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Abstract. The paper outlines the problem of the synthesis of multi-loop automatic 

control systems (ACS). The possibility to solve the problem directly by the general equation 
of controller synthesis in difference with the traditional sequential calculation method for 
enclosed loops is discussed. To solve the equation, the numerical method to convert the 
original equation in a system of nonlinear equations is used and capabilities and difficulties of 
the method are considered. 

 
Introduction 
Control systems with several internal circuits are widely used in order to achieve high 

dynamic precision control. However, to calculate them is not an easy task.  Traditional 
controller synthesis method uses sequential scheme of loops calculation, starting with the 
internal one. The well known disadvantage of the method is related to the appearance of 
additional errors, since we use sequential loops calculation, some errors appear as we 
distribute desired quality indicators and accuracy according to internal loops. This 
decomposition can be done only approximately, thus leading to errors. The latter statement is 
a significant negative factor, even if an exact solution exists, it may be not calculated. 

Obviously, to eliminate this disadvantage we need to replace two-stage procedure, 
having decomposition of desired properties of loops and calculation of regulators, by a single-
stage one, where decomposition is excluded. Such variant of our proposed method was earlier 
presented in (Barkovsky A. et al, 2002). However, while implementing it some fundamental 
and computational difficulties were discovered. The aim of the given paper is to consider 
them. 

 
1 Preliminary stage 
The use of our method outlined in (Barkovsky A. et al, 2002), shows that it has some 

limitations, particularly in the number of coefficients to be determined. Therefore, the desire 
to implement the method requires research of its positive features and constraints.  

For simplicity let us consider the dual-loop ACS, the diagram of which is shown in 
Figure 1, having the following notation, where WOU(р)  is the transfer function of control 
object, and Wreg1(р), Wreg2(р) is the transfer functions of regulators, and K1, K2 is feedback 
coefficients. 

 

 
Fig.1. Operator block diagram of dual-loop ACS 
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Synthesis equation generally determines the ratio of the desired transfer function Wdes(p) 

and synthesized transfer function Wsint(p) according to the equation: 
Wdes(p) ≈ F[Wreg1(p), Wreg2(p), K1, K2, WOU(p),]. (1) 
While solving equation (1), we meet two obvious difficulties. The first one is due to its 

non-linearity resulting in difficulty of calculation. The second one is the necessity to split the 
equation into the system of equations allowing us to calculate all unknown coefficients.  

The conventional way to perform the splitting of the equation above is the method of 
frequency, where the transition from the image function F(p) to the function F(jω) is carried 
out by the change of variable p=δ+jω to the imaginary variable jω, where δ=0. To perform 
further numerical calculations, we need to use digital models by setting ωi, i=1,2,…,η 
(Kozlov O.V and Skvortsov L.M., 2015), (Ganchev I., 2004), (Petrkov N. A., 2008). It is also 
needed to note the negative side of such a method, as it is accompanied by twice increase of 
the amount of calculation due to the need to reform the real and imaginary components.  

Another way to split the equation into the system of equations is the substitution in the 
image function F(p) of the variable p=δ+jω  to the real variable δ ϵ [C, ∞], C ≥ 0 by setting 
ω=0 (Aleksandrov I., 2014). As a result, we get the image function F(δ), which is real with a 
real argument. The next step is to move from a continuous function F(δ) to a numerical form 
F(δi), i=1,2,…,η based on digitization. The attraction of this method is that it allows us to use 
well-developed numerical techniques and algorithms, as well as digital hardware and software 
resources for their implementation. In the paper we consider the features of the synthesis 
method of multi-loop ACS. 

 
2 Problem definition  
The technology to calculate RIM in the calculation of multi-loop ACS is consecutive 
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The only left problem for us is to solve the system of η nonlinear equations.  
Generally, to control systems two proportional–integral–derivative (PID) controllers are 

used. In this case an unknown factors number includes 6 coefficients of these two controllers 
and 2 feedback coefficients. Thus, it is required to calculate 8 unknowns of equation (2). It 
can be assumed that the difficulties in solving the problem may be significant, perhaps 
insurmountable. It is them that we consider further. 
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3 Testing the method on the example of turning machine control system 
Peculiar properties of RIM and difficulties of its implementation in the synthesis of 

multi-loop ACS are presented on the example of common structure of dual- loop turning 
machine control system (Richard C. Dorf and Robert H. Bishop, 2008), see Figure 2. To 
calculate the system, the solution is known; therefore, we can simply conduct a comparative 
analysis of calculation results. 

 

 
Fig. 2. Turning machine control system 

 

The transfer function of the control object has the following form
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To test the features and possibilities to solve the systems of nonlinear equations (2), let 
us select the variant where the problem computationally is simplified to the limit, but the main 
feature, the system of equations being nonlinear, is retained. For this purpose, we assume 
unknown coefficients K1 and K2. For this case, the solution is obtained by Newton's method 
after four iterations. The found coefficients K1 = 941,9, K2 = 2,323 sufficiently are close to the 
solution of (Richard C. Dorf and Robert H. Bishop, 2008). 

For further research we increased the number of unknown coefficients to six. It turned 
out that the increase in dimension of the equations system led to a significant deterioration in 
the terms of problem solving, in particular, the convergence domain greatly decreased while 
using Newton's method, and the number of iterations increased, and computational difficulties 
grew up as well due to the ill-posed problem.  

Moreover, in practice the ill-posed factor is extremely significant. To determine the 
degree of its influence functional connection of condition number from the number of 
unknown variables was found. Condition measure function was determined by formula 
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of the numbers and the numbers of unknown coefficients η are depicted in Table 1. 
 

Table 1 
η 2 3 4 5 6 
k 965 6,5∙106 1,2∙108 9,0∙108 4,2∙109 
 
These results show the limitations of the method according to the number of unknown 

coefficients and simultaneously determine the area of its implementation. 
Besides, we tested the condition numbers for different classes of control systems. The results 
of two coefficients calculations are presented further. For minimum-phase system we got 
k=13,605, for single-loop system with time delay the condition number was k=96,038, and for 
multi-loop system it was k=965,725. 

The above results and some other data show that matrix condition gets worse if the 
control system has time delay, or distributed parameter in control object, or if the control 
system is multi-loop or multi-dimensional system. This information can serve as a guide to 
prepare recommendations to implement our method.  

RIM method can be used to calculate multi-loop ACS to find 2-4 customizable 
regulators coefficients. On the one hand, such a restriction can be considered significant. On 
the other hand, the same result can be assumed as positive and promising, for example, for 
adaptive controllers of multi-loop systems which have not practically been implemented yet 
due to the absence of algorithms to auto-tuning controllers in two loops. 

The results of the research have also demonstrated that it is possible to increase the 
number of coefficients calculated by attracting regularization methods (Kahaner, 1989). There 
is one more possibility to improve the results, i.e. to replace Newton's method by more 
suitable ones. Experiments have shown that these ways are practical and effective methods to 
improve synthesis multi-loop ACS. 
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