
Fundamentals of Nuclear Fuel Cycle

Lecturer Andrey O. Semenov

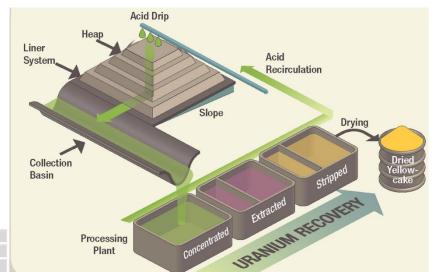
2016

Hydrometallurgical processing of uranium ore

• Open pit drilling and blasting of ore body, ore excavation using loaders and dump trucks

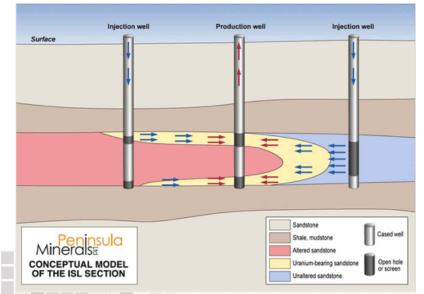
• Underground uranium mining an analog of hard rock mining

Hydrometallurgical processes

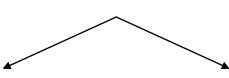


Mining

Heap leaching


process to extract uranium from ore via a series of chemical reactions that absorb specific minerals and then re-separates them after their division from other earth materials

Mining

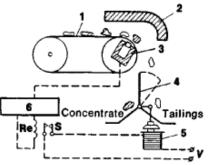

• In-situ leaching (ISL) Leaching in the ground

Mechanical enrichment of uranium ore

- increasing concentration of U in mined ore

Why

different concentration of U in orebodies a large number of useless waste rock

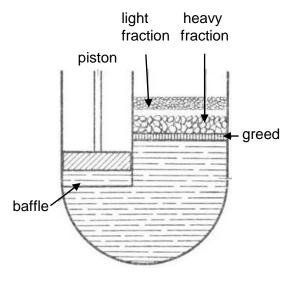


Mechanical enrichment of uranium ore

1. Radiometric methods

Measurement of gamma-rays Intensity from ore pieces with future separations

Ore size 25-300 mm


Radiometric separator for naturally radioactive ores: (1) conveyor belt, (2) screen, (3) radiometer detector, (4) gate valve, (5) electromagnet, (6) radiometer, (Re, S) switch relay, and (V) power source

Mechanical enrichment of uranium ore

2. Gravity methods ρ (Uranium composition) = 6.5 -10.5 g/cm³ ρ (Ore components) =2.5 - 2.7 g/cm³ Ore size 0.07-0.1 mm

3. Flotation methods Ore size 0.07-0.15 mm

Uranium leaching

Goal

Uranium extraction from enriched uranium ore by chemical reactions

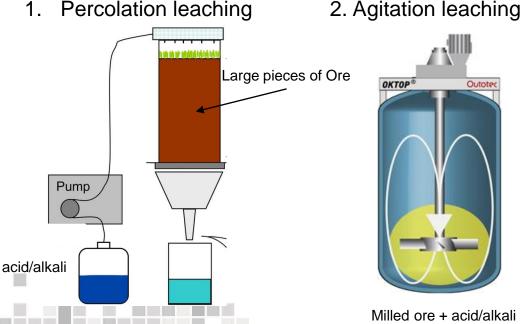
- Acids - Alkalis t = 20-80 °CT = 12-24 h UO₂(NO₃)₂ uranyl nitrate

UO₂SO₄ uranyl sulfate

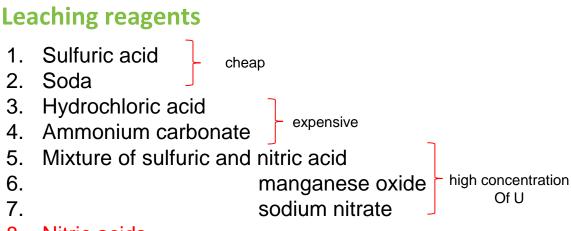
UO₂H₂PO₄ uranyl phosphate

UO₂Cl₂ uranyl chloride

Na₂UO₂(CO₃)₂ sodium uranyl chloride


Na₄UO₂(CO₃)₃ sodium uranyl chloride

contaminants: Fe, Ca, P, V, As



Uranium leaching

1. Percolation leaching

8. Nitric acids

Recovery of uranium

- extraction of U from solutions

Methods

- Ion exchange sorption (IX)
- Organic Solvent extraction (SX)
- Chemical vapor deposition (CVD)

NaOH/ MgO/NH₄OH/H₂O₂ + Pregnant liquor = UO_x *nH₂O

95-96 % concentrated uranium + impurities

Affinage

- is a process of uranium purification

"BAD" contaminants Hf, B, Cd, Eu, Gd, Sm, Li, Mn, Ar, Na, Co, etc

Tributyl phosphate (TBP) C₁₂H₂₇O₄P

an organophosphorus compound colourless odorless density 0.973 g/cm³ 15–40% (usually 30%) solution

Affinage

Steps $U_3O_8 + 8HNO_3 = {}_3UO_2(NO_3)_2 + 2NO_2 + 4H_2O_3$ $UO_2(NO_3)_2 + 2TBP = UO_2(NO_3)_2 * 2TBP$ heating to 60-70 °C UO₂(NO₃)₂ *2TBP chemical vapor deposition by H₂O₂ UO4*2H2O heating to 400 – 500 °C $UO_4 * 2H_2O = UO_3 + 2H_2O + 1/2 O_2$ thermal decomposition 800-850 °C

And Addition

 UO_2/U_3O_8 without additives

UF₄

Affinage RU

Steps $U_3O_8 + 8HNO_3 = {}_3UO_2(NO_3)_2 + 2NO_2 + 4H_2O_3$ $UO_2(NO_3)_2 + TBP + hydrocarbon$ mix with NH_4HCO_3 for production (NH_4) $_4UO_2(CO_3)_3$ cooling to crystals $(NH_4)_4UO_2(CO_3)_3 = UO_2 + 3CO_2 + 2NH_3 + N_2 + 2H_2 + 3H_2O_3$ UO₂ dissolve in acids (HCI+HF) UF₄*nH₂O drying at 200-250 °C and calcination at 500 °C

U₃O₈ – Yellow cake

