Resolvent of Volterra's Integral Equations. Solving the Integral Equations with Help of Resolvent.

Lets assume that we have the Volterra integral equation of 2nd kind

$$
\begin{equation*}
\varphi(x)=f(x)+\lambda \int_{0}^{x} K(x, t) \varphi(t) d t, \tag{1}
\end{equation*}
$$

where $K(x, t)$ is continuous function on $0 \leq x \leq a, 0 \leq t \leq x$ and $f(x)$ is continuous on $0 \leq x \leq a$.
Let's find the solution of this integral equation (1) in the form of an infinite power series in powers of λ.

$$
\begin{equation*}
\varphi(x)=\varphi_{0}(x)+\lambda \varphi_{1}(x)+\lambda^{2} \varphi_{2}(x)+\cdots+\lambda^{n} \varphi_{n}(x)+\ldots \tag{2}
\end{equation*}
$$

If we substitute the expression (2) to (1) than we obtain

$$
\begin{aligned}
& \varphi_{0}(x)+\lambda \varphi_{1}(x)+\lambda^{2} \varphi_{2}(x)+\cdots+\lambda^{n} \varphi_{n}(x)+\cdots=f(x)+ \\
& +\lambda \int_{0}^{x} K(x, t)\left[\varphi_{0}(t)+\lambda \varphi_{1}(t)+\lambda^{2} \varphi_{2}(t)+\cdots+\lambda^{n} \varphi_{n}(t)+\ldots\right] d t
\end{aligned}
$$

By comparing the coefficients of identical powers of λ, one could find that
$\varphi_{0}(x)=f(x)$,
$\varphi_{1}(x)=\int_{0}^{x} K(x, t) \varphi_{0}(t) d t=\int_{0}^{x} K(x, t) f(t) d t$,
$\varphi_{2}(x)=\int_{0}^{x} K(x, t) \varphi_{1}(t) d t=\int_{0}^{x} K(x, t) \int_{0}^{t} K\left(t, t_{1}\right) f\left(t_{1}\right) d t_{1} d t$,

Formulas (3) define a way of iterative evaluation for the functions $\varphi_{n}(x)$.
It can be shown that under this assumptions with respect to $f(x)$ and $K(x, t)$ the series (2) converges uniformly with respect to x and λ for any λ at $x \in[0, a]$. And sum of this series is the unique solution of equation (1).

By continuing the transformations in formula (3), one may obtain:

$$
\begin{aligned}
\varphi_{1}(x) & =\int_{0}^{x} K(x, t) f(t) d t \\
\varphi_{2}(x) & =\int_{0}^{x} K(x, t)\left[\int_{0}^{t} K\left(t, t_{1}\right) f\left(t_{1}\right) d t_{1}\right] d t= \\
& =\int_{0}^{x} f\left(t_{1}\right) d t_{1} \int_{t_{1}}^{x} K(x, t) K\left(t, t_{1}\right) d t=\int_{0}^{x} K_{2}\left(x, t_{1}\right) f\left(t_{1}\right) d t_{1}
\end{aligned}
$$

where

$$
K_{2}\left(x, t_{1}\right)=\int_{t_{1}}^{x} K(x, t) K\left(t, t_{1}\right) d t
$$

Next formula can be obtained by continuing further transfomation:

$$
\begin{equation*}
\varphi_{n}(x)=\int_{0}^{x} K_{n}(x, t) f(t) d t \quad(n=1,2,3, \ldots) \tag{4}
\end{equation*}
$$

In this formula the functions $K_{n}(x, t)$ are known as iterative or sequential kernels.
It is not difficult to show that they can be written using the recurrence formulas:

$$
\begin{align*}
K_{1}(x, t)=K(x, t), \\
K_{n+1}=\int_{t}^{x} K(x, z) K_{n}(z, t) d z \quad(n=1,2,3, \ldots) . \tag{5}
\end{align*}
$$

The formula (2) could be rewritten with help of equations (4) and (5) and for determination of unknown function $\varphi(x)$ next equation may be used:

$$
\varphi(x)=f(x)+\sum_{v=1}^{\infty} \lambda^{v} \int_{0}^{x} K_{v}(x, t) f(t) d t
$$

The function $\mathrm{R}(x, t ; \lambda)$ defined with help of series

$$
\begin{equation*}
\mathrm{R}(x, t ; \lambda)=\sum_{v=0}^{\infty} \lambda^{v} K_{v+1}(x, t), \tag{6}
\end{equation*}
$$

is called the resolvent (or resolving kernel) of integral equation (1). The series (6) converges absolutely and uniformly, if kernel $K(x, t)$ is continuous.

It should be noted that the iterative kernels as well as resolvent do not depend on the lower limit of the integral equation. Because the resolvent $\mathrm{R}(x, t ; \lambda)$ of integral equation should satisfy the functional equation

$$
\mathrm{R}(x, t ; \lambda)=K(x, t)+\lambda \int_{0}^{x} K(x, s) \mathrm{R}(s, t ; \lambda) d s
$$

the solution of equation (1) using the resolvent can be written as

$$
\begin{equation*}
\varphi(x)=f(x)+\lambda \int_{0}^{x} \mathrm{R}(x, t ; \lambda) f(t) d t \tag{7}
\end{equation*}
$$

Sometimes the kernels of Volterra's integral equations could be more complex. Lets consider that kernel $K(x, t)$ is polynomial series of degree $(n-1)$ relative to t and it could be described by formula:

$$
\begin{equation*}
K(x, t)=a_{0}(x)+a_{1}(x)(x-t)+\cdots+\frac{a_{n-1}(x)}{(n-1)!}(x-t)^{n-1} \tag{8}
\end{equation*}
$$

where $a_{k}(x)$ are continuous in the interval $(0, C)$.

One could define a function $g(x, t ; \lambda)$ for another way to find the resolvent of integral equation. This function should be found as solution of differential equation

$$
\begin{equation*}
\frac{\mathrm{d}^{n} g}{\mathrm{~d} x^{n}}-\lambda\left[a_{0}(x) \frac{\mathrm{d}^{n-1} g}{\mathrm{~d} x^{n-1}}+a_{1}(x) \frac{\mathrm{d}^{n-2} g}{\mathrm{~d} x^{n-2}}+\cdots+a_{n-1}(x) g\right]=0 \tag{9}
\end{equation*}
$$

with initial conditions

$$
\left.g\right|_{x=t}=\left.\frac{\mathrm{d} g}{\mathrm{~d} x}\right|_{x=t}=\cdots=\left.\frac{\mathrm{d}^{n-2} g}{\mathrm{~d} x^{n-2}}\right|_{x=t}=0,\left.\quad \frac{\mathrm{~d}^{n-1} g}{\mathrm{~d} x^{n-1}}\right|_{x=t}=1
$$

The function $g(x, t ; \lambda)$ found from the solution of the equation (9) with initial conditions (10) can be used to resolvent construction

$$
\begin{equation*}
R(x, t ; \lambda)=\frac{1}{\lambda} \frac{\mathrm{~d}^{n} g(x, t ; \lambda)}{\mathrm{d} x^{n}} \tag{11}
\end{equation*}
$$

In a similar way one can obtain formulas for finding the resolvent $R(x, t ; \lambda)$ if the kernel of the integral equation is given in the form

$$
K(x, t)=b_{0}(t)+b_{1}(t)(t-x)+\cdots+\frac{b_{n-1}(t)}{(n-1)!}(t-x)^{n-1}
$$

In this case the resolvent $R(x, t ; \lambda)$ can be found from formula

$$
R(x, t ; \lambda)=-\frac{1}{\lambda} \frac{\mathrm{~d}^{n} g(t, x ; \lambda)}{\mathrm{d} t^{n}}
$$

Where function $g(t, x ; \lambda)$ is solution of differential equation

$$
\frac{\mathrm{d}^{n} g}{\mathrm{~d} t^{n}}-\lambda\left[b_{0}(t) \frac{\mathrm{d}^{n-1} g}{\mathrm{~d} t^{n-1}}+b_{1}(t) \frac{\mathrm{d}^{n-2} g}{\mathrm{~d} t^{n-2}}+\cdots+b_{n-1}(t) g\right]=0
$$

with initial conditions

$$
\left.g\right|_{t=x}=\left.\frac{\mathrm{d} g}{\mathrm{~d} t}\right|_{t=x}=\cdots=\left.\frac{\mathrm{d}^{n-2} g}{\mathrm{~d} t^{n-2}}\right|_{t=x}=0,\left.\quad \frac{\mathrm{~d}^{n-1} g}{\mathrm{~d} t^{n-1}}\right|_{t=x}=1 .
$$

