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Particle Penetration Through Matter

Particle Penetration Through Matter

Figure: Particle penetration through matter.
Let imagine a stream of particles with flow density Φ0 1/(cm2 · sec) are
hitting an absorber made up of randomly distributed atoms with diameter
σ (cm2) and the mean number of atoms per unit volume equal n0 (1/cm3).
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Particle Penetration Through Matter

If particles are absorbed when colliding with atoms, the flux density Φ(x)
will be a random depth function.

After each collision a number of particles decreases by a unit and
Φ(x+∆x) = Φ(x)−Q(∆x)

where Q(∆x) is the number of particles absorbed per centimeter squared in
a layer ∆x per unit time.

Obviously, this equality remains valid after averaging due to lots of
experiments:

Φ̄(x+∆x) = Φ̄(x)− Q̄(∆x). (1)
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Particle Penetration Through Matter

It is easily seen that the mean number of collisions of the particle flux Φ̄(x)
with a single atom per unit time equals σΦ̄(x) and n0∆x is the number of
atoms per 1 cm in the layer ∆x, therefore, Q̄(∆x) equals their product:

Q̄(∆x) = Φ̄(x) σn0 ∆x. (2)

The ratio of the mean number of collisions in the layer ∆x to the mean
number of particles striking this layer

Q̄(∆x)
Φ̄(x)

= µ∆x

is the mean number of collisions on the path ∆x for one particle and
µ = σn0 is the mean number of collisions per unit path.
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Particle Penetration Through Matter

By inserting eq. (2) in (1) and proceeding to the limit ∆x→ 0 one could
get a differential equation for Φ̄(x):

dΦ̄

dx
=−µΦ̄.

It is necessary to add a boundary condition Φ̄(0) = Φ0 to find the solution.

And it is the function

Φ̄(x) = Φ0e−µx. (3)

It is seen from formulae (3) that the value 1/µ is numerically equal to the
depth in which the mean flux density Φ̄ decreases by e times.

That is why the value µ is called the linear attenuation coefficient.
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Particle Penetration Through Matter

The ratio of the mean number of particles that have travelled the path x
without any interaction to the initial number of particles targeted to the
absorber

P0(x) =
Φ̄(x)
Φ0

= e−µx

is the probability to travel along this path without any interaction.

Let is assume now that particles in matter not only could get absorbed but
scatter as well and they change the movement direction when colliding.

In this case the particle path represents a broken line made up of sections
of random length.
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Particle Penetration Through Matter

Let us designate the path length by x travelled by a particle along a
trajectory, mentally stretching it to a straight line.

On this path a particle experiences a random number of collisions,
therefore, the random number of particles having passed the path x can be
written in the form of a sum

Φ̄(x) = Φ̄0(x)+ Φ̄1(x)+ Φ̄2(x)+ ...,

where Φ̄k(x) is the mean number of particles having experienced the
k-collisions on the path x.

By dividing the both parts of this equation on Φ̄(x) we get the
normalization condition

∞

∑
k=0

Pk(x) = 1,

where Pk(x) =
Φ̄k(x)
Φ̄(x)

is the probability to experience k collisions.
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Particle Penetration Through Matter

It is easily seen that as before P0(x) = e−µx and for a small path ∆x when
one can neglect the probability to experience more than one collision and
taking to account eq. (2) we could get

P1(∆x) = µ∆x,

that is, µ isthe collision probability per unit path.

The view of probabilities Pk(x) for arbitrary k and x will be discussed latter.

Let x is the path travelled by a particle in matter till the first collision is
random and the probability of the collision to occur within the interval
(x,x+∆x) should be found.

This probability can be found if we take into account that for a particle
outgoing from the beginning of coordinates the first collision in the interval
(x,x+∆x) can be considered as composition of two random events:”the
absence of interactions on the path” (the probability of this event is equal
to e−µx)

and ”the collision in ∆x” (the corresponding probability equals µ∆x).
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Particle Penetration Through Matter

Therefore, P(x ∈ ∆x) equals the product of the two given factors:

P(x ∈ ∆x) = e−µx
µ∆x.

The probability density of the fact that the collision has occurred in the
point x is found by formula

w(x) = µ e−µx, 0≤ x < ∞. (4)

The function w(x) describes the distribution of particle paths.

Generating random numbers x from distribution (4) we could simulate the
mean free path of a particle. They can be employed to compute the mean
free path of a particle:

< l >=
1
N

N

∑
i=1

xi.

In previous lectures we found that such a mean can be written in the form

of an integral
∫

∞

0
x µ e−µx dx that equals 1/µ , hence, the value 1/µ isthe

mean particle path till a collision.
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Radioactive Decay

Radioactive Decay

Suppose we have N0 of radioactive atoms.

The lifetime of each of them is random, therefore, the number of
disintegrated atoms N(t) is the random function of time:after each decay
the number of atoms decreases on 1.

Likewise the problem on particle absorption for a mean due to lots of
experiments the following equality is true

N̄(t +∆t) = N̄(t)− Q̄(∆t),

where Q̄(∆t) is the mean number of atoms disintegrated per time ∆t.

It is proportional to the number of non-decayed atoms in the moment t and
the interval size ∆t:

Q̄(∆t) = µ ∆t N̄(t),
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Radioactive Decay

As in the preceding example

dN̄
dt

=−µN̄,

N̄(t) = N0e−µt .

The value µ is called a decay constant.
Its physical meaning is analogous to that of what was spoken in the
previous example: µ is the mean number of disintegration per unit time
and the disintegration probability per unit time and 1/µ is the time at
which the number of atoms decreases in e times and the mean lifetime of
an atom.
The atom disintegration moment can be pictured by a point on the time
axis and the point hit the interval (t, t +∆t) is considered to be the
composition of the two random events: ”atom survival per time (0, t)” ( the

probability of this event equals
N̄(t)
N0

= e−µt) and ”disintegration per time

∆t” (the corresponding probability equals µ∆t).
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Radioactive Decay

Therefore, if an atom existed at t = 0, the disintegration probability in the
moment t ∈ ∆t equals the product of two given probabilities:

P(t ∈ ∆t) = e−µt
µ∆t,

and the disintegration probability density in the moment t equals

w(t) = µe−µt .

Simulating t from this distribution one can find random atom lifetime.
In the system composed of several radioactive atoms the moment of the
first decay is random and the probability of the fact that this disintegration
will occur within the interval (t, t +∆t) can be found as a composition of
probabilities of two random events:
”survival of all atoms in the interval (0, t)” and ”decay of one of atoms per
time ∆t”.
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Radioactive Decay

If there were N radioactive atoms in the initial moment, (e−µt)N is the
probability of the fact that by the moment t all of them had survived
(neither the first nor the second nor N-atoms decayed) and Nµ∆t is the
probability of the fact that per ∆t one of them will decay (either the fist or
the second or . . .N).
Therefore,

wN(t) = µN e−µNt

is the probability density to simulate the first decay moment in the system
composed of N atoms. Decreasing N after each disintegration by unit one
can simulate a random N(t).
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Radioactive Decay

The result of simulation of the radioactive decay is represented in next
figure.

Figure: The result of simulating the radioactive decay curve.
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Radioactive Decay

For large values of N one can neglect statistical nature of the decay process
and assume that the number of radioactive atoms decreases according to
the exponential law.

For small N the exponential law is true only for a mean value due to a
great number of experiments.

The disintegration of radioactive nuclei results in the formation of daughter
nuclei - decay product and their accumulation can be automatically
calculated during simulation.
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Multi-Channel and Complex Radioactive Decay

Multi-Channel and Complex Radioactive Decay

For atoms with several ways (channels) of decay a decay constant µ

equals the sum of partial constants µi corresponding to various channels:

µ = ∑
i

µi,

and Pi = µi/µ is the decay probability over i-channel.

By knowing these probabilities one can find a decay type by means of
simulation.

For this one needs to plot probabilities Pi in the segment (0,1) and
determine a channel number according to a uniformly distributed random
number γ .
The joint simulation of a random function N(t) and a decay type is
simulation of such a decay and accumulation of its products.
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Multi-Channel and Complex Radioactive Decay

If some decay products are radioactive themselves (complex radioactive
decay) the decay moment of the next daughter nucleus is simulated in the
same way taking into account how many nuclei of the given element were
there before that decay.
In this case the dynamics of the process has a more complex nature since
some nuclei can not only decay but also be produced as a result of
preceding decay.
The calculation of radioactive decay is carried out in the following way.
A list of all substances that can be formed at different stages of decay is
made up and an initial quantity of each of these elements is set up.
For each of them the first decay moment is calculated in the way described
above. They are compared among each other to define which decay exactly
will be the first.
A number of atoms of a disintegrated element decreases by unit whereas a
number of corresponding daughter atoms increases by unit.
After that the process of simulation is repeated. The calculation is
performed as long as there are radioactive atoms in the system.
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Simulation of Birth and Death Process

Simulation of Birth and Death Process

In problems of biology and medicine living organisms can not only born but
also be die.
Let µ∆t be the probability of death per ∆t, and ν∆t be the probability of
birth in the same time.
Then (µ +ν)∆t is the probability of birth and death per ∆t.

Let us designate Σ = µ +ν , then the ratios
µ

Σ
and

ν

Σ
define relative

probabilities of death and birth.
Successive simulation of a random moment when a number of living
organisms is changed in the system along with a random type of the process
(birth and death) makes it possible to simulate the evolution of population.
In those cases when one organism is able to give a birth to several twins , a
simulation algorithm is supplemented by sampling of a number of
descendants from known probabilities to have k descendants as it was
carried out in lecture 3.
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Simulation of Birth and Death Process

The results of population evolution simulation with various ratios between
birth and death probabilities of organisms are presented in next figure.

Figure: The results of simulation of population evolution over time.
It is seen from the figure that if µ > ν , the quantity of the population on
the average increases and if µ < ν , it decreases.
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Simulation of Birth and Death Process

Analogous problems are typical for physics of cosmic rays where one has to
consider cascades of high energy particles, where each particle interacting
with a substance and can be absorbed or produce a random number of
secondary particles.
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The Poisson Distribution

The Poisson Distribution

Let rain drops fall on a selected area of a road (or particles of cosmic rays
impinge on a detector) at random moments of time t1, t2, . . . .

The number of drops fallen in time ∆t is random, it can be equal to
0,1,2 . . . , and the normalization condition can be written for corresponding
probabilities:

∞

∑
k=0

Pk(∆t) = 1.

In the same way as in problems on particle absorption in matter or
radioactive decay one can suppose that for small ∆t the probability P1(∆t)
is proportional to ∆t:

P1(∆t) = ν∆t, (5)

whereas P2,P3, ... have a higher order of smallness and they can be
neglected in the normalization condition. In this approximation

P0(∆t) = 1−ν∆t. (6)
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The Poisson Distribution

To find the probability P0 for a finite time, one can consider the lack of
drops in the interval (0, t +∆t) as a composition of two random events:

”the absence of drops in (0, t)” and ”the absence of drops in ∆t”.

Therefore,
P0(t +∆t) = P0(t) P0(∆t).

Substituting expression (6) for P0(∆t) in to this formula and passing on to
the limit ∆t→ 0,we get a formula is similar to obtained in problems on
particle penetration through matter and radioactive decay:

dP0(t)
dt

+νP0(t) = 0.

from (6) it follows that P0(0) = 1, therefore,

P0(t) = e−νt .

The quantity ν is called flux intensity and is equal to a mean number of
drops per unit time.
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The Poisson Distribution

The time between two drop falls is random and by analogy with the
examples above the probability of this time to be in the interval (t, t +∆t)
equals

P(t ∈ ∆t) = e−νt
ν∆t,

the probability density for simulation of the time interval between two
drops is

w(t) = νe−νt ,

and the mean value of the time interval between two drops equals 1/ν .

To find the probability P1 for a finite time interval we note that the fall of
one drop in time (0, t +∆t) means that

”one drop has fallen in time (0, t) and no drops in ∆t” or ”no drops in time
(0, t) and one drop has fallen in ∆t”. Therefore,

P1(t +∆t) = P1(t) P0(∆t)+P0(t) P1(∆t).
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The Poisson Distribution

Using formulas (6), (5) for P0(∆t) and P1(∆t) and limiting ∆t→ 0 one can
obtain a heterogeneous differential equation

dP1(t)
dt

+νP1(t) = νP0(t).

The initial condition for the function P1(t) in accordance with (5) is
P1(0) = 0.

Similarly one can show that if k > 0

dPk(t)
dt

+νPk(t) = νPk−1(t),

Pk(0) = 0.

The substitution
Pk(t) = e−νt P̃k(t)

leads this equation to the form
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The Poisson Distribution

dP̃k(t)
dt

= νP̃k−1(t),

P̃k(0) = 0.

The successive integration of this equation at k = 1,2, .. taking into

account that P̃0(t) = 1 gives P̃k(t) =
(νt)k

k!
,that results in

Pk(t) =
(νt)k

k!
e−νt . (7)

The solution obtained is called the Poisson distribution.
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The Poisson Distribution

One can easily check that the probabilities Pk(t) satisfy the normalization
condition:

∞

∑
k=0

Pk(t) = 1,

therefore, plotting numbers Pk in the segment (0,1) over a uniformly
distributed random number γ one can simulate a random number k.

The sequence of random numbers with the exponential distribution of time
intervals between them or with a random k and probabilities Pk defined by
formula (7) is called the Poisson flow of events.
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The Poisson Distribution

It has been found out that the Poisson distribution describes the amount of
goods sold, the number of caught fish, the number of strikes or wars,
mistakes in a text, calls at a phone station, injuries in a factory, radioactive
nuclei decayed or tractors broken down.

Substituting time t by a path travelled it describes the number of punctures
in a wheel or the number of collisions of a particle in matter.

And substituting t by ~r it is used to analyze a number of particles impinged
on the same grounds ∆S having involved in to interactions in the same
volumes ∆V and so on. All these processes can be studied by statistical
simulation methods.
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