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The Degenerate (or separable) kernel of 2nd kind Fredholm
integral equation is the kernel K(x, t) of a finite sum of
products of functions depending only on x and t, respectively.
Mathematically, this can be written

K(x, t) =
n

∑
k=1

ak(x) ·bk(t). (1)

It is assumed in the formula (1) that the functions ak(x) and
bk(t) (k = 1,2, . . . ,n) are continuous in the domain a≤ x, t ≤ b
and are linearly independent among themselves.
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In this case, the integral equation with degenerate kernel (1)
can be written in the form

ϕ(x)−λ

∫ b

a

[
n

∑
k=1

ak(x) ·bk(t)

]
ϕ(t)dt = f (x). (2)

To obtain a solution of the equation (2) it could be rewritten
in form

ϕ(x) = f (x)+λ

n

∑
k=1

ak(x)
∫ b

a
bk(t)ϕ(t)dt (3)

By introducing the notation∫ b

a
bk(t)ϕ(t)dt =Ck (k = 1,2, . . .n), (4)
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the formula (3) could be written

ϕ(x) = f (x)+λ

n

∑
k=1

Ckak(x), (5)

where Ck− is unknown constants. This is a consequence of
the fact that the expressions for Ck include the unknown
function ϕ(x).It follows from the calculations that is sufficient
to find the Ck (k = 1,2, . . . ,3) in order to obtain the solution
to integral equations with degenerate kernel.To do this, one
may substitute the expression (5) into the equation (2) and
after simple transformations one can obtain

n

∑
m=1

{
Cm−

∫ b

a
bm(t)

[
f (t)+λ

n

∑
k=1

Ckak(t)

]
dt

}
am(x) = 0
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Since the coefficients am(x) (m = 1,2, . . . ,n) are linearly
independent, the last expression can be written

Cm−
∫ b

a
bm(t)

[
f (t)+λ

n

∑
k=1

Ckak(t)

]
dt = 0,

or

Cm−λ

n

∑
k=1

Ck

∫ b

a
ak(t)bm(t)dt=

∫ b

a
bm(t) f (t)dt (m= 1,2, . . . ,n).

By introducing the notation

akm =
∫ b

a
ak(t)bm(t)dt, fm =

∫ b

a
bm(t) f (t),

one can obtain

Cm−λ

n

∑
k=1

akmCk = fm, (m = 1,2, . . . ,n)
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It is more convenient to write the last expression in the form
of a system of equations

(1−λa11)C1−λa12C2−·· ·−λa1nCn = f1

−λa21C1 +(1−λa22)C2−·· ·−λa2nCn = f2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−λan1C1−λan2C2−·· ·+(1−λann)Cn = fn

(6)

To solve the system (6), i.e. finding the coefficients Ck it is
necessary to solve a system of n linear equations with n
unknowns.
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To do this, it is necessary to find out, at first, what the
determinant of a given system is equal to. It could be written
as

∆(λ ) =

∣∣∣∣∣∣∣∣
1−λa11 −λa12 · · · −λa1n
−λa21 (1−λa22) · · · −λa2n
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−λan1 −λan2 −·· · (1−λann)

∣∣∣∣∣∣∣∣ (7)

If ∆(λ ) 6= 0 than the system of equation (6) has a unique
solution and coefficients Ck can for example be found by using
Cramer’s rule

Ck =
1

∆(λ )

∣∣∣∣∣∣∣∣
1−λa11 · · · −λa1k−1 f1−λa1k+1 · · · −λa1n
−λa21 · · · −λa2k−1 f2−λa2k+1 · · · −λa2n
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
−λan1 . . . −λank−1 fn−λank+1 · · · 1−λann

∣∣∣∣∣∣∣∣
(8)
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In this case solution of equation (2) is the function ϕ(x) is
described by the expression

ϕ(x) = f (x)+λ

n

∑
k=1

Ckak(x),

where Ck (k = 1,2, . . .n) is coefficients are coefficients
determined by formula (8).


