

Fundamentals of Nuclear Fuel Cycle

Lecturer Andrey O. Semenov

2016

Fuel

Fuel types	Example		
Carbides	UC; UC ₂ ; PuC		
Nitrides	UN; PuN		
Metallic	U; ligated U		
Mixture	PuO ₂ +UO ₂		
Oxides	UO ₂ ;PuO ₂ ;U ₃ O ₈		
Solts	PuCl _x ; UCl _x		

Fuel pellets specification

87.7% uranium

Total impurities 1500µg/g

Equivalent Boron Content (EBC) < 4.0 µg/g (B, Gd, Eu, Cd)

Dimensions (diameter, length, perpendicularity, surface finish)

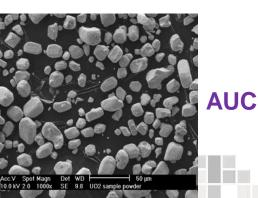
~1 cm x 1.2 cm (+/- ~0.001)

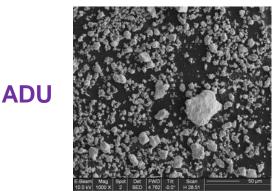
Density 95% of theoretical – 10.96 g/cm₃ Grain size and pore morphology ~30 μ m Cracks 1/2 the pellet length

Chips <5% of cylindrical area

Stages of fuel fabrication

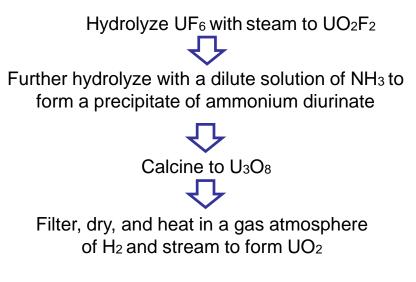
- Pellets production
- Fuel rods production
- Fuel loading into the roads
- Making fuel assemblies from fuel rods



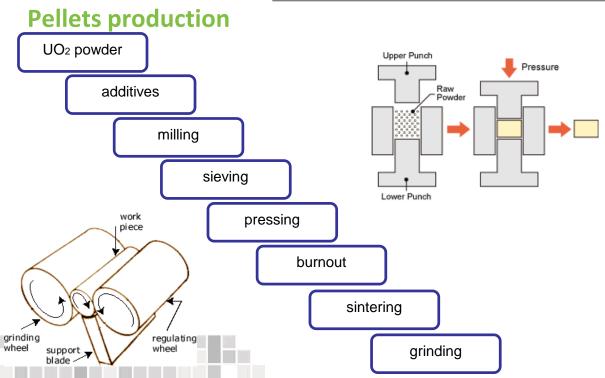

Pellets production

Powder synthesis

ADU (ammonium diurinate)
AUC (ammonium uranium carbonate)
Power conditioning
Compacting
Thermal treatment

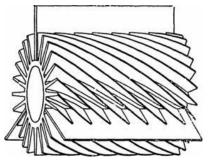


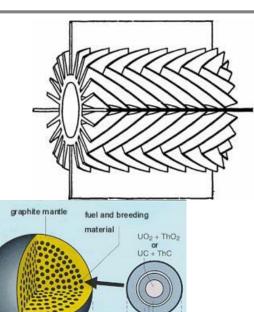
AUC NH4(UO₂(CO₃)₃)


ADU (NH₄)₂U₂O₇ Evaporate UF₆ with steam \checkmark Precipitate AUC by injecting UF₆, CO₂, NH₃ as gases into demineralized water

Filter and remove water

Wash with ammonium carbonate and methyl alcohol

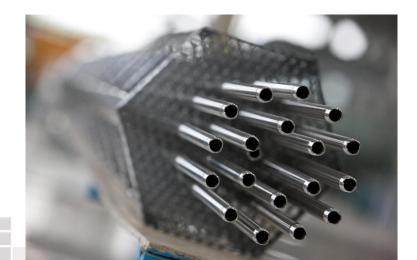

Calcine and reduce to UO_2 in a carrier gas atmosphere of H_2 and superheated steam



Fuel rods production

graphite layers

< 0.5-0.7-►


mm

6 cm

Fuel rods production

Zirconium alloys; chrome-nickel steel Pressing at 650-1000 °C Pressurization by arc welding or ultrosaund

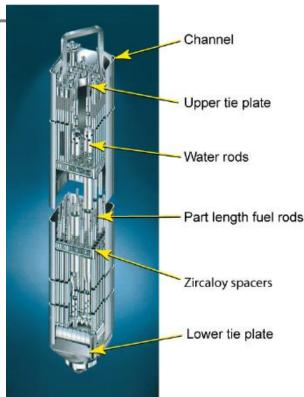
Fuel assemblies

Fuel assemblies


Requirements

- Mechanical and dimensional stability
- Separate the fuel and fission products from the coolant
- Appropriate thermo-hydraulic properties
- Appropriate nuclear properties
- Be long lived without undue deterioration
- Be suitable for intermediate and final storage or reprocessing
- Allow removal of decay heat in accident conditions

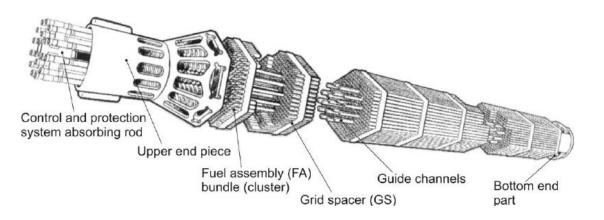
Design features of LWR fuel assemblies



Design features of LWR

fuel assemblies

BWR type



Dimensions of BWR and LWR fuel assemblies

Feature	PWR		BWR	
	14x14	18x18	9x9	10x10
Assembly length, mm	3900- 4060	4830	4470	4420- 4480
Assembly square width, mm	197-206	230	139	139
Rod length, mm	3730- 3870	4390- 4430	4075- 4090	3890- 4150
Number of fuel rods	176-179	300	72	91-96
Average heat rating, W/cm	204-220	166-167	158-160	124-158

Design features of VVER fuel assemblies

