \overline{\mathbf{c}})|.$$


Свойства смешанного произведения

1. 
$$([\overline{\mathbf{a}}, \overline{\mathbf{b}}], \overline{\mathbf{c}}) = -([\overline{\mathbf{b}}, \overline{\mathbf{a}}], \overline{\mathbf{c}})$$

2. 
$$([\overline{\mathbf{a}}, \overline{\mathbf{b}}], \overline{\mathbf{c}}) = ([\overline{\mathbf{b}}, \overline{\mathbf{c}}], \overline{\mathbf{a}}) = ([\overline{\mathbf{c}}, \overline{\mathbf{a}}], \overline{\mathbf{b}})$$

3. 
$$([\overline{\mathbf{a}}, \overline{\mathbf{b}}], \overline{\mathbf{c}}) = (\overline{\mathbf{a}}, [\overline{\mathbf{b}}, \overline{\mathbf{c}}])$$

**Пемма** 7.3 (критерий компланарности векторов через смешанное произведение). Три ненулевых вектора компланарны тогда и только тогда, когда их смешанное произведение равно нулю.



Пусть 
$$\overline{\mathbf{a}} = \{ a_x, a_y, a_z \}, \overline{\mathbf{b}} = \{ b_x, b_y, b_z \}, \overline{\mathbf{c}} = \{ c_x, c_y, c_z \}.$$

$$(\overline{\mathbf{a}}, \overline{\mathbf{b}}, \overline{\mathbf{c}}) = ([\overline{\mathbf{a}}, \overline{\mathbf{b}}], \overline{\mathbf{c}})$$

$$[\overline{\mathbf{a}}, \overline{\mathbf{b}}] = \begin{vmatrix} i & j & k \\ a_x & a_y & a_z \\ b_x & b_y & b_z \end{vmatrix} = \mathbf{i} \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} - \mathbf{j} \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} + \mathbf{k} \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix}$$

$$([\overline{\mathbf{a}}, \overline{\mathbf{b}}], \overline{\mathbf{c}}) = \begin{vmatrix} a_y & a_z \\ b_y & b_z \end{vmatrix} \cdot c_x - \begin{vmatrix} a_x & a_z \\ b_x & b_z \end{vmatrix} \cdot c_y + \begin{vmatrix} a_x & a_y \\ b_x & b_y \end{vmatrix} \cdot c_z$$

$$(\overline{\mathbf{a}}, \overline{\mathbf{b}}, \overline{\mathbf{c}}) = \begin{vmatrix} a_x & a_y & a_z \\ b_x & b_y & b_z \\ c_x & c_y & c_z \end{vmatrix}$$