
Термические методы анализа

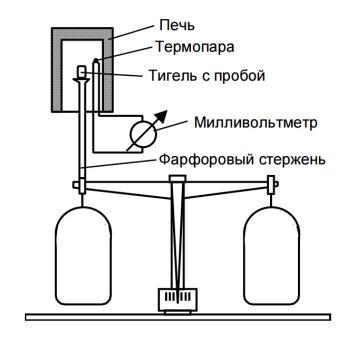
Физико-химические методы анализа

Классификация термических методов анализа

Вид энергии возмущения	Измеряемое свойство	Название метода
Теплота	Температура	Дифференциально- термический анализ Термогравиметрия
	Количество теплоты	Калориметрия
	Энтальпия	Термометрический анализ
	Механические свойства	Дилатометрия

- Термический анализ метод исследования физико-химических и химических превращений, происходящих в веществе при программированном изменении температуры как при нагревании так и при охлаждении.
- Термический анализ производится с помощью специальной аппаратуры, и в основном его техническим результатом являются термические кривые термограммы (кривые нагревания), которые зависят главным образом от химического состава и структуры исследуемого вещества.

С помощью этого метода обнаруживают тепловую природу, эндо- или экзотермический характер и температурный интервал превращения. Одновременно с проведением термического анализа часто измеряют и регистрируют ряд других параметров образца в зависимости от температуры – размеры, магнитные, оптические, электрические и другие характеристики.


Скорость реакции

- В общем виде скорость химического процесса можно записать как: $\frac{dx}{d\tau} = \varphi(T), F(C_i)$
- где х измеряемая в опыте величина (масса образца, объем выделившихся газов, количество поглощенного или выделившегося тепла и т. д.);
- т время;
- Т температура;
- С_і концентрации веществ, участвующих в реакции.

Термогравиметрия

 ■ Если результаты взвешивания, относящиеся к отдельным температурным значениям, представить в координатах температура – масса образца и соединить полученные точки, то получится кривая, именуемая термогравиметрической (ТГ).

Термовесы

На форму кривых влияют самые различные факторы, которые условно можно разделить на три основные группы:

1. Факторы, связанные с конструкцией измерительной установки и методикой работы:

- а) скорость нагрева печи;
- б) атмосфера и давление в реакционной ячейке;
- в) форма тигля;
- г) положение термопары;
- д) скорость движения записывающего устройств и т. д.

м

На форму кривых влияют самые различные факторы, которые условно можно разделить на три основные группы:

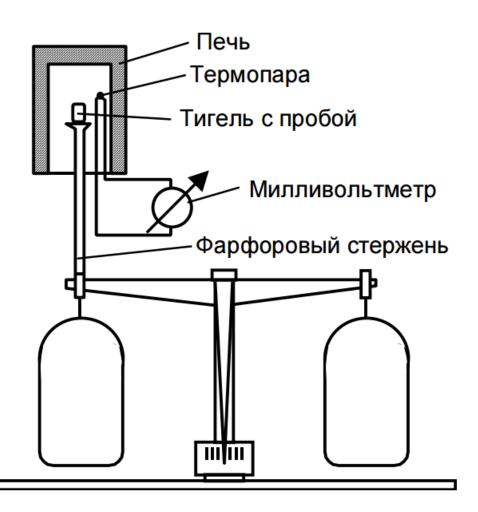
2. Факторы, обусловленные физическими свойствам образца:


- а) масса образца;
- б) его дисперсность;
- в) теплота реакции;
- г) теплопроводность и теплоемкость исходного вещества и конечных продуктов и т. д.

3. Факторы, влияющие на температурную и концентрационную зависимость скорости реакции, т. е. кинетические параметры процесса:

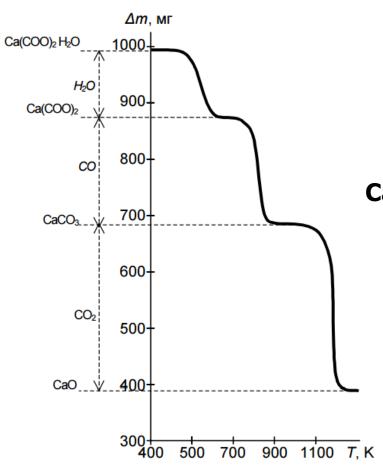
- а) энергия активации Е;
- б) предэкспонеициальный множитель k_o
- в) геометрический фактор, часто называемый кажущимся порядком реакции.

м


Термогравиметрия

Метод регистрации: 1) дискретный, 2) непрерывный

Термогравиметрия


Принцип работы термовесов.

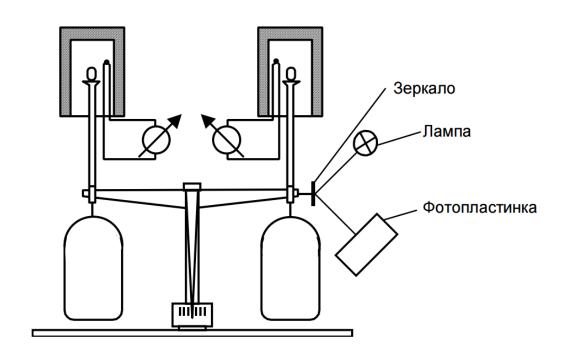
- Пробу помещают в тигель, опирающийся на коромысло весов.
- тигель нагревают в электрической печи так, чтобы его температура равномерно повышалась.
- Температура печи измеряется с помощью находящейся в ней термопары, к концам которой подключен милливольтметр, и время от времени (например, каждые 5...10 К) масса образца фиксируется.

Термогравиметрия

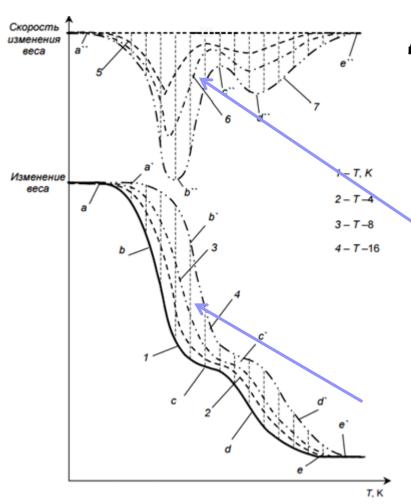
Принцип работы термовесов

На основании кривой ТГ можно судить о том, каким образом изменялась при нагревании масса пробы

$$\text{CaC}_2\text{O}_4\text{·H2O} \rightarrow \text{ CaC}_2\text{O}_4 \rightarrow \text{ CaCO}_3 \rightarrow \text{CaO}$$

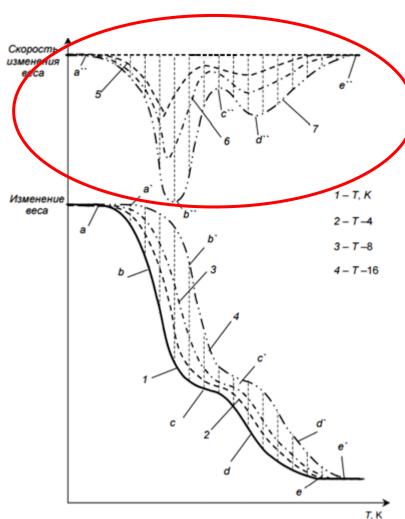

Степень изменения массы определяется в зависимости от типа термовесов.

- пути для устранения трудностей оценки кривой ТГ:
 - □ 1. Дифференциальный метод.
 - (аналитический, графический, инструментальный)
 - □ 2. Деривативный метод.



 путь для устранения трудностей оценки кривой ТГ дифференциальный метод.

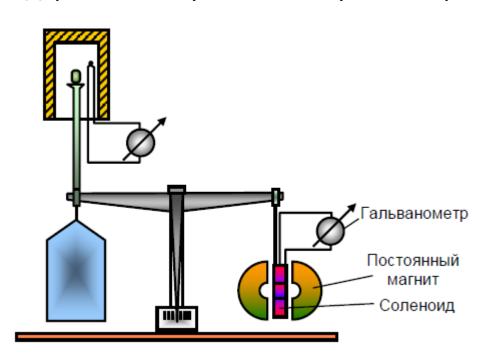
Дифференциальный метод де Кейзера


Дифференциальный метод де Кейзера

В оба тигля помещались одинаковые по массе пробы, которые нагревались при помощи двух точно регулируемых электрических печей так, чтобы температура нагрева одной отставала на 4 К (8 и 16 К) от температуры другой.

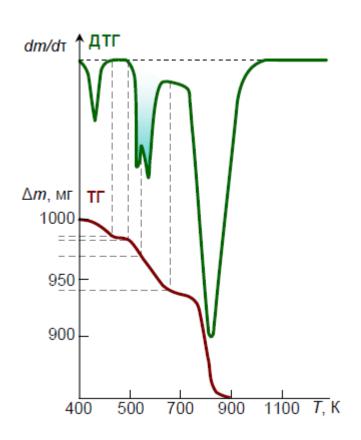
Равновесное положение весов

Фазовый сдвиг


Дифференциальный метод де Кейзера

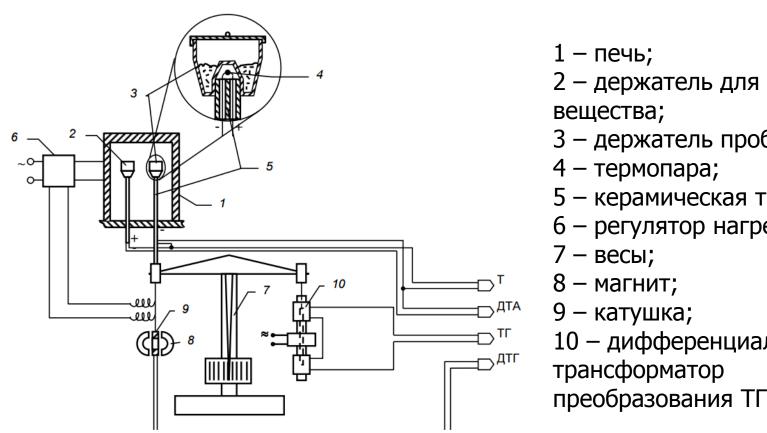
Полученная кривая, несомненно, аналогична зависимости производной, но не тождественна ей

Недостатком метода является то, что аппаратом записывается только "разностная" кривая, а соответствующая ей кривая ТГ должна определяться отдельным испытанием.


Деривативная установка Паулика и Эрдеи

С коромысла термовесов одна чашка была удалена и вместо нее подвешена катушка с большим числом витков, которая помещалась в гомогенное поле двух подковообразных постоянных магнитов и подключалась к клеммам гальванометра высокой чувствительности.

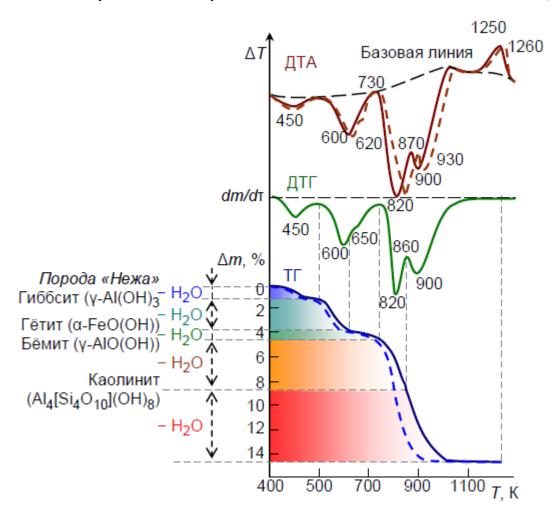
Очевидно, что посредством указанного простого устройства можно точно определить наряду с кривой ТГ и ее производную (ДТГ)



При повышении температуры, наблюдаемой посредством милливольтметра, подключенного к полюсам расположенной в зоне печи термопары, через каждые 5...10 К по шкале весов отсчитывались изменение массы пробы и одновременно отклонение гальванометра.

Проведенные испытания показали, что истолкование основной кривой значительно облегчается одновременной записью деривативной термогравиметрической кривой (ДТГ)

Дериватограф- аппарат, в котором были совмещены различные варианты термического метода анализа – ДТА, ТГ, ДТГ.



Принципиальная схема дериватографа

2 – держатель для инертного вещества; 3 – держатель пробы; 4 – термопара; 5 – керамическая трубка; 6 – регулятор нагрева; 7 – весы; 8 – магнит; 9 – катушка; 10 – дифференциальный трансформатор

Дериватограф- аппарат, в котором были совмещены различные варианты термического метода анализа – ДТА, ТГ, ДТГ.

Характер и ход обеих кривых существенно отличаются друг от друга

Дифференциальная сканирующая калориметрия (ДСК)

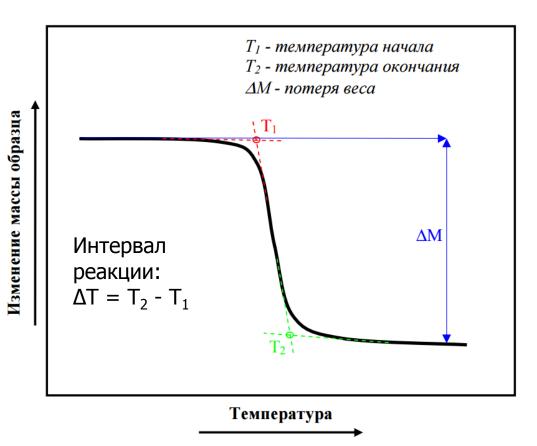
Методы ДСК и ДТА дают в целом одинаковые результаты и отличаются друг от друга лишь способом регистрации сигнала:

1. ДТА – измерение температуры во времени

$$\frac{dm}{dT} = f(\tau)$$

2. ДСК – измерение количества теплоты во времени (калорий)

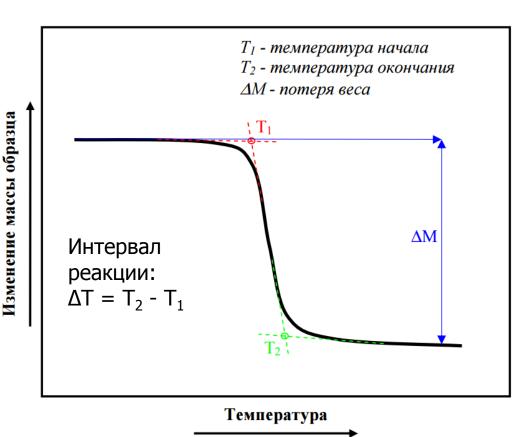
$$\frac{dH}{dT} = f(\tau)$$



- Самым распространенным и основным методом термического анализа является дифференциально-термический анализ (ДТА), который позволяет выявлять и исследовать фазовые превращения и химические реакции, протекающие в веществе при нагревании или охлаждении, по термическим эффектам, сопровождающим эти изменения.
- Метод основан на важнейших свойствах вещества, связанных с его химическим составом и структурой, отображающихся на тепловых изменениях вещества при его нагревании или охлаждении.

Обработка кривых ТГ

 При наличии в образце процессов, связанных с изменением веса на кривых ТГ появляются аномалии в виде "ступеней", которые могут быть описаны следующими параметрами:

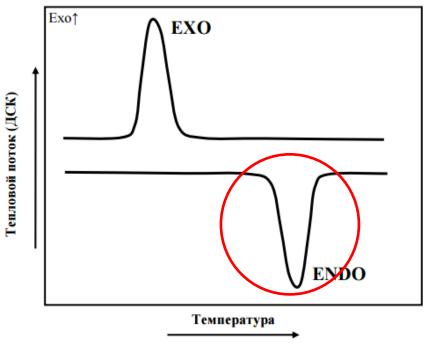


- 1. Температурами начала и окончания (T₁ и T₂), которые определяются как точки пересечения касательных основной линии ТГ и плеча ступени.
- Потерей (набором)
 веса для каждой
 ступени (ΔМ)

Обработка кривых ТГ

 При наличии в образце процессов, связанных с изменением веса на кривых ТГ появляются аномалии в виде "ступеней", которые могут быть описаны следующими параметрами:

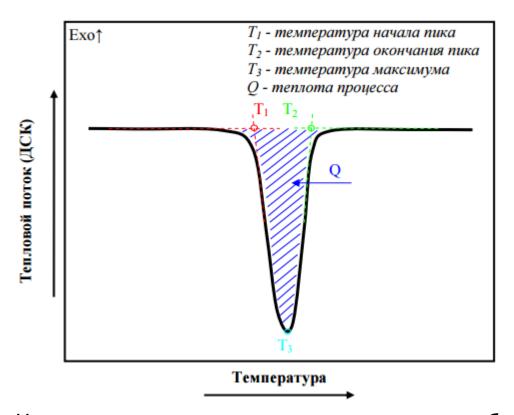
процентное содержание в образце каждой из сгоревших фаз (δ_n) :


$$\delta_n = \frac{\Delta M_n}{M} \cdot 100\%$$

- отношение потери веса отдельной фазы (ΔM_n) к общему весу образца (M), измеренному в начале эксперимента.

Обработка кривых ДТА(ДТГ) и ДСК

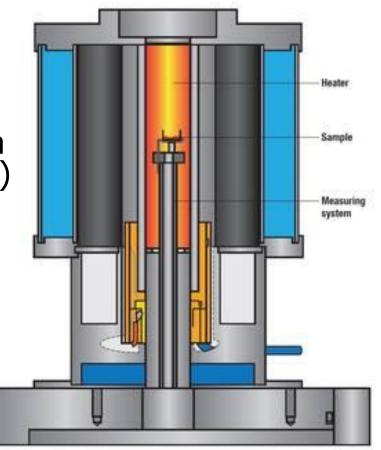
 Кривые ДСК и ДТА проявляются характерные пики и аномалии, исследование которых дает информацию о процессах протекающих в образце. Различают экзотермические (выделение тепла) и эндотермические (поглощение тепла) аномалии ДСК



Любая аномалия (пик) ДСК полностью может быть описана следующими параметрами

Эндотермический и экзотермический пики на кривой ДСК

Обработка кривых ДТА(ДТГ) и ДСК


- 1. Температурами **начала** и **окончания** пика,
- 2. Температурой **максимума** (**минимума**) пика
- **3. Площадью** пика, которая определяет энтальпию
- Воспроизводимостью пика при охлаждении и последующем нагреве.

Наличие воспроизводимости свидетельствует об обратимости фазового перехода. Если термическая аномалия не воспроизводится при повторном нагреве образца, это признак необратимого фазового перехода.

Современный прибор ДТА состоит:

- электрическая печь с программным регулятором температуры
- > держатель образца и эталона
- дифференциальная термопара (платиново-платиноиродистая)
- устройство для регистрации температуры (основанное на разности потенциала)
- усилитель сигнала этой термопары
- регистрирующее устройство (обычно 2-х канальный самопишущий потенциометр)

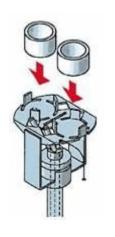
Прибор ДТА

Современный приборы ДТА

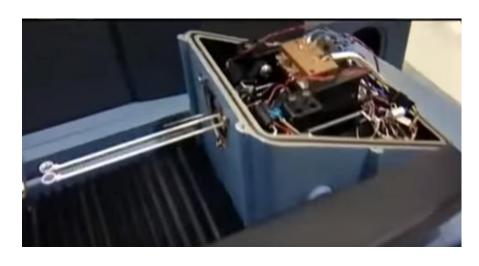
Labsys DTA/DSC и Setsys Evolution DTA/DSC

Диапазон температур

от темп. окруж. среды до 1600 °C ДСК: от темп. окруж. среды до 1600 °C от -150 до 2400 °C ДСК: от -150 до 1600 °C


Диапазон температур	от комнатной до 1500°C	
Скорость нагрева – до 1000°C	От 0.1 до 100°C/мин	
Скорость нагрева — от 1000 до 1500°C	От 0.1 до 25°C/мин	
Охлаждение печи	Принудительное воздушное; от 1500 до 50°C за < 30 мин	
Конструкция весов	Двухлучевые, горизонтальные	
Масса образца до	200 мг (350 мг вместе с чашкой)	
Чувствительность весов	0.1 мкг	
Калориметрическая точность/воспроизводимость	±2% (по металлическим стандартам)	
Чувствительность ДТА	0.001°C	
Термопары	Pt/Pt-Rh (тип R)	
Вакуум	до 7 Па (0.05 тор)	
Работа с агрессивными газами	Имеется – отдельная газовая трубка	
Тигли	Платиновые: 40 мкл, 110 мкл Керамические (${\rm Al_2O_3}$): 40 мкл, 90 мкл	

Тигли и кюветы



Развитие термических методов

Термические методы анализа веществ развиваются в нескольких направлениях:

- 1. расширение температурного диапазона исследования
- 2. Точность измерений
- 3. Выбор устойчивого материалов тиглей

Применение термических методов анализа:

Аналитическая химия

- □ Исследование состава веществ солей
- □ Определение температур плавления, кипения, разложения.
- Изучение термодинамических и кинетических характеристик объекта исследования

Анализ металлов и сплавов

Геология

 при изучении вещественного состава горных пород и многих видов полезных ископаемых в том числе и радиоактивных руд и минералов.