Тема: Функция нескольких переменных

Функции нескольких переменных

Определение функции нескольких переменных. Предел и непрерывность ФНП

1. Определение функции нескольких переменных

ОПРЕДЕЛЕНИЕ.

Пусть
$$X = \{(x_1, x_2, ..., x_n) \mid x_i \in X_i \subseteq \mathbb{R} \}$$
, $U \subseteq \mathbb{R}$. Функция $f: X \to U$ называется функцией п переменных.

Записывают:

$$u = f(x_1, x_2, ..., x_n)$$
,

где f — закон, задающий соответствие между $x_1, x_2, ..., x_n$ и u .

Значение $u=f(x_1,x_2,...,x_n)$ при $x_1=x_{01},x_2=x_{02},...,x_n=x_{0n}$ записывают в виде

$$u = f(x_{01}, x_{02}, ..., x_{0n})$$
 или $u|_{x_1 = x_{01}, x_2 = x_{02}, K, x_n = x_{0n}}$

Называют:

```
X — область определения функции (Обозначают: D(u)), x_1, x_2, ..., x_n — аргументы (независимые переменные), U — область значений (Обозначают: E(u)), u (u \in U) — зависимая переменная (функция).
```

СПОСОБЫ ЗАДАНИЯ ФНП

- 1) словесный;
- 2) табличный;
- 3) аналитический:
 - а) явное задание (т.е. формулой $u = f(x_1, x_2, ..., x_n)$)
 - б) неявное задание (т.е. уравнением $F(x_1, x_2, ..., x_n, u) = 0$).
- 4) Функцию z = f(x,y) можно задать графически.
- ОПРЕДЕЛЕНИЕ. *Графиком функции* z = f(x,y) называется геометрическое место точек пространства с координатами $(x; y; f(x,y)), \forall (x,y) \in D(z)$.

График функции z = f(x,y) будем также называть «поверхностью z = f(x,y)».

Предел функции нескольких переменных

Число $A \in \mathbb{R}$ называется пределом функции f(M) при M стремящемся к M_0 (пределом функции f(M) в точке M_0), если $\forall \varepsilon > 0$ $\exists \delta > 0$ такое, что если $M \in U^*(M_0, \delta)$, то $f(M) \in U(A, \varepsilon)$.

Записывают в общем случае: Для функции z = f(x,y):

$$\lim_{M\to M_0} f(M) = A, \qquad f(M) \to A, \text{ при } M \to M_0$$

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} f(x, y) = A.$$

 $U^*(M_0, \delta)$ –проколотая δ -окрестность точки M_0 (без самой точки M_0);

 $U(A, \varepsilon)$ - ε -окрестность точки $M_0(x_{01}, x_{02}, ..., x_{0n}) \in \mathbb{R}^n$. $U(M_0, \varepsilon)$ - множество точек \mathbb{R}^n , находящихся от M_0 на расстоянии меньшем ε .

При
$$n=1$$
,
$$U(M_0,\varepsilon)=\{M\!\in\!Ox\mid\;|M_0M|=|x-x_0|<\varepsilon\}=(x_0-\varepsilon,\,x_0+\varepsilon)\;.$$

При n=2,

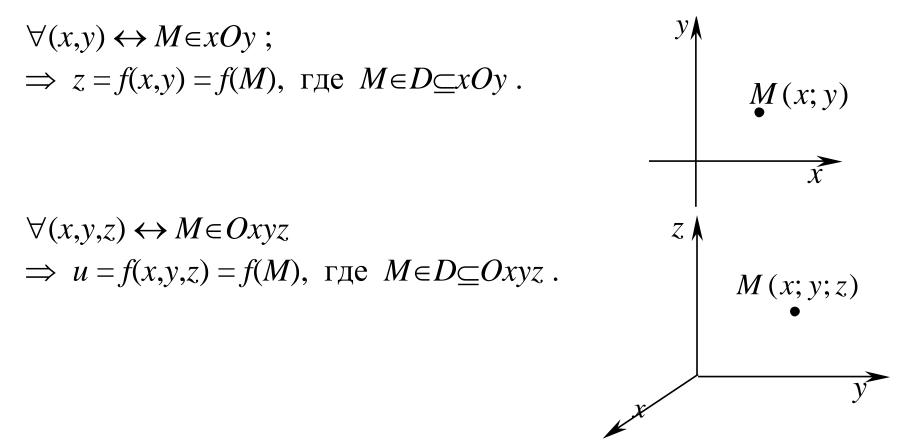
$$U(M_0, \varepsilon) = \{ M \in xOy | |M_0M| = \sqrt{(x - x_0)^2 + (y - y_0)^2} < \varepsilon \},$$

т.е. $U(M_0, \varepsilon)$ точки $M_0(x_0, y_0)$ — круг с центром в точке $M_0(x_0, y_0)$ и радиусом ε .

При n=3,

$$U(M_0,\varepsilon) = \{ M \in Oxyz | \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2} < \varepsilon \},$$

т.е. $\mathrm{U}(M_0,\epsilon)$ точки $M_0(x_0,y_0,z_0)$ — шар с центром в точке $M_0(x_0,y_0,z_0)$ и радиусом ϵ .



По аналогии, последовательность $(x_1, x_2, ..., x_n)$ будем считать декартовыми координатами точки n-мерного пространства и рассматривать функцию n переменных как функцию точки этого пространства.

Обозначают:

 \mathbb{R}^n- n-мерное пространство, u=f(M) , где $M(x_1,x_2,...,x_n)\in\mathbb{R}^n-$ функция n переменных.

Замечания.

- 1) Так как формально определение предела функции *п* переменных ничем не отличается от определения предела функции одной переменной, то все утверждения, которые были получены о пределах функции одной переменной и в которых не используется упорядоченность точек числовой прямой, остаются верными и для предела функции *п* переменных.
- 2) Определение бесконечно большой функции переносится на случай функции п переменных тоже дословно (сформулировать самостоятельно).

Непрерывность функции нескольких переменных

Пусть u = f(M) определена в некоторой окрестности $M_0 \in \mathbb{R}^n$. ОПРЕДЕЛЕНИЕ 1. Функция f(M) называется непрерывной в точке M_0 если справедливо равенство

$$\lim_{M \to M_0} f(M) = f(M_0)$$

Справедливы утверждения:

- 1) арифметические операции над непрерывными в точке M_0 функциями приводят к непрерывным в этой точке функциям (при условии, что деление производится на функцию, не обращающуюся в ноль);
- 2) сложная функция, составленная из нескольких непрерывных функций, тоже будет непрерывной.

Если функция u = f(M) определена в некоторой окрестности точки M_0 (за исключением, может быть, самой M_0), но не является в этой точке непрерывной, то ее называют разрывной в точке M_0 , а саму точку M_0 – точкой разрыва.

Частные производные

Для наглядности, здесь и далее все определения и утверждения будем формулировать для функции 2-х (или 3-х) переменных. На случай большего числа неизвестных они обобщаются естественным образом.

Пусть z = f(x,y), $D(z) = D \subseteq xOy$, D – открытая область.

Пусть $\forall M_0(x_0, y_0) \in D$.

Придадим x_0 приращение Δx , оставляя значение y_0 неизмененным (так, чтобы точка $M(x_0 + \Delta x, y_0) \in D$).

При этом z = f(x,y) получит приращение

$$\Delta_{x}z(M_{0}) = f(M) - f(M_{0}) = f(x_{0} + \Delta x, y_{0}) - f(x_{0}, y_{0}).$$

 $\Delta_{x}z(M_{0})$ называется *частным приращением* функции z=f(x,y) *по х в точке* $M_{0}(x_{0},y_{0}).$

ОПРЕДЕЛЕНИЕ. Предел

$$\lim_{\Delta x \to 0} \frac{\Delta_x z(M_0)}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x_0 + \Delta x, y_0) - f(x_0, y_0)}{\Delta x}$$

(если он существует и конечен) называется частной производной функции z = f(x,y) по переменной x в точке $M_0(x_0,y_0)$.

Обозначают:

$$rac{\partial z(x_0,y_0)}{\partial x}, \quad z_x'(x_0,y_0), \qquad rac{\partial f(x_0,y_0)}{\partial x}, \quad f_x'(x_0,y_0)$$
 или $rac{\partial z(M_0)}{\partial x}, \quad z_x'(M_0), \qquad rac{\partial f(M_0)}{\partial x}, \quad f_x'(M_0)$

Замечания.

1) Обозначения

$$\frac{\partial z(x_0, y_0)}{\partial x}$$
 и $\frac{\partial f(x_0, y_0)}{\partial x}$

надо понимать как целые символы, а не как частное двух величин. Отдельно взятые выражения $\partial z(x_0, y_0)$ и ∂x смысла не имеют.

2) $z'_x(M_0)$ характеризует скорость изменения функции z = f(x,y) по x в точке $M_0(x_0,y_0)$ (физический смысл частной производной по x).

Аналогично определяется частная производная функции z = f(x,y) по переменной у в точке $M_0(x_0,y_0)$:

$$\lim_{\Delta y \to 0} \frac{\Delta_y z(M_0)}{\Delta y} = \lim_{\Delta y \to 0} \frac{f(x_0, y_0 + \Delta y) - f(x_0, y_0)}{\Delta y}$$

Обозначают:

$$\frac{\partial z(x_0, y_0)}{\partial y}, \quad z'_y(M_0), \quad \frac{\partial f(x_0, y_0)}{\partial y}, \quad f'_y(M_0)$$

Соответствие

$$(x_0; y_0) \to f'_x(x_0; y_0)$$
 ($(x_0; y_0) \to f'_y(x_0; y_0)$)

является функцией, определенной на $D_1(D_2) \subseteq D(f)$.

Ее называют *частной производной функции* z = f(x,y) *по переменной х* (y) и обозначают

$$\frac{\partial z}{\partial x}, \quad z'_{x}, \quad \frac{\partial f(x,y)}{\partial x}, \quad f'_{x}(x,y), \quad \frac{\partial f(M)}{\partial x}, \quad f'_{x}(M)$$

$$\left(\frac{\partial z}{\partial y}, \quad z'_{y}, \quad \frac{\partial f(x,y)}{\partial y}, \quad f'_{y}(x,y), \quad \frac{\partial f(M)}{\partial y}, \quad f'_{y}(M)\right).$$

Операция нахождения для функции z = f(x,y) ее частных производных $f_x'(x,y)$ и $f_y'(x,y)$

называется дифференцированием функции z = f(x,y) по переменной x и y соответственно.

Фактически, $f'_x(x,y)$ ($f'_y(x,y)$) — это обыкновенная производная функции z = f(x,y), рассматриваемой как функция одной переменной x (соответственно y) при постоянном значении другой переменной.

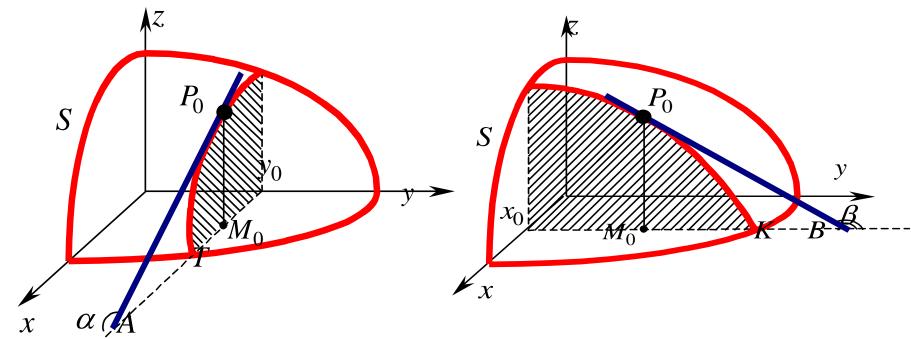
Поэтому, вычисление частных производных производится по тем же самым правилам, что и для функции одной переменой. При этом, одна из переменных считается константой.

ПРИМЕР. Найти частные производные по x и по y функции $f(x,y) = x^2 + xy^2 + y^3$

ГЕОМЕТРИЧЕСКИЙ СМЫСЛ частных производных функции ДВУХ ПЕРЕМЕННЫХ.

Пусть функция z = f(x,y) имеет в $M_0(x_0,y_0)$ частную производную по x(y).

Пусть поверхность S – график функции z = f(x,y).



Тогда́ $f'_x(M_0) = \operatorname{tg} \alpha \quad (f'_y(M_0) = \operatorname{tg} \beta),$

где $\alpha(\beta)$ — угол наклона к оси Ox(Oy) касательной, проведенной в точке $P_0(x_0,y_0,f(x_0,y_0))$ к линии пересечения поверхности S и плоскости $y=y_0$ ($x=x_0$).

Частные производные высших порядков

Пусть z = f(x,y) имеет $f_x'(x,y)$ и $f_y'(x,y)$, определенные на $D \subseteq xOy$.

Функции $f'_x(x,y)$ и $f'_y(x,y)$ называют также частными производными первого порядка функции f(x,y) (или первыми частными производными функции f(x,y)).

 $f'_{x}(x,y)$ и $f'_{y}(x,y)$ в общем случае функции переменных x и y .

Частные производные по x и по y от $f'_x(x,y)$ и $f'_y(x,y)$, если они существуют, называются частными производными второго порядка (или вторыми частными производными) функции f(x,y).

Обозначения.

1)
$$\frac{\partial}{\partial x}(f'_x(x,y))$$
: $\frac{\partial^2 z}{\partial x^2}$, $\frac{\partial^2 f(x,y)}{\partial x^2}$, z''_{xx} , $f''_{xx}(x,y)$;

2)
$$\frac{\partial}{\partial y} (f'_x(x,y))$$
: $\frac{\partial^2 z}{\partial x \partial y}$, $\frac{\partial^2 f(x,y)}{\partial x \partial y}$, z''_{xy} , $f''_{xy}(x,y)$;

3)
$$\frac{\partial}{\partial x} (f'_{y}(x, y))$$
: $\frac{\partial^{2} z}{\partial y \partial x}$, $\frac{\partial^{2} f(x, y)}{\partial y \partial x}$, z''_{yx} , $f''_{yx}(x, y)$;

4)
$$\frac{\partial}{\partial y} (f'_y(x, y))$$
: $\frac{\partial^2 z}{\partial v^2}$, $\frac{\partial^2 f(x, y)}{\partial v^2}$, z''_{yy} , $f''_{yy}(x, y)$.

Частные производные второго порядка в общем случае являются функциями двух переменных.

Их частные производные (если они существуют) называют частными производными третьего порядка (или третьими частными производными) функции z = f(x,y).

Продолжая этот процесс, назовем *частными производными порядка п функции* z = f(x,y) частные производные от ее частных производных (n-1)-го порядка.

Обозначения аналогичны обозначениям для частных производных 2-го порядка. Например:

$$\frac{\partial^3 z}{\partial x^2 \partial y} = \frac{\partial}{\partial y} \left(\frac{\partial^2 z}{\partial x^2} \right), \quad \frac{\partial^3 z}{\partial x \partial y \partial x} = \frac{\partial}{\partial x} \left(\frac{\partial^2 z}{\partial x \partial y} \right), \quad \frac{\partial^4 z}{\partial x^2 \partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial^3 z}{\partial x^2 \partial y} \right).$$

Частные производные порядка n > 1 называют *частными производными высших порядков*.

- Частные производные высших порядков, взятые по разным аргументам, называются *смешанными*.
- Частные производные высших порядков, взятые по одному аргументу, называют иногда *несмещанными*.
- ПРИМЕР. Найти частные производные 2-го порядка от функции $z = x^4 + 3x^2y^5$.

ТЕОРЕМА 1 (условие независимости смешанной производной от последовательности дифференцирований).

Пусть z = f(x,y) в некоторой области $D \subseteq xOy$ имеет все частные производные до n-го порядка включительно и эти производные непрерывны.

Тогда смешанные производные порядка $m (m \le n)$, отличающиеся лишь последовательностью дифференцирований, совпадают между собой.

Дифференцируемость ФНП

1. Дифференцируемые ФНП

Пусть z = f(x,y), $D(z) = D \subseteq xOy$, D – область (т.е. открытое связное множество).

Пусть $\forall M_0(x_0, y_0) \in D$.

Придадим x_0 и y_0 приращение Δx и Δy соответственно (так, чтобы точка $M(x_0 + \Delta x, y_0 + \Delta y) \in D$).

При этом z = f(x,y) получит приращение

$$\Delta z(M_0) = f(M) - f(M_0) = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0).$$

 $\Delta z(M_0)$ называется *полным приращением функции* z = f(x,y) в *точке* $M_0(x_0,y_0)$, соответствующим Δx и Δy .

ОПРЕДЕЛЕНИЕ. Функция z = f(x,y) называется **дифференци- руемой в точке** $M_0(x_0,y_0)$ если ее полное приращение в этой точке может быть записано в виде

$$\Delta z(M_0) = A \cdot \Delta x + B \cdot \Delta y + \alpha_1 \cdot \Delta x + \alpha_2 \cdot \Delta y , \qquad (1)$$
 где A, B – некоторые числа,
$$\alpha_1, \alpha_2 - \textit{бесконечно малые при } \Delta x \to 0, \Delta y \to 0$$
 (или, что то же, $\textit{при } \sqrt{(\Delta x)^2 + (\Delta y)^2} \to 0$).

Замечание. Функции α_1 и α_2 зависят от $x_0, y_0, \Delta x, \Delta y$.

Равенство (1) можно записать и в более сжатой форме:

$$\Delta z(M_0) = A \cdot \Delta x + B \cdot \Delta y + \alpha \cdot \rho , \qquad (2)$$
 где $\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2} ,$
$$\alpha = \frac{\alpha_1 \cdot \Delta x + \alpha_2 \cdot \Delta y}{\rho} - \text{бесконечно малая при } \rho \to 0.$$

Функция z = f(x,y), дифференцируемая в каждой точке некоторой области D, называется **дифференцируемой в** D.

Напомним: для дифференцируемой функции одной переменной y = f(x) справедливы утверждения:

- 1) y = f(x) дифференцируема в $x_0 \iff \exists f'(x_0);$
- 2) y = f(x) дифференцируема в $x_0 \implies y = f(x)$ непрерывна в x_0 .

ТЕОРЕМА 1 (необходимые условия дифференцируемости ФНП)

Пусть функция z = f(x,y) дифференцируема в точке $M_0(x_0,y_0)$. Тогда она непрерывна в этой точке и имеет в ней частные производные по обеим независимым переменным. Причем

$$f'_x(x_0, y_0) = A$$
, $f'_v(x_0, y_0) = B$.

$$z = f(x,y) \ \partial u \phi$$
-ема в точке M_0

$$z = f(x,y) -$$

z = f(x,y) - 1) непр. в точке M_0 , 2) имеет частн. производные

Замечания.

1) С учетом теоремы 1 равенства (1) и (2) можно записать соответственно в виде:

$$\Delta z(M_0) = \frac{\partial z(x_0, y_0)}{\partial x} \cdot \Delta x + \frac{\partial z(x_0, y_0)}{\partial y} \cdot \Delta y + \alpha_1 \cdot \Delta x + \alpha_2 \cdot \Delta y \tag{3}$$

$$\Delta z(M_0) = \frac{\partial z(x_0, y_0)}{\partial x} \cdot \Delta x + \frac{\partial z(x_0, y_0)}{\partial y} \cdot \Delta y + \alpha \cdot \rho \tag{4}$$

где α_1, α_2 – бесконечно малые при $\Delta x \to 0, \Delta y \to 0,$

$$\rho = \sqrt{(\Delta x)^2 + (\Delta y)^2},$$

 α – бесконечно малая при $\rho \to 0$.

2) Утверждение обратное теореме 1 неверно. Из непрерывности функции двух переменных в точке и существования в этой точке ее частных производных еще не следует дифференцируемость функции.

ПРИМЕР. Функция $z = x + y + \sqrt{|x|} \cdot |y|$ непрерывна в точке (0;0) и имеет в этой точке частные производные, но не является в этой точке дифференцируемой.

ТЕОРЕМА 2 (достаточные условия дифференцируемости ФНП) Пусть функция z = f(x,y) имеет в некоторой окрестности точки $M_0(x_0,y_0)$ частные производные $f_x'(x,y)$ и $f_y'(x,y)$ причем в самой точке M_0 эти производные непрерывны. Тогда функция z = f(x,y) дифференцируема в этой точке.

 $z = f(x,y) \ \partial u \phi$ -ема в точке M_0

z = f(x,y)1) имеет частн.произв. в окрестности *точки* M_0 , 2)частн. произв. *непр.* в точке M_0 ,

Дифференциал ФНП

Пусть функция z = f(x,y) дифференцируема в точке $M_0(x_0,y_0)$.

Тогда

$$\Delta z(M_0) = \frac{\partial f(x_0, y_0)}{\partial x} \cdot \Delta x + \frac{\partial f(x_0, y_0)}{\partial y} \cdot \Delta y + \alpha_1 \cdot \Delta x + \alpha_2 \cdot \Delta y$$

где α_1, α_2 – бесконечно малые при $\Delta x \to 0$, $\Delta y \to 0$.

ОПРЕДЕЛЕНИЕ. Если z = f(x,y) дифференцируема в точке $M_0(x_0,y_0)$, то линейная относительно Δx и Δy часть ее полного приращения в этой точке, т.е.

$$\frac{\partial f(x_0, y_0)}{\partial x} \cdot \Delta x + \frac{\partial f(x_0, y_0)}{\partial y} \cdot \Delta y$$

называется полным дифференциалом функции z = f(x,y) в точке $M_0(x_0,y_0)$ и обозначается $dz(M_0)$ или $df(x_0,y_0)$.

ГЕОМЕТРИЧЕСКИЙ СМЫСЛ полного дифференциала ФНП

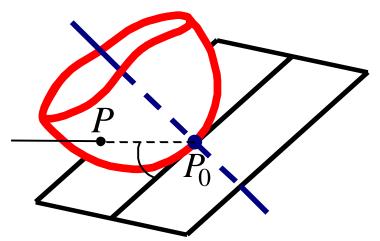
Пусть S – поверхность,

 P_0 – фиксированная точка на поверхности S,

P — текущая точка на поверхности S.

Проведем секущую прямую PP_0 .

Плоскость, проходящая через точку P_0 , называется касательной плоскостью к поверхности S в точке P_0 , если угол между секущей PP_0 и этой плоскостью стремится к нулю когда точка P стремится к P_0 , двигаясь по поверхности S произвольным образом.



Прямая, проходящая через точку P_0 перпендикулярно касательной плоскости к поверхности в этой точке, называется нормалью к поверхности в точке P_0 .

1) если функция z = f(x,y) (задана явно) дифференцируема в точке $M_0(x_0,y_0)$, то поверхность z = f(x,y) имеет в точке $P_0(x_0,y_0,f(x_0,y_0))$ касательную плоскость. Ее уравнение:

$$z - f(x_0, y_0) = f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0)$$

 \Rightarrow уравнение нормали к поверхности z = f(x,y) в $P_0(x_0,y_0,f(x_0,y_0))$:

$$\frac{x - x_0}{f_x'(x_0, y_0)} = \frac{y - y_0}{f_y'(x_0, y_0)} = \frac{z - f(x_0, y_0)}{-1}$$

2) если поверхность задана уравнением F(x,y,z) = 0,

F(x,y,z) — дифференцируема в $P_0(x_0,y_0,z_0)$, причем хотя бы одна из ее частных производных не обращается в P_0 в ноль, то касательная плоскость к поверхности в точке $P_0(x_0,y_0,z_0)$ существует и ее уравнение

$$F'_{x}(P_{0})(x-x_{0}) + F'_{y}(P_{0})(y-y_{0}) + F'_{z}(P_{0})(z-z_{0}) = 0$$

 \Rightarrow уравнения нормали к поверхности F(x,y,z) = 0 в $P_0(x_0,y_0,z_0)$:

$$\frac{x - x_0}{F_x'(P_0)} = \frac{y - y_0}{F_y'(P_0)} = \frac{z - z_0}{F_z'(P_0)}$$

Замечание.

Точка $P_0(x_0,y_0,z_0)$ поверхности F(x,y,z)=0, в которой все частные производные функции F(x,y,z) обращаются в ноль, называется *особой точкой поверхности*.

Пусть функция z = f(x,y) дифференцируема в точке $M_0(x_0,y_0)$.

 \Rightarrow поверхность z = f(x,y) имеет в точке $P_0(x_0,y_0,f(x_0,y_0))$ касательную плоскость. Ее уравнение:

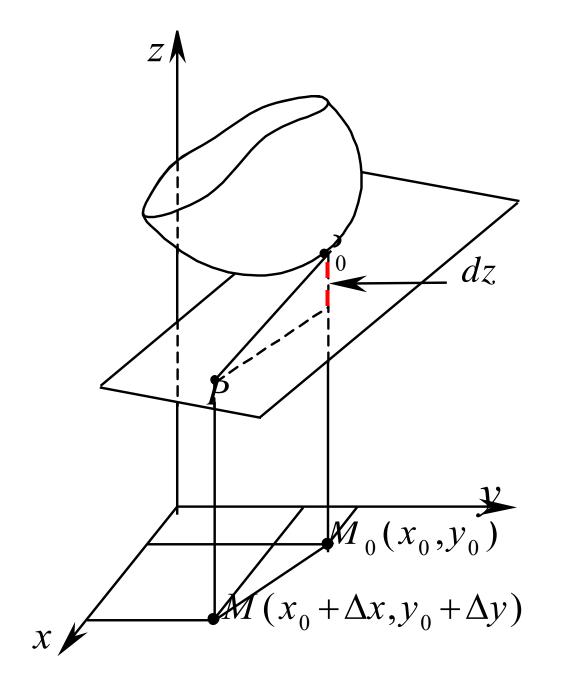
$$z - f(x_0, y_0) = f'_x(x_0, y_0)(x - x_0) + f'_y(x_0, y_0)(y - y_0)$$

Обозначим $x - x_0 = \Delta x$, $y - y_0 = \Delta y$.

Тогда уравнение касательной плоскости примет вид:

$$z - f(x_0, y_0) = f'_x(x_0, y_0) \Delta x + f'_y(x_0, y_0) \Delta y$$

ТАКИМ ОБРАЗОМ, полный дифференциал функции z = f(x,y) в точке $M_0(x_0,y_0)$ равен приращению, которое получает аппликата точки $P_0(x_0,y_0,f(x_0,y_0))$ касательной плоскости к поверхности z = f(x,y), когда ее координаты x_0 и y_0 получают приращения Δx и Δy соответственно.



Очевидно, что соответствие $(x_0, y_0, \Delta x, \Delta y) \rightarrow df(x_0, y_0)$ является функцией (четырех переменных).

Ее называют *полным дифференциалом функции* z = f(x,y) и обозначают dz или df(x,y).

Легко доказать, что полный дифференциал функции *n* переменных обладает теми же свойствами, что и дифференциал функции одной переменной.

В частности, для df(x,y) существует вторая, инвариантная форма записи:

$$dz = f'_{x}(x, y) \cdot dx + f'_{y}(x, y) \cdot dy. \tag{5}$$

Дифференциалы высших порядков ФНП

Пусть z = f(x,y) дифференцируема в области $D_1 \subseteq D(f)$. Ее дифференциал dz(M) — функция переменных x, y, dx, dy. Далее будем dz(M) называть $\partial u \phi \phi$ ренциалом 1-го порядка.

Зафиксируем значение dx и dy.

Тогда dz(M) станет функцией двух переменных x и y.

 $d^2z(M)$ — функция переменной x и y.

Дифференциал функции $d^2z(M)$ (если он существует) называют **дифференциалом третьего порядка функции** z = f(x,y) (или **третьим дифференциалом функции** z = f(x,y)) и обозначается d^3z , $d^3f(x,y)$.

- Продолжая далее этот процесс, определим $\partial u \phi \phi$ еренциал n-го порядка ϕ ункции z = f(x,y) как дифференциал от ее дифференциала порядка n-1. Обозначают: $d^n z$, $d^n f(x,y)$.
- **Замечание**. Значение дифференциала n-го порядка функции f(x,y) в точке (x_0,y_0) обозначают $d^nz(M_0)$, $d^nf(x_0,y_0)$.
- Дифференциалы порядка n > 1 называют дифференциалами высших порядков.
- Если функция z = f(x,y) имеет дифференциал порядка n, то ее называют n раз дифференцируемой.
- ТЕОРЕМА 3 (о связи дифференциала n-го порядка и n-х частных производных).

Если все производные k-го порядка функции z = f(x,y) в области D непрерывны, то она k раз дифференцируема. При этом имеет место <u>символическая</u> формула

$$d^{k}z = \left(\frac{\partial}{\partial x}dx + \frac{\partial}{\partial y}dy\right)^{k} f(x,y). \tag{6}$$

Замечание.

- 1) Чтобы записать дифференциал по формуле (6) необходимо:
 - а) формально раскрыть скобку по биномиальному закону,
 - б) умножить получившееся выражение на f(x,y),
 - в) заменить каждое произведение

$$\left(\frac{\partial}{\partial x}\right)^m \cdot \left(\frac{\partial}{\partial y}\right)^{n-m} \cdot f(x,y)$$

частной производной $\frac{\partial^n f(x,y)}{\partial x^m \partial y^{n-m}}$

Например, для n = 2 получим:

$$d^{2}z = \frac{\partial^{2} f}{\partial x^{2}} (dx)^{2} + 2 \frac{\partial^{2} f}{\partial y \partial x} dx dy + \frac{\partial^{2} f}{\partial y^{2}} (dy)^{2}$$

Для n = 3 получим:

$$d^3z = \frac{\partial^3 f}{\partial x^3} (dx)^3 + 3\frac{\partial^3 f}{\partial x^2 \partial y} (dx)^2 dy + 3\frac{\partial^3 f}{\partial x \partial y^2} dx (dy)^2 + \frac{\partial^3 f}{\partial y^{33}} (dx)^3$$

2) Символическая формула для нахождения дифференциала $d^k u$ функции $u = f(x_1, x_2, ... x_n)$ будет иметь вид

$$d^{k}u = \left(\frac{\partial}{\partial x_{1}}dx_{1} + \frac{\partial}{\partial x_{2}}dx_{2} + K + \frac{\partial}{\partial x_{n}}dx_{n}\right)^{k} f(x_{1}, x_{2}, K, x_{n})$$

при условии, что $x_1, x_2, \dots x_n$ – независимые аргументы.

3) В теореме 3 предполагается, что z = f(x,y) - k раз дифференцируемая функция 2-х **независимых** переменных. Если x,y — функции, то она не будет справедлива. Т.е. формула (6) не является инвариантной.

Частные производные сложных ФНП

Пусть z = f(x,y), где $x = \varphi_1(u,v)$, $y = \varphi_2(u,v)$.

Тогда z - cложная функция независимых переменных u и v.

Переменные x и y называются для z *промежуточными переменными*.

3AДAЧA: найти частные производные функции z по u и v.

ТЕОРЕМА 1 (о производной сложной функции).

Пусть z = f(x,y), где $x = \varphi_1(u,v)$, $y = \varphi_2(u,v)$.

Если f(x,y), $\phi_1(u,v)$, $\phi_2(u,v)$ дифференцируемы, то справедливы формулы

$$\frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u}, \qquad \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v}. \tag{1}$$

Теорема 1 естественным образом обобщается на случай функции большего числа независимых и промежуточных аргументов. А именно, если

$$u = f(x_1, x_2, ..., x_n), \quad \text{где } x_i = \varphi_i(t_1, t_2, ..., t_m) \quad (i = 1, 2, ..., n),$$

$$\frac{\partial u}{\partial t_k} = \frac{\partial u}{\partial x_1} \cdot \frac{\partial x_1}{\partial t_k} + \frac{\partial u}{\partial x_2} \cdot \frac{\partial x_2}{\partial t_k} + K + \frac{\partial u}{\partial x_n} \cdot \frac{\partial x_n}{\partial t_k} \qquad (\forall k = \overline{1, m})$$

ЧАСТНЫЕ СЛУЧАИ сложной ФНП

1) Пусть z = f(x,y), где $x = \varphi_1(t)$, $y = \varphi_2(t)$. Тогда z — сложная функцией одной переменной t. Если f(x,y), $\varphi_1(t)$, $\varphi_2(t)$ дифференцируемы, то справедлива формула

$$\frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt}$$
 (2)

2) Пусть z = f(x,y), где $y = \varphi(x)$ Тогда z — сложная функцией одной переменной x. Если f(x,y), $\varphi(x)$ дифференцируемы, то справедлива формула

$$\frac{dz}{dx} = \frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dx}$$
 (3)

Производная $\frac{dz}{dx}$ в левой части формулы (3) называется полной производной функции z.

Дифференцирование неявных функций

ТЕОРЕМА 1 (существования неявной функции).

Пусть функция $F(x_1, x_2, ..., x_n, u)$ и все ее частные производные 1-го порядка определены и непрерывны в некоторой окрестности точки $P_0(x_{01}, x_{02}, ..., x_{0n}, u_0)$.

$$E$$
сли $F(P_0) = 0$ u $F'_u(P_0) \neq 0$,

то \exists такая окрестность U точки $M_0(x_{01}\,,\,x_{02}\,,\,...,\,x_{0n}),$ в которой уравнение

$$F(x_1, x_2, ..., x_n, u) = 0$$

определяет непрерывную функцию $u = f(x_1, x_2, ..., x_n)$, причем

- 1) $f(M_0) = u_0$;
- 2) для любой точки $M(x_1,x_2,...,x_n) \in U$ $F_u'(x_1,x_2,K,x_n,f(x_1,x_2,K,x_n)) \neq 0;$
- 3) функция $u = f(x_1, x_2, ..., x_n)$ имеет в окрестности U непрерывные частные производные по всем аргументам.

ЗАДАЧА. Найти частные производные неявно заданной функции.

1) Пусть F(x,y) удовлетворяет условиям теоремы 1 в некоторой окрестности $P_0(x_0,y_0)$ Тогда уравнение F(x,y)=0 определяет в некоторой окрестности U точки x_0 , непрерывную функцию y=f(x).

$$\frac{dy}{dx} = -\frac{F_x'}{F_y'} \tag{1}$$

2) Пусть F(x,y,z) удовлетворяет условиям теоремы 1 в окрестности $P_0(x_0,y_0,z_0)$.

Тогда уравнение F(x,y,z)=0 определяет в некоторой окрестности U точки $M_0(x_0,y_0)$ непрерывную функцию z=f(x,y).

Так как фактически $\frac{\partial z}{\partial x}$ это обыкновенная производная функ-

ции z = f(x,y), рассматриваемой как функция одной переменной при постоянном значении другой, то по формуле (1) получаем ∂_{z} F' ∂_{z} F'

$$\frac{\partial z}{\partial x} = -\frac{F_x'}{F_z'}, \qquad \frac{\partial z}{\partial y} = -\frac{F_y'}{F_z'}.$$

39

Экстремумы ФНП

Пусть z = f(x,y) определена в некоторой области $D \subseteq xOy$, $M_0(x_0,y_0) \in D$.

ОПРЕДЕЛЕНИЕ 1.

Точка $M_0(x_0,y_0)$ называется **точкой максимума** функции f(x,y), если $\forall M(x,y) \in \mathrm{U}(M_0,\delta)$ выполняется неравенство $f(x,y) \leq f(x_0,y_0)$.

Точка $M_0(x_0,y_0)$ называется **точкой минимума** функции f(x,y), если $\forall M(x,y) \in \mathrm{U}(M_0,\delta)$ выполняется неравенство $f(x,y) \geq f(x_0,y_0)$.

Точки максимума и минимума функции называются ее *точками экстремума*.

Значения функции в точках максимума и минимума называются соответственно *максимумами* и *минимумами* (экстремумами) этой функции.

Замечания.

- 1) По смыслу точкой максимума (минимума) функции f(x,y) могут быть только внутренние точки области D.
- 2) Если $\forall M(x,y) \in U^*(M_0,\delta)$ выполняется неравенство

$$f(x,y) < f(x_0,y_0) \quad [f(x,y) > f(x_0,y_0)],$$

то точку M_0 называют **точкой строгого максимума** (соответственно **точкой строгого минимума**) функции f(x,y).

Определенные в 1 точки максимума и минимума называют иногда точками *нестрогого максимума* и *минимума*.

3) Понятия экстремумов носят локальный характер. В рассматриваемой области функция может совсем не иметь экстремумов, может иметь несколько (в том числе бесчисленно много) минимумов и максимумов. При этом некоторые минимумы могут оказаться больше некоторых ее максимумов.

TEOPEMA 2 (необходимые условия экстремума).

Если функция z = f(x,y) в точке $M_0(x_0,y_0)$ имеет экстремум, то в этой точке либо обе ее частные производные первого порядка равны нулю, либо хотя бы одна из них не существует.

ГЕОМЕТРИЧЕСКИЙ СМЫСЛ теоремы 2.

Если $M_0(x_0,y_0)$ — точка экстремума функции z=f(x,y), то касательная плоскость к графику этой функции в точке $P_0(x_0,y_0,f(x_0,y_0))$ либо параллельна плоскости xOy, либо вообще не существует.

Точки, удовлетворяющие условиям теоремы 2, называются критическими точками функции z = f(x,y). TEOPEMA 3 (достаточные условия экстремума функции ДВУХ переменных).

Пусть $M_0(x_0,y_0)$ – критическая точка функции z=f(x,y) и в некоторой окрестности точки M_0 функция имеет непрерывные частные производные до 2-го порядка включительно.

Обозначим

$$A = f_{xx}^{\prime\prime}(x_0, y_0), \quad B = f_{xy}^{\prime\prime}(x_0, y_0), \quad C = f_{yy}^{\prime\prime}(x_0, y_0).$$
 Тогда

- 1) если $A \cdot C B^2 < 0$, то точка $M_0(x_0, y_0)$ не является точкой экстремума;
- 2) если $A \cdot C B^2 > 0$ и A > 0, то в точке $M_0(x_0, y_0)$ функция имеет минимум;
- 3) если $A \cdot C B^2 > 0$ и A < 0, то в точке $M_0(x_0, y_0)$ функция имеет максимум;
- 4) если $A \cdot C B^2 = 0$, то никакого заключения о критической точке $M_0(x_0, y_0)$ сделать нельзя и требуются дополнительные исследования.

Замечание.

- 1) Если с помощью теоремы 3 исследовать критическую точку $M_0(x_0,y_0)$ не удалось, то ответ на вопрос о наличии в M_0 экстремума даст знак $\Delta f(x_0,y_0)$:
 - а) если при всех достаточно малых Δx и Δy имеем $\Delta f(x_0,y_0)<0,$ то $M_0(x_0,y_0)$ точка строгого максимума;
 - б) если при всех достаточно малых Δx и Δy имеем $\Delta f(x_0, y_0) > 0$, то $M_0(x_0, y_0)$ точка строгого минимума.

В случае нестрогих экстремумов при <u>некоторых</u> значениях Δx и Δy приращение функции будет нулевым

2) Определения максимума и минимума и необходимые условия экстремума легко переносятся на функции трех и более числа переменных.

Достаточные условия экстремума для функции n (n > 2) переменных ввиду их сложности в данном курсе не рассматриваются. Определять характер критических точек для них мы будем по знаку приращения функции.