Ключевые слова и вопросы.

Соединения переменного состава. Твёрдые растворы. Вода в минералах.

В настоящее время различают следующие виды воды в минералах (Геологический словарь, 1978):

- конституционная;
- кристаллизационная;
- цеолитная;
- адсорбционная (коллоидная);
- гигроскопическая (капиллярная);
- плёночная.

Физические свойства минералов.

Главнейшие свойства минералов:

- Морфологические особенности облик кристаллов, двойники, штриховатость граней были нами рассмотрены ранее.
- Оптические прозрачность, цвет минералов, цвет черты, блеск;
- Механические спайность, излом, твёрдость, хрупкость, ковкость, упругость;
- Электрофизические электропроводность, термолюминесценция, термоток, тангенс угла диэлектрических потерь, термостимулированная электромагнитная эмиссия, магнитность.
- Магнитные свойства минералов.
- Радиоактивность минералов.

Горный хрусталь, дымчатый кварц. (Удивительное в мире камня, 1985. Фото Н. Князева).

Топаз. (Удивительное в мире камня, 1985. Фото Н. Князева).

Цвет минералов.

Приняты следующие названия цветов:

- Фиолетовый аметист
- Синий азурит.
- Зелёный малахит
- Жёлтый аурипигмент
- Оранжевый крокоит
- Красный киноварь
- Бурый пористые разности лимонита
- Жёлто-бурый охристые разности лимонита
- Оловянно-белый арсенопирит
- Свинцово-серый молибденит
- Стально-серый блеклая руда
- Железо-чёрный магнетит
- Индигово-синий ковелин
- Медно-красный самородная медь
- Латунно-жёлтый халькопирит
- Металлически-золотистый золото

Аметист. (Удивительное в мире камня, 1985. Фото Н. Князева).

Пирит. (Удивительное в мире камня, 1985. Фото Н. Князева).

Друза молочного кварца. Музей кафедры минералогии и петрографии ФГП, ИГНД, ТПУ. Фото В.Н. Сальникова.

Кварц морион. Музей кафедры минералогии и петрографии ФГП, ИГНД, ТПУ. Фото В.Н. Сальникова.

Слева – «Биссерная яшма». Справа – яшма «Горный поток». В центре яшма – метасоматически проработанный гранодиорит (Урал). В центре внизу – яшма брекчированная из месторождения Сибай.

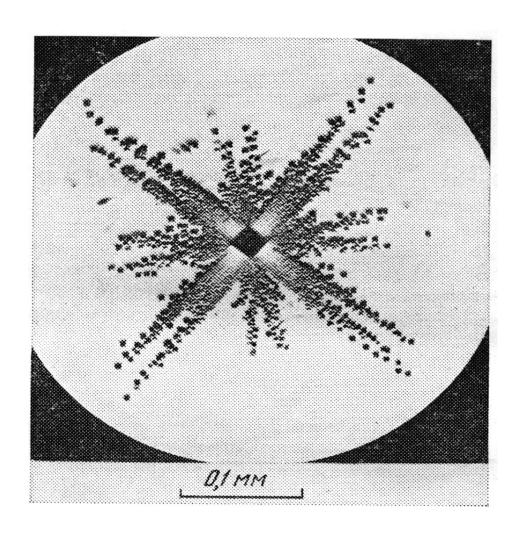

Коллекция О.А. Смоленцева, фото. В.Н. Сальникова.

Агаты с опалом, халцедоном и аметистом в центре. Месторождение Чернушка. Колл. Смоленцева О.А. Фото. В.Н. Сальникова.

Зависимость показателя отражения света (R) от показателя преломления (N) минералов (А.Г. Бетехтин, 1951).

Интенсивность блеска минералов практическим путём сведены в шкалу:

- Стеклянный (лёд, флюорит, кварц).
- Алмазный (циркон, касситерит, алмаз).
- Полуметаллический (киноварь, гематит).
- Металлический (молибденит, галенит, пирит, висмут, халькопирит).


Механические свойства минералов. Спайность и излом

Различают степень совершенства спайности:

- Весьма совершенная (слюды, хлориты).
- Совершенная (галенит, кальцит).
- Средняя (полевые шпаты, роговая обманка).
- Несовершенная (апатит, касситерит).
- Весьма несовершенная (магнетит, золото, платина).

В центре – след от укола алмазным остриём в грань кристалла. После укола грань кристалла протравили; по фигурам травления видно, как от укола разошлись дислокации. (Из работы М.П.

Шаскольской, 1987).

Микротвёрдость с учётом и без учёта поверхности минерала (табл. 1).

Вещество	Низм кг/мм ²	Н ₀ (без учета поверхности), кг/мм ²
Сильвин КС1	11,7-16,4	11,3-11,5
Натрий хлористый NaCl	18,8-26,1	18,3-18,4
Пирит FeS ₂	1207-1708	819-1213

За эталоны шкалы Мооса приняты следующие минералы в порядке твёрдости от 1 до 10:

- Тальк Mg3[Si4O10][OH]2
- Гипс CaSO4x2H2O
- Кальцит СаСО3
- Флюорит CaF2
- Апатит Ca5[PO4]3F
- Полевой шпат (ортоклаз) –
 K[AlSi3O8]·Na[AlSi3O8], плагиоклаз Ca[AlSi3O8]·Na[AlSi3O8].
- Кварц SiO2
- Топаз Al2[SiO4][F, OH]2
- Корунд Al2O3
- Алмаз С.

Электрофизические свойства минералов:

- а) Электропроводность.
- б) Термолюминесценция.
- в) Термоток.
- г) Тангенс угла диэлектрических потерь.
- д) Термостимулированная электромагнитная эмиссия.

Экспоненциальная зависимость электропроводности от температуры (I). II – области примесной (1) и собственной (2) проводимости диэлектриков.

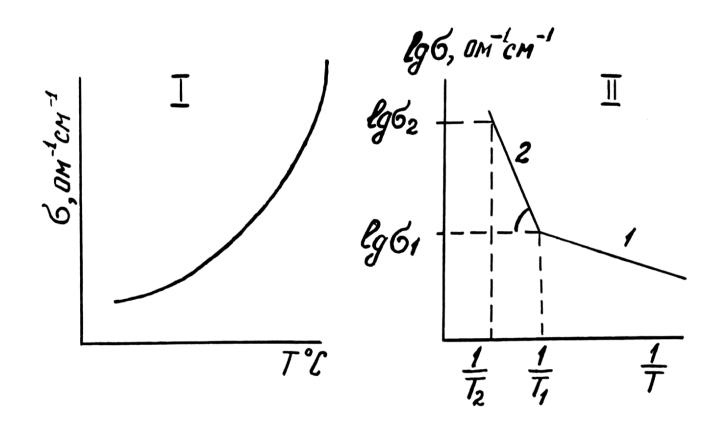
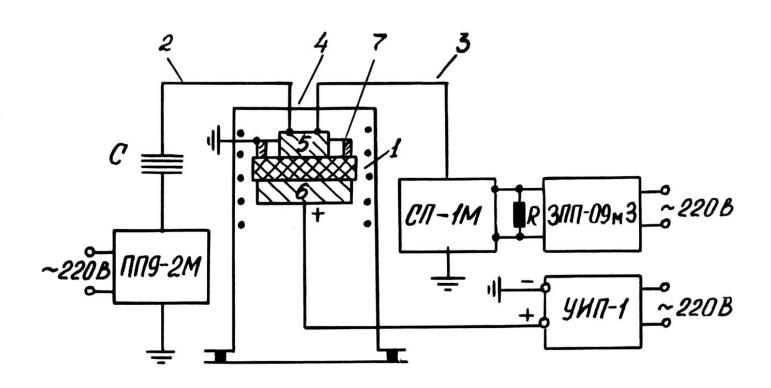
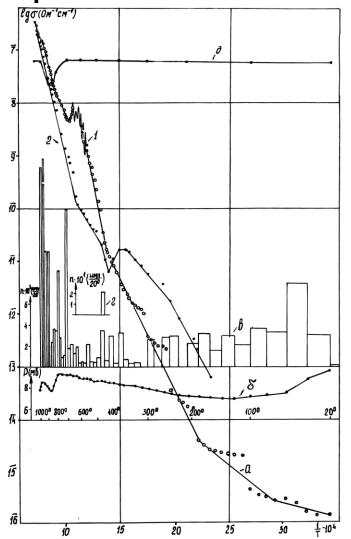
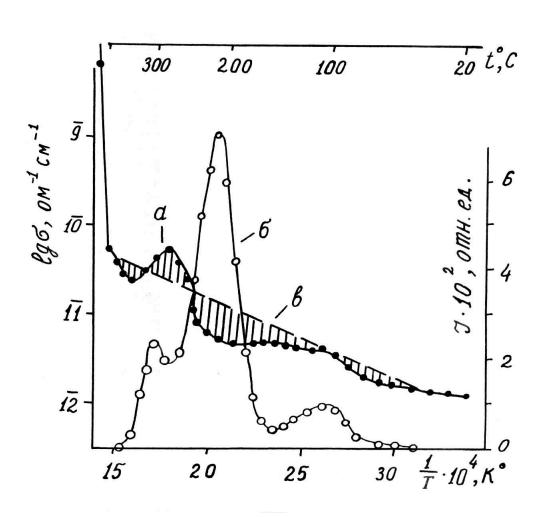




Схема измерения тока проводимости, термотока синхронно с эмиссией электромагнитных импульсов минералов в температурном интервале 20-10000С в вакууме.

Температурная зависимость электропроводности мусковита из Енского месторождения при нагревании (1) и охлаждении (2); б – изменение вакуума в системе; в – интенсивность электромагнитных импульсов в диапазоне длин волн 9-1333 м; г – то же при охлаждении; д – кривая дифференциального термического анализа. (По материалам В.Н. Сальникова, 1977).

№	$\frac{f(x)n}{n}$	Физико-химические процессы	Конкретные примеры
1	1 const	Выделение запасенной энергии, фазовый переход II-го рода	Распад F – центров, a®b переход в кварце
2	n V T Const	Рекомбинация носителей заряда; образование объемного заряда, фазовый переход II-го рода	Нагревание радиоэлектретов (облученных электронами диэлектриков, минералов и горных пород)
3		Окислительно- восстановительные реакции	Разложение сульфидов и других рудных компонентов в горных породах
4	<u>n ∧</u> T ∨	Разложение вещества - эндотермическая реакция	Дегитратация, декарбонитизация, декрипитация
5	$ \begin{array}{c c} n & V \\ \hline T & V \end{array} $ $ \underline{n \ const} $ $ T & \Lambda $	Образование новой фазы и твердого раствора	Капли расплава в матрице горной породы или искусственной смеси компонентов (бетоне)
6		Кристаллизация	Затвердевание расплава, раскристаллизация стекол
7	r const	Плавление	Плавление аморфных и кристаллических соединений
8	n V T A	Экзотермическая реакция с рекомбинацией носителей заряда	Образование нейтральных соединений в промежуточных реакциях разложения горных пород сложного состава
9	T CONST	Физико-химические процессы отсутствуют кроме полиморфного перехода из одной сингонии в другую (переход II-го рода)	переход кварца обезвоженного, отожженного, фазовый переход II-го рода в ортоклазе, сегнетоэлектриках


За счет изменения числа носителей (n) и температуры (T) экзотермических и эндотермических реакций, может быть вызвано

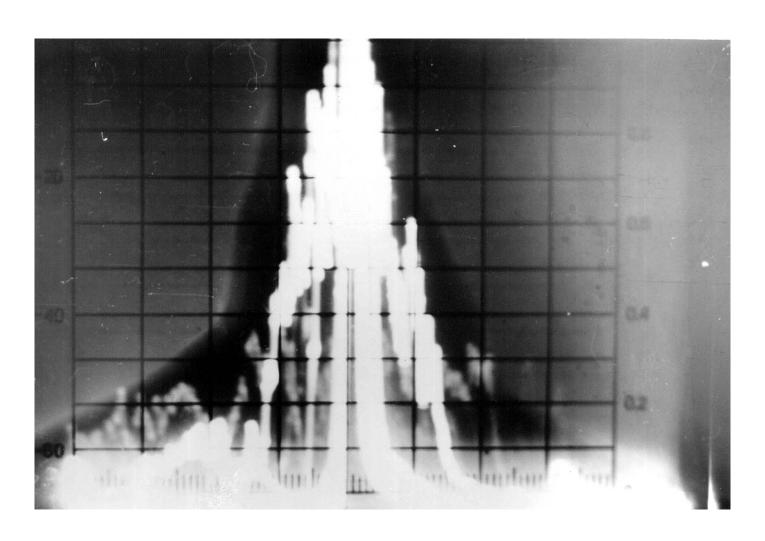
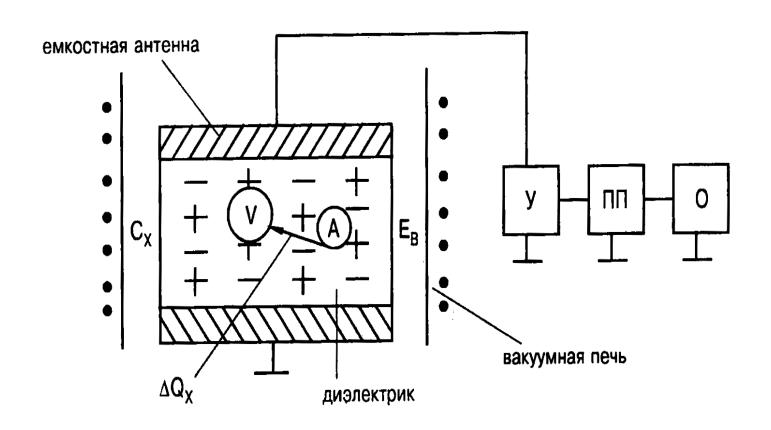
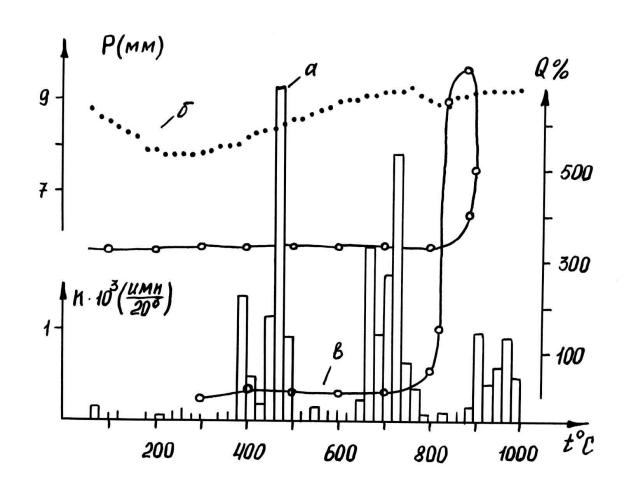
следующими причинами:

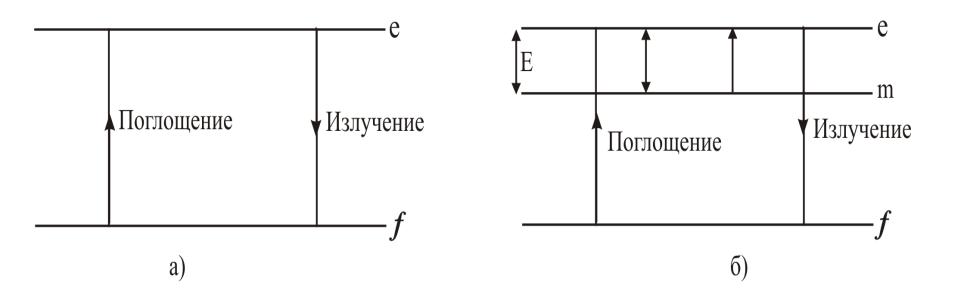
- Испарение слабосвязанной воды (сушка) при 0-4200 С;
- <u>Дегидратация</u> при более высоких температурах (отделение цеолитной и конституционной воды)
- KAI2[AISi3O10]x[FOH]2→ AISi3O5
- мусковит муллит
- <u>Разрушение</u> газово-жидких включений в минералах (декрепитация).
- <u>Реакции</u> окисления и восстановления, сопровождающиеся экзотермическими и эндотермическими эффектами FeS2+O2→Fe2O3+SO2↑.
- Явления пиропьезоэффекта, обуславливающие поляризацию диэлектрика.
- <u>Полиморфные</u> превращения α β кварц, α - β переход.
- <u>Природное</u> облучение, ведущее к накоплению энергии на дефектах минералов и выделение запасенной энергии при нагревании в виде света (ТЛ), тепла, импульсного электромагнитного излучения в радиодиапазоне частот. Дефекты по Шотки и Френнелю.
- <u>Искусственное</u> облучение заряженными частицами, гамма, рентгеном и др. лучами, ведущее к образованию электретного состояния.
- Образование новой фазы в матрице гетерогенной системы диэлектрика, образование и распад твердых растворов, плавление.
 - NaCl + KCl + t = твердый раствор

Аномальные изменения температурной зависимости электропроводности (а) и гамма-термолюминесценция (б) доломита с сетью прожилок перекристаллизации и бедной сульфидной

минерализацией (1013).

Частотный спектр электромагнитного излучения в температурном интервале взаимного растворения при нагревании образца, содержащего 40% NaCl в KCl. По материалам С.Д. Заверткина.


Схема регистрации импульсного электромагнитного излучения образцов минералов и горных пород. Примечание: У – усилитель; ПП – пересчетный прибор; О - осциллограф; V – вакансия; А – внедрённый атом; Сх – ёмкость двух электродов; ∆Qх – заряд между двумя дефектами; Ев – напряженность внутреннего поля. (По материалам В.Н. Сальникова).

Температурная зависимость интенсивности электромагнитных импульсов (ЭМИ) слюды мусковита месторождения Согдиозон: а - интенсивность ЭМИ; б - изменение вакуума в системе при измерении ЭМИ, (по работам Сальникова В.Н.); в - вспучивание слюды по данным работы Е.К. Лашева, 1948.

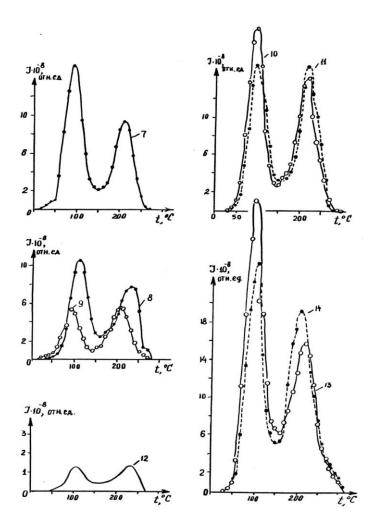
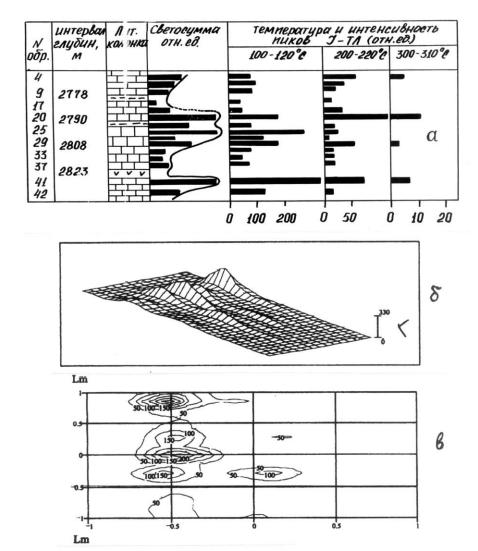


Схема энергетических уровней, используемая в люминесценции: а) флюоресценция; б) фосфореценция.



Температурная зависимость гамма-термолюминесценция образцов горных пород из скв. № 13 Калинового месторождения. (По экспериментальным данным М.В.

Коровкина).

Изменения запасенной светосуммы и интенсивности пиков гамма-ТЛ; б - объемное представление интенсивности гамма-ТЛ; в - послойный срез пиков ТЛ (изогамма - термолюминесценциды) по участку разреза скв.№ 2 Северо-Останинской площади. (В.Н. Сальников, М.А. Шустов, М.С. Паровинчак, 1999).

Содержание урана в минералах лейкократовых гранитов приводит В.К. Черепнин (1966) по данным

Л.Л. Леоновой и Л.В. Таусону (табл. 3).

Минерал	Содержание минерала в породе, вес %	Содержание урана в минерале %
Кварц	33,7	1*10-4
Калишпат и плагиоклаз	63,8	5*10-5
Биотит	0,3	1*20-3
Циркон	0,028	2,5*10-1
Сфен	0,14	2*10-2
Ортит	0,033	4,1*10-1
Апатит	0,005	2,4*10-6
Ураноторит	не подсчитан	6