

Fundamentals of Nuclear Fuel Cycle

Lecturer Andrey O. Semenov

2016

Uranium conversion

Uranium hexafluoride (HEX)

 $U_3O_8 + F_2 = 3UO_2F_2$ 450 - 500 °C $3UO_2F_2 + 6F_2 = 3UF_6 + 3O_2$ 270 °C

Uranium conversion

Uranium hexafluoride (HEX)

Properties

- Soli phase ivory crystals
- Density 5.09 g/cm³
- Pyrophoric on the air
- hydrolyzed with water vapor
- · High corrosion activity

Suppliers

- 1. Russia SC Rosatom (Tvel)
- 2. USA Honeywell (Converdyn)
- 3. France Areva NC (Comurhex)
- 4. Canada Comeco
- 5. UK+Germany+Holland Urenco
- 6. China
- 7. Japan
- 8. India
- 9. Pakistan
- 10.Brasilia
- 11. Argentina
- 12.Iran

1000 kg-SWU/yr

26578 4700 7000

14400

Enrichment

is a process of increasing U²³⁵ concentration in the mix

Weapons programme – 90% and higher of U²³⁵

Peaceful programme – 3 - 5% of U²³⁵

Separated work unit

Is used for expression of the enrichment degree

$$W = PV_p + TV_t - FV_f$$

- W Separative work
- P Mass of products
- T Mass of tails
- F Mass of feed material
- V_{a}, V_{e}, V_{e} Value function for the product, tails, and feed

$$V = (1 - 2x)Ln((1 - x)/x)$$

x - Concentration of U²³⁵ in the the product, tails, and feed

Separated work unit

Mass of product (kg)	Target product enrichment (%)	Target tails enrichment (%)	SWU required	Mass of feed (kg)
1	4	0.5	3.8	17.0
1	4	0.4	4.4	12.0
1	4	0.3	5.3	9.0
1	4	0.2	6.5	7.4
1	4	0.1	9.0	6.4
1	4	0.05	12.0	6.0

Enrichment methods

- Gaseous diffusion
- Gas centrifuge
- Electromagnetic isotope separation
- Aerodynamic isotope separation
- Laser enrichment
- Plasma separation

Enrichment methods

Supply	2000	2010	projected	
source:	2000	2010	2017	
Diffusion	50%	25%	0	
Centrifuge	40%	65%	93%	
Laser	0	0	3%	
HEU ex	10%	10%	10/	
weapons	10 /0	10 /0	4 70	

Gaseous diffusion

1896 – Rayleigh "... A mixture of two gases with different atomic weights may be partially separate, if we force the mixture to diffuse through the porous membrane

 $^{235}\mathrm{UF}_{6}$ travels more quickly than $^{238}\mathrm{UF}_{6}$

Gaseous diffusion

Gaseous diffusion unit

The greater speed of ${}^{235}\text{UF}_6$ - more frequent interaction with the membrane

Gaseous diffusion

Separation factor

Shows the growth of gas concentration after diffusion barrier

$$\alpha = \sqrt{\frac{m_{end}}{m_{start}}} \qquad \alpha^{max} = 1.00429$$
Enrichment factor
$$\varepsilon = \alpha - 1 \qquad \varepsilon^{max} = 0.0043$$

$$\overset{235}{10} \text{UF}_{6} \qquad 0.71\% \implies \overset{235}{0} \text{UF}_{6} \qquad 0.7143\%$$

Gaseous diffusion

Gaseous diffusion

Membrane Small pore size – 20 nm or less Numbers of pores must be maximized Chemical resistance of materials Ni, Al₂O₃, CaF₂, Teflon

Disadvantages of gaseous diffusion

- Big numbers of cascades
- Low enrichment factor
- High energy consumption

Gas centrifuge

Based on the difference in behavior of isotopes in gravity field

Enrichment factor

350 m/s - 0.0682 400 m/s - 0.0976 500 m/s - 0.1520

Electromagnetic isotope separation

Electromagnetic isotope separation Disadvantages

- Low conversion to ions
- lons can "miss" collector
- It is periodical process with a significant time between beam runs
- · Material is deposited within the equipment

Aerodynamic isotope separation

1. Jet nozzle technology

Aerodynamic isotope separation

2. Advanced vortex tube

Laser enrichment

- Atomic Vapor Laser Isotope Separation (AVLIS)
- Molecular Laser Isotope Separation (MLIS)
- Chemical Reaction Isotope Selective Laser Activation (CRISLA)
- Condensation Repression Isotope Selective Laser Activation (CRISLA)
- Separation of Isotopes by Laser Excitation (SILEX)

