
 Theory, that is necessary for calculation 

1. PROCESSING OF MEASUREMENT RESULTS BY THE LEAST SQUARES 

METHOD 
 

1.1. Measurement errors 

 

In addition to statistical fluctuations, associated with the probabilistic nature of the 

phenomenon, the results of experiments are influenced by random effects arising in the course 

of experiment and processing. The totality of external disturbances increases the spread of the 

results and causes displacement of the mean value. The latter is compounded by the action of a 

number of systematic reasons (“moved” scale of instruments, bad geometry of the experiment, 

and so on). Each of accidental reasons is usually subjected to its own distribution. Thus, the 

measurement results will be described by distribution arising as a superposition of many 

individual distributions. Eventually, however, its form will approach the Gaussian, if there are 

no prevailing reasons.  This fact is a consequence of the so-called central limit theorem of the 

probability theory, stating that the action of a large number of reasons with the intensity of 

exposure of about one order leads to the normal distribution of values, arising under the 

influence of these effects. 

In the experiment, the deviation of results from the mean value is interpreted as a 

measurement error. We differentiate between random and systematic errors due to random and 

systematic factors, respectively. However, the notion of “measurement error” should be used 

with certain caution. 

Thus, following a one-sided error determination, it is possible to “find” it even under 

conditions of ideal experiment, whereas the discrepancy between the experimental data will 

reflect the objective reality of the phenomenon. Although, of course, we can mention a class of 

experiments on measuring absolute constants (charge, mass, spin of elementary particles, and 

so on), where the spread of values in the determination of these values, must be apparently 

connected to the “clean” measurement errors. 

Unfortunately, in practice, the errors of measurement techniques are not always possible 

to assess. Therefore, at present, it is usual to indicate a confidence interval instead of error, 

within which with a certain probability (confidence probability) we can expect the values of the 

studied quantities under conditions of the proposed method of measurement.  

For a random quantity х a confidence interval ];[   xx  corresponds to 

confidence probability (1−α), if 

   1)( xxP . (1.1) 

Probability (1−α) is also called a reliability coefficient, and quantity α – level of 

significance.  A reliable criterion for assessing the confidence interval for a given level of 

significance is mean square deviation σ, the square of which is the dispersion that characterizes 

the spread of values of the random quantity in the vicinity of its mean value (if x  and σ2 exist). 

Let us assume, that in measurements the results were obtained ξ1, ξ2,…, ξn. Then, as an 

estimate of the mean value x  and dispersion σ2 the following relations are used.  
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The average result of a series of measurements is less deviated from the exact value, than 

individual measurement; the dispersion of mean value is n times smaller than the dispersion of 

individual measurements, i.e. 
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The larger n, the more exact the relations (1.2). 

 

1.2. Errors of function of measured quantities 

 

Parameters of function distribution Ф = Ф(x1, x2,…, xn) of random variables  x1, x2,…, xn, 

independent of each other are obtained in the following way: 

If errors of determination of each variable 
i

x  is small enough, then the function Ф(xi) can 

be decomposed into a Taylor series about mean values, and it is possible to neglect the 

expansion terms, higher than the first order of smallness, i.e. 
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This relation becomes exact for linear functions Ф = Ф(хi). Averaging it over xi, we have 

 ),...,,( 21 nxxxФФ  , (1.3) 

And dispersion 2

Ф  is equal to 
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So, for sum or difference of two quantities the absolute error is determined by the 

formula: 
22

2121 xxxx   , 

And a relative error will be 
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Suppose, that during time t, N particles are registered, then the expected intensity of 

particles is equal to v = N/t. Dispersion of quantity v is determined by expression 
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mean square error 

tvv / , 

and relative error 

Nvtv

tv
v
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 , 

here we take into account the fact, that in a single measurement the dispersion of quantity N – is 

N itself. 

 

1.3. Processing of the results by the least squares method 

 

Very often in practice there are problems when numerical values of arguments with their 

experimental errors are known, and it is necessary to define a function that relates these 

quantities. 
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So, let us analyze the dependence of some physical quantity y on another physical 

quantity x: 

)(xfy  , 

which is unknown and which is necessary to be found.  

Fig. 1.1 represents a totality of experimental points (xi, yi), where i = 1, 2, 3,..., n. At that 

yi – random quantities, each of which deviates from the true value by some random 

quantity )( iii xfy  . 

Fitting and balancing of a curve )(xfy   through the experimental points concerns to the 

so-called regression analysis, which is typically based on the method of least squares. At that, 

the best curve )(xfy   is considered to be the one, for which the sum of squares of the relation 

is minimum εi/σi, where εi − the above mentioned deviation of the empirical points yi from the 

supposed ones, а σi − mean square error of measurement, i.e. 

min
1

2













n

i i

iS



. 

 

 
Fig. 1.1. Curve constructed using the experimental points by the method of least squares 

 

Typically, the required function is approximated by some polynomial of finite degree m 

− 1, for example, 
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and minimum of a given quadratic form is achieved, varying the sum over coefficients Bk, i.e. 

0




kB

S
, (k = 0, 1,…, m − 1). 

Then the regression coefficients Bk are determined by linear system of equations 
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and calculated according to the general methods for solving linear equations. Obviously, to find 

the coefficients of regression curve m, the number of experimental points is required mn  . 
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2. DETERMINATION OF HALF-LIFE OF ARTIFICIAL RADIONUCLIDES  
 

2.1. Basic theoretical information 

 

In the majority of cases, the result of interaction of thermal neutrons with non-fissionable 

nuclei is the implementation of the radiative capture (n, γ), which is realized as follows: 

  MnM A
Z

A
Z

11
0  . 

At that, a formed isotope MA
Z
1 , the result of “overload” in the number of neutrons, is 

often unstable and later undergoes β–– decay, i.e. it is artificially radioactive. 

Mathematically, the problem of accumulation of radioactive atoms in the irradiated 

sample may be considered as follows. Let a thin sample (sample is considered to be thin, if the 

change in the flow of particles, passing through it, is much less than that flow) of the stable 

isotope containing Nст atoms is placed in thermal neutron flux with density of Ф, cm-2 ·s-1. 

Then, during time dt, ФNстσadt new active atoms will appear (σa - macroscopic cross section of 

neutron absorption by a stable nucleus). Along with the formation of active nuclei the process 

of their decay occurs. If by the moment of time t there are N active nuclei, then during time dt, 

λNdt of them will decay, where λ – is a decay constant.  Since the processes of accumulation 

and decay of active nuclei are going simultaneously, the differential equation for determining 

the change in the number of active nuclei in time N(t) is as follows: 

 )(
)(

tNФN
dt

tdN
aст   ,  (2.1) 

where ФNстσa – the number of radioactive nuclei formed per unit time. Integrating equation 

(2.1) under the initial condition: at the moment of time  t=0 N(t)=0, and assuming that during 

irradiation time at each moment, the number of formed active nuclei is much smaller than the 

number of nuclei of the stable isotope, we get: 

 )]exp(1[)]exp(1[)( max tNt
ФN

tN aст 



 .  (2.2) 

Hence it follows that when irradiation time increases (t→∞) the number of active nuclei, 

accumulated in the sample, tends to its limiting value


 aстФN
N max . If irradiation time is 8 ÷ 

10 half-lives, the N(t) will be different from Nmax only by 10–2%, and practically we can assume, 

that the sample has reached saturation, in which the number of radioactive nuclei formed per 

unit time is equal to the number of decaying nuclei. 

In order to estimate the rate of increase of the number of radioactive atoms, it is 

necessary to monitor the changes in the activity of the sample A in time: 

 )]exp(1[max tNNA   .  (2.3) 

Denoting λNmax as Amax − Activity of sample saturation (at the moment of time t→∞), we 

obtain that the activity of the sample increases according to the exponential law with the same 

period that the number of radioactive nuclei: 
















 t

T
AtAA

2/1
maxmax

2ln
exp1)]exp(1[  , 

 (2.4) 

where 


2ln
2/1 T  – half-life, i.e. the time during which the activity of the sample is reduced by 

half. 
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Suppose that at the moment of time t=t0 the sample irradiation by neutrons has stopped. 

Radioactive nuclei accumulated by this moment, will decay according to the exponential law: 

 N=N0 exp(–t),  (2.5) 

where N0 – number of radioactive nuclei accumulated by this moment of time t0; t – time since 

the end of irradiation;  – decay constant. 

Change in the activity A of the sample in time is determined by the relation: 

  tNN
dt

dN
A   exp0 .  (2.6) 

Denoting N0 as A0 – activity of the sample after irradiation (at the moment of time t=t0), 

we obtain that the activity of the sample decreases according to the exponential law with the 

same period that the number of radioactive nuclei: 

   







 t

T
AtAA

2/1

00

2ln
expexp  .  (2.7) 

Fig. 2.1 shows time increase of activity in the sample during irradiation and its decrease 

during the subsequent de-excitation. 

The change in the activity of the sample can be monitored experimentally, since it is 

equal to the number of particles emitted by the sample per unit time, which can be registered by 

counters or other devices. Suppose, for example, the source of –- particles is located about beta 

counter. Then the activity of the test sample is proportional to the number of pulses registered 

by a counter per unit time: 

 

at decay −    tAt
ntn

tA 


 expexp
)(

)( 0
0 ,  (2.8) 

at activation − )]exp(1[)]exp(1[
)(

)( max
max tAt

ntn
tA 


 .  (2.9) 

where n(t) – the number of pulses registered by a counter per unit time, at the moment of time t 

(count rate); n0 – count rate at the initial moment of time t = t0; nmax − count rate at the final 

moment of time t→∞ under experimental conditions it is necessary to satisfy the condition t > 

10T1/2; relations 


0
0

n
A   and 


max

max

n
A   – sample activity at the initial and final moment of 

time, respectively;  = 0,3 – mean probability of ––particle registration. 

 



 6 

 
Fig. 2.1. Change in the sample activity in time during its irradiation and radioactive decay  

 

Introduction of  is caused by the following reasons. Firstly, if an active sample is 

situated outside the sensitive volume of counter, the latter registers only a part of the particles. 

The smaller the solid angle is, at which the counter can be seen from the radiation source, the 

lower the part of registered particles. Secondly, a part of particles, flying in the counter 

direction, can be absorbed in the source itself, in the air on the way to the counter or in the 

walls of the counter. Finally, the presence of the dead time (it is also called insensitive time, 

resolution time) of devices, registering radiation, leads to the fact that a part of the particles that 

have passed through the counter is not registered. In different experiments, these factors can 

differently influence the measured quantity. For example, when measuring the absolute activity 

of the sample, all these three factors are important. 

Let us assume, that at some moment of time t, a counting device is switched for time dt. 

If measurement time is much shorter than the half-life of the test nuclide, the count rate can be 

assumed to be constant during measurement time dt. Then, knowing the efficiency of 

registration  and count rate, we can construct a curve of increase or decrease in activity of the 

sample in time. 

 Taking the logarithm of equation (2.8) or (2.9), we can determine the decay constant of 

the test nuclide: 

at decay − 
t

tnn

t

tAA )(lnln)(lnln 00 



 ,  (2.10) 

at activation − 
t

tnnn

t

tAAA )](ln[ln)](ln[ln maxmaxmaxmax 



 .  (2.11) 

Hence, plotting value lnn(t) or ln[nmax – n(t)] on a logarithmic graph, we obtain a straight 

line, the slope of which is equal to . After determination of the slope, a half-life is calculated: 

 


693,02ln
2/1 T .  (2.12) 

The considered method of analysis of the decay or activation curve is commonly called a 

differential method. 

If the sample is a mixture of two isotopes, then accumulated radioactive nuclei will decay 

according to the following law: 
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for 1st isotope − N1=N01 exp(–1 t), 

for 2nd  isotope − N2=N02 exp(–2 t), 

for total number of radioactive nuclei −  

 N=N1+N2= N01 exp(–1 t)+ N02 exp(–2 t),  (2.13) 

where N01 and N02 − number of radioactive nuclei accumulated by the moment of time t0 of the 

1st and 2nd  isotope, respectively; 1 and 2 – decay constants for the 1st and 2nd  isotope, 

respectively; t – time since the end of irradiation. 

In this case, the activity of the sample will be determined from the relationship: 

 

)exp()exp( 20221011

2211
21

21

tNtN

NN
dt

dN

dt

dN
AAA








,  (2.14) 

where А1 and А2 – contribution to the activity of the sample due to the 1st and 2nd  isotope, 

respectively. 

If a half-life of the 1st isotope is much longer than a half-life of the 2nd isotope 

( 1
2/1T >> 2

2/1T ), then after time t > 10 2
2/1T , we can assume that the activity of the sample affects 

only the decay of the 1st isotope, i.e. 

 )exp()exp( 1
'
011

'
01111

1
1 tAtNN

dt

dN
AA   .  (2.15) 

where 
'
01A  – contribution to the activity of the sample of the 1st isotope at the moment of time 

2
2/101 10 Tt  , 

'
01N – number of radioactive nuclei of the 1st isotope at the moment of time t01. 

Taking the logarithm of equation (2.15), we can determine the decay constant of the 1st 

isotope: 

 
t

tnn

t

tAA )(lnln)(lnln 0101
1





 ,  (2.16) 

where n01 – contribution of the 1st isotope to the count rate at the moment of time 
2

2/101 10 Tt  . 

As a result, we can determine the contribution of the 1st isotope to the sample activity at 

any moment of time, and we can determine a decay constant for the 2nd isotope from 

expression14: 

 )exp()exp()()()( 20210121 tAtAtAtAtA   ,  (2.17) 

where А01 and А02 – contribution of the 1st and 2nd isotope to the sample activity at the end of 

irradiation  t0. 

 )()()exp()( 12022 tAtAtAtA   .  (2.18) 

Taking the logarithm of expression (2.18) we obtain: 
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tAtAA )]()(ln[ln)]()(ln[ln 102102
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 ,  (2.19) 

where n02 – contribution of the 2nd isotope to the count rate at the moment of time t0; n1(t) – 

contribution of the 1st isotope to the count rate at the moment of time t. 

Using expression (2.12) we can determine the half-life for the 1st and 2nd isotopes. 

 

2.2. Description of the experimental installation 

 

Beta-activity of the sample is measured by standard computational devices. Counter of 

ionizing particles converts ionization from the passing of a charged particle, arising in its 
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volume, into electrical pulses. The pulses from the counter output are fed to the former, which 

converts them to the standard in amplitude and duration, required for the operation of the 

scaling device. If necessary, the formation of pulses is preceded by additional amplification. As 

beta-counter a scintillation counter is used. 

 

Table № 2.1 

Nuclear characteristics of indium activation detectors 

Isotopic 

composition of 

natural indium 

Isotope 

content, % 

Activation 

cross 

section, 

barns 

Radioactive 

product 

Half-life of 

radioactive 

product 

In113
49  4,23 5812 

Inm114
49  49 days 

In114
49  72 с 

In115
49  95,77 19715 

Inm116
49  54 min. 

In116
49  13 с 

Note: Activation cross-sections are given for neutrons with velocities 2000 m/s. 

 

As a test sample for laboratory work: decay and activation curve indium plate is used. 

Table №2.1 contains isotopic composition of natural indium and products of (n, )–reaction, 

occurring during irradiation of natural isotopes with thermal neutrons. 

 

2.3. Operational procedure 

 

Determining the half-life according to decay curve 

To study the safety instructions when working in a laboratory and performing the 

requirements contained therein, to start measurements with the permission of the instructor. 

a) To assure yourself of operability of counting device in the test mode.  

b) To measure the background of counting device 2-3 times. Time of one measurement (tdet) is 

100 s. 

c) To remove the sample from the container with a source of neutrons and to expose it without 

measurement for 30-40 s. 

d) To remove the dependence of count rate on time n(t). Measurement is carried out at each 

moment of time (t). Time of one measurement (tизм) is 100 s. The obtained results (n) are 

recorded in Table № 2.2. 

e) To repeat the measurement of scaling device background after the measurements. 

 

Determining the half-life according to activation curve  

To study the safety instructions when working in a laboratory and performing the 

requirements contained therein, to start measurements with the permission of the instructor. 

a) To assure yourself of operability of counting device in the test mode. 

b) To measure the background of counting device 2-3 times. Time of one measurement (tизм) is 

100 s. 

c) To put indium samples in a container with a neutron source, and start the stopwatch. 

d) At the scheduled time, remove the sample from the container and expose it without 

measuring for 30-40 seconds. 
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e) To measure count rate n(t) three times and record the value of sample mass (m) in table # 2.3. 

Measurement time is 100 seconds. 

 f) To repeat points (c) and (d) for the rest of the foils. The count rate of the last foil is measured 

the next day to determine nmax. The results of measurements (n) are summarized in table # 2.3. 

g) After finishing measurements, repeat the measurement of the counting device background.  
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Table № 2.2 

An example of the table of experimental results and calculations for a decay curve 

t, min n, pulse/s nn  , pulse/s NN  , pulse/s АА  , decay/s 
lnln A  

 

0 

     

 

 

 

10 

     

 

 

 

20 

     

 

 

 

30 

     

 

 

 

45 

     

 

 

 

60 

     

 

 

Note: To determine the count rate, it is necessary to divide all the readings of the scaling device to measurement time. 
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Table # 2.3 

An example of the table of experimental results and calculations for an activation curve 

t, мин 

m, г 

n, pulse/s 
nn  , pulse/s 

NN  , pulse/s АА  , расп/(с∙г) АА   , расп/(с∙г) 
lnln A  

5 

 

m= 

      

 

 

10 

 

m= 

      

 

 

20 

 

m= 

      

 

 

30 

 

m= 

      

 

 

45 

 

m= 

      

 

 

60 

 

m= 

      

 

 

max 

 

m= 

     

– 

 

–  

 

Note: To determine the count rate, it is necessary to divide all the readings of the scaling device to measurement time. 

m – mas of measured sample. 

max –irradiation time of indium foil of more than 24 hours. 

In cells, where there is a dash (-), the determination of values should not be performed. 
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2.4. Processing of experimental results  

Determining the half-life according to decay curve 

a) According to Table 2.1, to carry out the analysis in order to select the 

radioactive isotope of indium, for which the half-life can be calculated according to 

the results of measurements. 

b) To calculate the mean background of a scaling device ( фn ) and its measurement 

error ( ф ) by the relations: 
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where i – in this case, measurement number can take the values 1, 2, 3; I – number 

of background measurements, in this case it is equal to 3; 
iфn  – count rate of 

background in i-measurement.   

c) To determine the mean value of count rate ( n ) and its measurement error ( n ) 

for all the moments of time t by the relations: 
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where i – measurement number at the moment of time t and in this case it can take 

the values 1, 2, 3; I –number of measurements at the moment of time t and in this 

case it is equal to 3; in  – count rate in i-measurement.   

d) To determine the mean value of count rate at the moment of time t, caused only 

by indium sample activity ( N ), i.e. to eliminate background and to evaluate its 

error ( N ) from all obtained gaugings, using relations: 

фnnN  ; 
22
фnN   . 

e) To determine the mean value of the indium sample and its error using relations  



N
A  ; 




 N

A  . 

f) To determine the mean value of the logarithm of the indium sample activity 

( Aln )  and its error ( ln ) using relations: 

AA lnln  ; 
A

A
 ln . 

g) To construct a graph of the dependence of sample activity on time on the 

semilogarithmic scale, ( )(ln tfA  ). For this purpose, experimental values 

Aln with confidence intervals are plotted on a graph, within which two straight 

lines are constructed. Since a decay constant is determined according to the slope 

of these lines, it is necessary to construct them in two extreme slope angle 

positions (“shallow” - 1 and “sharp” - 2 lines in Fig. 2.2, a). 

If the values of confidence intervals are low for the construction of straight 

lines( Alnln  ),then the lines are constructed in such a way, that the points 

above and below the line balance each other (fig. 2.2, b). 
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h) According to the slope of the straight lines, to determine two limiting values of 

the decay constant (λ1, λ2) using relations: 

t

AA




 1211

1

lnln
 ; 

t

AA




 2221

2

lnln
 , 

where 1211 ln,ln AA  – values of the logarithms of activity for the “shallow” line 

(1 Fig. 2) at the first and second points respectively; 2221 ln,ln AA  – values of the 

logarithms of activity for the “sharp” line (2 Fig. 2) at the first and second points 

respectively.  

i) To determine the mean value of the decay constant ( ) and its error (  ) using 

relations: 

2

21 



 ; 

2

)()( 2
2

2
1 

 


 . 

j) To determine the mean value of the half-life (T ) and its error ( T ) using 

relations: 



693,02ln
T ; 

2

693,0




 

T . 

k) To construct a decay curve, i.e. the dependence of indium sample activity on 

time. For this purpose, it is necessary to plot experimental values with confidence 

intervals ( АА  ) on a graph and to construct the dependence: 

)exp()( 0 tAtA  , 

where 0A  – value of indium sample activity at the moment of time 0t  (to take 

from table № 2.2). 
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Fig. 2.2. An example of processing of dependence of sample activity on time on a 

semilogarithmic scale  

 

l) To draw up a report on the performed work, which must include the following: 

− independently formulated objective of the work; 

− necessary theoretical information; 

− the results of measurements and calculations of required quantities with 

their errors (table № 2.2); 

− required dependencies; 

− conclusion of the work. 

Determining the half-life according to an activation curve  

а) According to Table 2.1, to carry out the analysis in order to select the 

radioactive isotope of indium, for which the half-life can be calculated according to 

the results of measurements. 
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b) To calculate the mean background of a scaling device ( фn ) and its measurement 

error ( ф ) by the relations: 
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where i – in this case, measurement number can take the values 1, 2, 3; I – number 

of background measurements, in this case it is equal to 3; 
iфn  – count rate of 

background in i-measurement.   

c) To determine the mean value of count rate ( n ) and its measurement error ( n ) 

for all the moments of time t by the relations: 
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where i – measurement number at the moment of time t and in this case it can take 

the values 1, 2, 3; I –number of measurements at the moment of time t and in this 

case it is equal to 3; in  – count rate in i-measurement.  

d) To determine the mean value of count rate at the moment of time t, caused only 

by indium sample activity ( N ), i.e. to eliminate background and to evaluate its 

error ( N ) from all obtained gaugings, using relations: 

фnnN  ; 22
фnN   . 

e) To determine the mean value of specific activity of the indium sample and its 

error using relations: 

m

N
A





; 
m

N
A






 . 

f) To determine the mean value of the difference between specific activities of the 

indium samples in saturation (Аmax when maxt ) and at the moment of time t (A) 

and their error ( A ) by the relations: 

AAA  max ; 
22

max AA   , 

where max  – error of determination of the value Аmax. 

g) To determine the mean value of the logarithm of difference between indium 

sample activities ( Aln ) and its error ( ln ) using relations: 

AA  lnln ; 
A

A


 

 ln . 

h) To construct a graph of the dependence of difference between sample activities 

on time on the semilogarithmic scale, ( )(ln tfA  ). For this purpose, experimental 

values Aln with confidence intervals are plotted on a graph, within which two 

straight lines are constructed. Since a decay constant is determined according to the 

slope of these lines, it is necessary to construct them in two extreme slope angle 

positions (“shallow” - 1 and “sharp” - 2 lines in Fig. 2.2, a). 
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If the values of confidence intervals are low for the construction of straight lines 

( A lnln ), then the lines are constructed in such a way, that the points above 

and below the line balance each other (fig. 2.2, b). 

i) According to the slope of the straight lines, to determine two limiting values of 

the decay constant (λ1, λ2) using relations: 

t

AA




 1211

1

lnln
 ; 

t

AA




 2221

2

lnln
 , 

where 1211 ln,ln AA   – – values of the logarithms of difference between activities 

for the “shallow” line (1 Fig. 2) at the first and second points respectively; 

2221 ln,ln AA  – values of the logarithms of difference between activities for the 

“sharp” line (2 Fig. 2) at the first and second points respectively.  

j) To determine the mean value of the decay constant ( ) and its error (  ) using 

relations: 

2

21 



 ; 

2

)()( 21 



 . 

k) To determine the mean value of the half-life (T ) and its error ( T ) using 

relations: 



693,02ln
T ; 

2

693,0




 

T . 

l) To construct an activation curve, i.e. the dependence of indium sample activity 

on irradiation time. For this purpose, it is necessary to plot experimental values 

with confidence intervals ( АА  ) on a graph and to construct the dependence: 

)]exp(1[)( max tAtA  , 

where maxA  – value of activity of indium sample at the moment of time maxt  

(take from table # 2.3). 

m) To draw up a report on the performed work, which must include the following: 

−  independently formulated objective of the work; 

− necessary theoretical information; 

− the results of measurements and calculations of required quantities with their 

errors (table № 2.3); 

− required dependencies; 

− conclusion of the work. 

 

 


