

Размножающие свойства среды

Характеристика размножающих свойств реактора:

$$k_{\mathfrak{g}} = \mu \varphi \theta \eta p_{\mathfrak{g}} p_{\mathfrak{m}}$$

с делящимися нуклидами связаны сомножители:

- θ коэффициент использования тепловых нейтронов
- η число нейтронов, получаемых в процессе деления

Константа η

 $oldsymbol{\eta}$ - среднее число получаемых в делениях быстрых нейтронов, приходящееся на каждый поглощаемый тепловой нейтрон

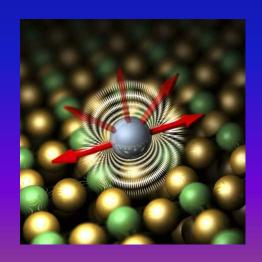
Физический смысл:

η= скорость генерации нейтронов при делении тепловыми нейтронами / скорость поглощения нейтронов делящимися ядрами

$$\eta_5 = v \frac{R_f}{R_a} = v \frac{\sigma_f N\Phi}{\sigma_a N\Phi}$$

В тепловом реакторе топливо бывает:

- •однокомпонентное (U^{235} или Pu^{239})
- •двухкомпонентным (*U*²³⁵ + *Pu*²³⁹)
- •многокомпонентным $(U^{235} + Pu^{239} + Pu^{241})$


Константа η

Для однокомпонентного топлива η является константой :

$$\eta_5 = v_5 \frac{R_f^5}{R_a^5} = v_5 \frac{\sigma_f^5}{\sigma_a^5} = 2.416 \frac{583.5}{680.9} \approx 2.071$$

Для
$$Pu^{239}$$
 $\eta_9 = v_9 \frac{\sigma_f^9}{\sigma_a^9} = 2.862 \frac{744.0}{1011.2} \approx 2.106$

Pu²³⁹ как ядерное топливо более эффективен, чем *U*²³⁵

Константа η

Реальное топливо теплового реактора в произвольный момент времени представляет собой смесь делящихся нуклидов: $U^{235} + Pu^{239}$.

Для двухкомпонентного топлива учитывается соотношение их концентраций в топливной смеси:

$$\eta_{59} = \frac{v_5 R_f^5 + v_9 R_f^9}{R_a^5 + R_a^9} = \frac{v_5 \sigma_f^5 N_5 \Phi + v_9 \sigma_f^9 N_9 \Phi}{\sigma_a^5 N_5 \Phi + \sigma_a^9 N_9 \Phi} = \frac{v_5 \sigma_f^5 + v_9 \sigma_f^9 \left(\frac{N_9}{N_5}\right)}{\sigma_a^5 + \sigma_a^9 \left(\frac{N_9}{N_5}\right)}$$

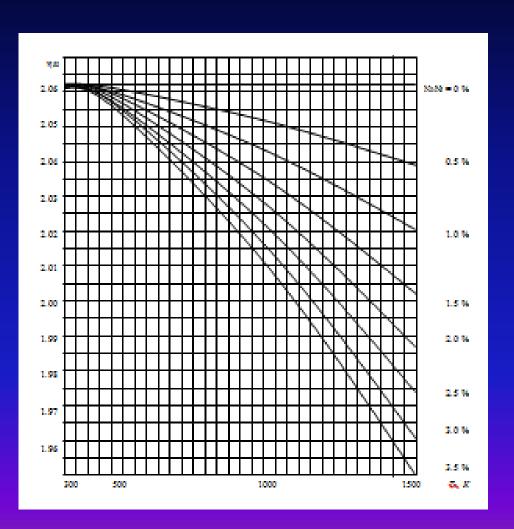
Увеличение η_{59} с ростом накопления Pu^{239} в топливной композиции:

N ₉ /N ₅ ,%	0	5	10	15	20	25	30	35
$\eta_{\scriptscriptstyle 59}$	2.0704	2.0728	2.0750	2.0768	2.0785	2.0800	2.0813	2.0825

Температурные эффекты

Зависимость η от эффективных микроскопических сечений взаимодействия обуславливает ее зависимость от температуры среды.

$$\eta(T_{_{\scriptscriptstyle{H}}}) = \eta_{_{\scriptscriptstyle{O}}} \cdot \left[1 - \frac{0.004}{0.912 + 0.25 \exp(-0.00475T_{_{\scriptscriptstyle{H}}})} \right]$$


Для ²³⁵U эта зависимость малосущественна.

Для 239 Ри $\eta(T_{_H})$ с ростом температуры падает существенно - более чем на 15% на интервале в 1100 К.

Для реального топлива температурная зависимость η₅₉ имеет падающий характер с начала кампании активной зоны реактора.

Крутизна падения η₅₉(T_н) по мере накопления плутония в процессе кампании растёт.

Температурные эффекты

С ростом температуры в активной зоне уменьшение величины константы η будет давать отрицательный вклад в величину эффективного коэффициента размножения нейтронов в реакторе

Коэффициент использования тепловых нейтронов

 θ - доля тепловых нейтронов, поглощённых делящимися нуклидами топлива (U^{235} и Pu^{239}), от общего числа тепловых нейтронов поколения, поглощаемых всеми материалами активной зоны:

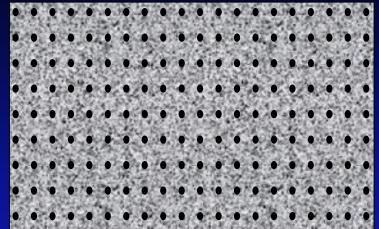
$$\theta = \frac{R_a^5 + R_a^9}{R_a^5 + R_a^9 + R_a^8 + R_a^p + R_a^{\kappa M} + R_a^{mH} + R_a^3}$$

где $R_a^{\ \ i}$ - скорости поглощения тепловых нейтронов:

 $R_a^{\ 5}$ - ядрами U^{235} , $R_a^{\ 9}$ - ядрами Pu^{239} , $R_a^{\ 8}$ - ядрами U^{238} , $R_a^{\ p}$ - ядрами разжижителя топлива, $R_a^{\ \kappa m}$ — ядрами конструкционных материалов активной зоны, $R_a^{\ mh}$ - ядрами теплоносителя, $R_a^{\ 3}$ - ядрами замедлителя.

Гетерогенный и гомогенный реактор

Гетерогенный реактор


- каждый материал в активной зоне занимает различный по величине (и по форме) объём;
- распределение величины плотности потока тепловых нейтронов в активной зоне и в объёме каждого материала существенно неравномерно;
- средние значения плотности потока тепловых нейтронов в объёмах различных материалов активной зоны различны.

Задача определения θ для гетерогенного реактора является многопараметрической.

Гомогенный реактор

Гомогенный реактор

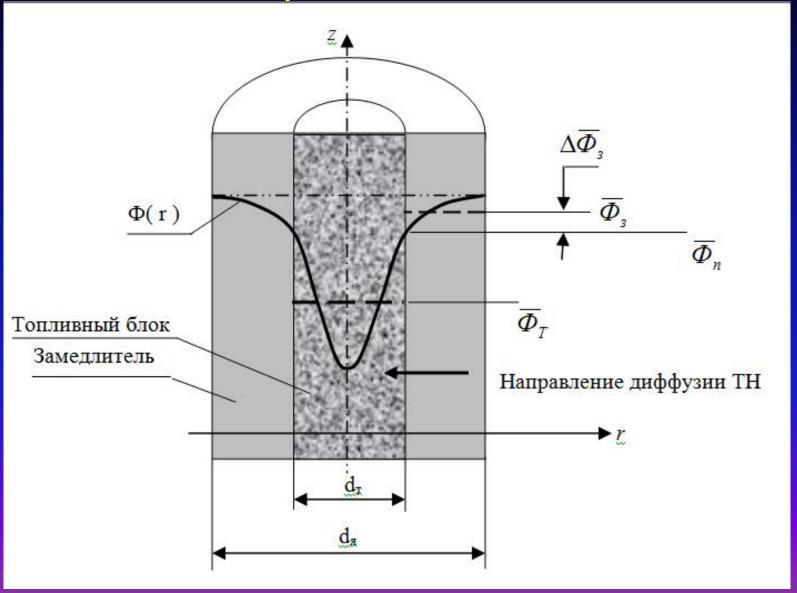
- это гомогенная смесь *U*²³⁵ и замедлителя
- ядра топлива и ядра замедлителя в пределах любого микрообъёма гомогенного ректора пронизываются потоком нейтронов одинаковой плотности Ф

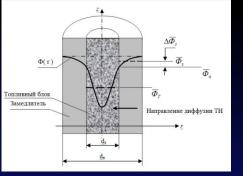
θ определяется только соотношением макроскопических сечений поглощения замедлителя и *U*²³⁵ :

$$\theta_{\Gamma} = \frac{R_a^5}{R_a^5 + R_a^3} = \frac{\Sigma_a^5 \Phi}{\Sigma_a^5 \Phi + \Sigma_a^3 \Phi} = \frac{\Sigma_a^5}{\Sigma_a^5 + \Sigma_a^3} = (1 + \frac{\Sigma_a^3}{\Sigma_a^5})^{-1}$$

Гомогенный реактор - пример

Топливная композиция UO₂ состоит из:


- •в начале кампании реактора ядра ²³⁵U, ²³⁸U, разжижитель (О);
- •в произвольный момент кампании ²³⁵U, ²³⁸U, O, воспроизводимое вторичное топливо (²³⁹Pu), осколки деления.

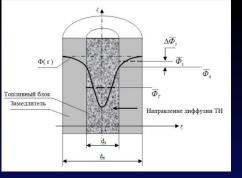

Топливо обладает внутренним коэффициентом использования тепловых нейтронов:

$$\theta_{TK} = \left[1 + \frac{\sum_{a}^{O} + \sum_{a}^{8} + \sum_{i=1}^{n} \sum_{a}^{i}}{\sum_{a}^{5} + \sum_{a}^{9}}\right]^{-1}.$$

²³⁸U, кислород и осколки деления относятся к неделящимся компонентам.

Гетерогенная двузонная цилиндрическая ячейка

Гетерогенная двузонная цилиндрическая ячейка


Элементарная ячейка а.з. - одиночный твэл вместе с относящимся к нему объёмом замедлителя.

Быстрые нейтроны рождаются в делениях ²³⁵U в топливном блоке, но получающиеся в результате замедления тепловые нейтроны рождаются в замедлителе.

Тепловые нейтроны накапливаются в слое замедлителя до установления стационарного распределения $\Phi(r)$.

В твэле тепловых нейтронов образуется мало, следовательно, по направлению диффузии тепловые нейтроны попадают в твэл из замедлителя.

В радиальном распределении $\Phi(r)$ имеет место значительная неравномерность - относительно небольшая в замедлителе, но существенная - в топливном блоке.

Гетерогенная двузонная цилиндрическая ячейка

Эффект уменьшения $\Phi(r)$ при диффузии нейтронов в замедлителе по направлению к топливному блоку, обусловленный поглощающими свойствами реального замедлителя, называемый внешним блок-эффектом.

Эффект более значительного уменьшения $\Phi(r)$ при диффузии нейтронов от периферии к оси топливного блока, определяемый сильными поглощающими свойствами материала топливного блока, называемый **внутренним блок-эффектом**.

О в двухзонной ячейке

 $\theta = \frac{c \kappa o p o c m b n o r n o u e h u s TH b o b b ë me monnubhoro b n o k a c k o p o c me u n o r n o u e h u s d b b ë max monnuba u замедлителя$

$$= \frac{R_a^5 \cdot V_T}{R_a^5 \cdot V_T + R_a^3 V_3} = \frac{\Sigma_a^5 \overline{\Phi}_T V_T}{\Sigma_a^5 \overline{\Phi}_T V_T + \Sigma_a^3 \overline{\Phi}_3 V_T} = \left(1 + \frac{\Sigma_a^3}{\Sigma_a^5} \cdot \frac{\overline{\Phi}_3}{\overline{\Phi}_T} \cdot \frac{V_3}{V_T}\right)^{-1}$$

 θ в гетерогенной ячейке ниже, чем θ гомогенной смеси.

В гетерогенном случае среднее значение плотности потока тепловых нейтронов в замедлителе двухзонной ячейки выше, чем в топливном блоке.

θ в двухзонной ячейке с топливным блоком сложного состава

Реальная топливная композиция состоит из ядер ²³⁵U, ²³⁸U, ²³⁹Pu, ¹⁶O и множества типов поглощающих тепловые нейтроны осколков деления.

Полезными поглощениями тепловых нейтронов внутри топливного блока будут только поглощения их ядрами ²³⁵U и ²³⁹Pu.

Следовательно, θ в реальной ячейке будет меньше по величине сравнительно с коэффициентом использования тепловых нейтронов в ячейке с одним ²³⁵U.

$$\theta = \frac{c \kappa o p o c m \epsilon}{c v m m a} c \kappa o p o c m e u n o c n o u e u n o c n$$

Зависимости θ от определяющих её факторов

Обогащение топлива.

С увеличением обогащения топлива (x) в нём возрастает концентрация ²³⁵U. Следовательно, возрастает доля поглощаемых ²³⁵U тепловых нейтронов.

$$x \uparrow \rightarrow N^5 \uparrow \rightarrow \theta \uparrow$$

Соотношение количеств ядер урана и замедлителя в ячейке.

В общем случае:

$$u = N_U V_T / N_3 V_3$$
 (уран-водное или уран-
графитовое соотношение)

Чем выше u, тем выше число ядер урана в ячейке, и выше и количество 235 U. Следовательно, выше доля поглощаемых ядрами 235 U тепловых нейтронов, то есть θ .

$$u \uparrow \rightarrow N_U V \uparrow \rightarrow N_5 V \uparrow \rightarrow \theta \uparrow$$

Зависимости θ от определяющих её факторов

Момент кампании активной зоны.

В процессе кампании а.з. ²³⁵U выгорает, уступая место осколкам деления, которые бесполезно поглощают тепловые нейтроны.

Можно заключить, что θ в процессе кампании должна падать, но это не так.

Для обеспечения постоянного критического режима работы реактора из активной зоны его непрерывно извлекаются штатные регулирующие поглотители, т.е. θ в процессе кампании поддерживается практически неизменной в силу необходимости поддержания критичности реактора.

Зависимости θ от определяющих её факторов

<u>Температура в активной зоне.</u>

Средние температуры топлива и замедлителя в работающем на мощности энергетическом реакторе прямопропорциональны.

Если температура топливной композиции в твэлах возрастает, то в топливной композиции увеличивается длина диффузии тепловых нейтронов, значит, поступающие из замедлителя тепловые нейтроны могут глубже проникать внутрь топливной композиции.

θ - растёт, поскольку твэл начинает более эффективно поглощать тепловые нейтроны всем своим объёмом.

