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Integral Equations with Degenerate Kernel

The Degenerate (or separable) kernel of 2nd kind Fredholm
integral equation is the kernel K(x,t) of a finite sum of
products of functions depending only on x and ¢, respectively.
Mathematically, this can be written

K(x.r) = k; ax(x) by (7). (1)

It is assumed in the formula (1) that the functions a;(x) and
bi(t) (k=1,2,...,n) are continuous in the domain a <x,r <b
and are linearly independent among themselves.
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In this case, the integral equation with degenerate kernel (1)
can be written in the form

¢(X)—7t/ab Li] ag(x) -bk(t)] e()dt=f(x).  (2)

To obtain a solution of the equation (2) it could be rewritten
in form

o) = /WA Y al [ niewd (3
k=1 a

By introducing the notation

/abbk(t)(p(t)dt:Ck (k=1,2,...n), (4)
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the formula (3) could be written

() = F(0) +4 Y. Cear (). (5)

k=1

where C;— is unknown constants. This is a consequence of
the fact that the expressions for C; include the unknown
function ¢@(x).It follows from the calculations that is sufficient
to find the C; (k=1,2,...,3) in order to obtain the solution
to integral equations with degenerate kernel.To do this, one
may substitute the expression (5) into the equation (2) and
after simple transformations one can obtain

n b
m;l {Cm —/a bu(t)

£+ 2 Y Cuan(t)
k=1

dt} am(x) =0
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Since the coefficients a,,(x) (m=1,2,...,n) are linearly
independent, the last expression can be written

b
o — / b(1) dt=0,
a

£+ 2 Y Cean(t)
k=1

or

G2 Y Ck/abak(t)bm(t)dt: /abbm(t)f(t)dt (m=1,2,...,n).

k=1
By introducing the notation

in = | e Obn(0)dt, = / bu0)1(0),

one can obtain

Cm—QL Zakka:fm, (m: 1,2,...,1’1)
k=1
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It is more convenient to write the last expression in the form
of a system of equations

(1—Aai)Ci—AanC—---—Aai,C, = fi

—Aar Cy +(1 —lazz)CQ— oo — Aan,C =/ (6)

—lanlcl — lanQCZ — 4 (1 — /la,m)Cn = fn

To solve the system (6), i.e. finding the coefficients Cy it is
necessary to solve a system of n linear equations with n
unknowns.



Fredholm Integral Equations

To do this, it is necessary to find out, at first, what the
determinant of a given system is equal to. It could be written

as
1— /16111 —7La12 —7La1n
sw=| e T T T
—Aay —Aay - (1 - la'm)

If A(A) # 0 than the system of equation (6) has a unique
solution and coefficients Cy can for example be found by using
Cramer's rule

l—2Aayy - —Aap-1fi—Aayggr - —Aay,

= L} =Rday - —Aayafr—RAagr 0 —Aay

A(A) .................. e e
_A'anl _Afankflfn - A‘ank+1 1 )vann
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In this case solution of equation (2) is the function ¢(x) is
described by the expression

n

Q(x) = f(x)+ 4 Y Crar(x),

k=1

where Cy (k=1,2,...n) is coefficients are coefficients
determined by formula (8).



