БАЗОВАЯ РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ ФИЗИЧЕСКИЕ МЕТОДЫ ИССЛЕДОВАНИЯ МИНЕРАЛОВ

НАПРАВЛЕНИЕ (СПЕЦИАЛЬНОСТЬ) ООП

21.05.02 ПРИКЛАДНАЯ ГЕОЛОГИЯ

ПРОФИЛЬ ПОДГОТОВКИ (СПЕЦИАЛИЗАЦИЯ)

«Геологическая съемка, поиски и разведка месторождений твердых

полезных ископаемых»

КВАЛИФИКАЦИЯ: ГОРНЫЙ ИНЖЕНЕР-ГЕОЛОГ БАЗОВЫЙ УЧЕБНЫЙ ПЛАН ПРИЕМА 2016 г.

KYPC 3; CEMECTP 5;

КОЛИЧЕСТВО КРЕДИТОВ: 3 КОД ДИСЦИПЛИНЫ: C.3.BM.5.1.1

Виды учебной деятельности	Временной ресурс		
Лекции, ч	16		
Практические занятия, ч	-		
Лабораторные занятия, ч	32		
Аудиторные занятия, ч	48		
Самостоятельная работа, ч	60		
ИТОГО, Ч	108		

ВИД ПРОМЕЖУТОЧНОЙ АТТЕСТАЦИИ: экзамен в 5 семестре

ОБЕСПЕЧИВАЮЩЕЕ ПОДРАЗДЕЛЕНИЕ: кафедра геологии и разведки полезных ископаемых

ЗАВЕДУЮЩИЙ КАФЕДРОЙ:

к.г.-м.н., доцент Р.Ю. Гаврилов

РУКОВОДИТЕЛЬ ООП:

к.г.-м.н., доцент Л.А. Краснощекова

ПРЕПОДАВАТЕЛИ:

к.г.-м.н., ассистент М.А. Рудмин

1. Цели освоения модуля (дисциплины)

Цели освоения дисциплины: формирование у обучающихся целей **Ц1**, **Ц3** (табл. 1) освоения дисциплины (модуля) «Физические методы исследования минералов» в области обучения, воспитания и развития, соответствующие целям ООП «Прикладная геология».

Цели образовательной программы

Таблица 1

Nº ⊓⊓	Цели обучения
Ц1	Выпускники обладают глубокими общенаучными и инженерными знаниями,
	практическими навыками и личностными компетенциями, имеют широкую
	эрудицию и стремление к постоянному повышению своего
	профессионализма в области прикладной геологии.
Ц3	Выпускники способны применять современные технологии и оборудование,
	вносить значительный вклад в повышение ресурсоэффективности и
	конкурентоспособности предприятий минерально-сырьевой отрасли.

2. Место модуля (дисциплины) в структуре ООП

Дисциплина относится к вариативной части (С3.В.1.1) профессионального цикла.

Дисциплине предшествует освоение дисциплин (ПРЕРЕКВИЗИТЫ): общая геология, математика, минералогия, петрография и др.

Содержание разделов дисциплины (модуля) согласовано с содержанием дисциплин, изучаемых параллельно (КОРЕКВИЗИТЫ): геодинамика и минерагения, геохимические методы поисков месторождений полезных ископаемых

3. Результаты освоения модуля (дисциплины)

В соответствии с требованиями ООП освоение дисциплины направлено на формирование у студентов следующих компетенций (результатов обучения), в т.ч. в соответствии с ФГОС (см. табл. 2).

Таблица 2 Составляющие результатов обучения, которые будут получены при изучении данной дисциплины

Резуль	уль Составляющие результатов обучения						
таты обучен ия	Код	Знания	Код	Умения	Код	Владение опытом	
P4	34.3	Физические, химические, ядерно- физические методы изучения металлических, неметаллических, горючих полезных ископаемых	У4.3	Диагностирова ть минеральный состав твердых полезных ископаемых и определять последователь ность и условия их образования	B4.3	Приемами способами диагностики состава полезных ископаемых	И

По окончании изучения дисциплины «Физические методы будет исследования минералов» студент способен: применять полученные знания, умения, навыки и компетенции при изучении дисциплин дальнейшей производственной специальных И В деятельности.

4. Структура и содержание дисциплины

4.1. Содержание разделов дисциплины

Раздел 1. Природа свойств минералов и методы их изучения.

Пекция. Введение. Цели и задачи дисциплины «Физические методы исследования минералов», связь с другими науками и ее значение для минералогии и практики геологоразведочных работ. История развития и роль методов исследования минерального вещества в науках о Земле. Классификация методов исследования минерального вещества.

Минерал как объект физических исследований. Классификация физических методов минералогического исследования. Прямые и косвенные методы изучения структуры, вещественного состава, физических и физико-химических свойств минералов. Методы исследования кристаллического вещества. Физические методы исследования минералов, используемые на кафедре геологии и

разведки полезных ископаемых и в Институте природных ресурсов ТПУ.

Этапы изучения природных техногенных образований. Четкая, конкретная постановка задачи исследования. Выбор метода анализа или сочетания методов, выполняемых в определенной очередности. Тщательная подготовка проб в соответствии с требованиями выбранных методов. Проведение анализов. Интерпретация результатов получение выводов учетом ограничений И С возможностей методов.

Обогащение проб и выделение минеральных концентратов. Основные понятия и схемы подготовки проб.

Лабораторная работа №1

Обогащение пробы и выделение минеральных концентратов – 6 часа.

Раздел 2. Методы исследования структуры минералов.

Лекция. Физические основы рентгенографии минералов.

Получение и свойства рентгеновских лучей. Сплошной И характеристический спектры рентгеновского излучения, ИХ применение для структурного и фазового анализов. Поглощение и рассеяние рентгеновского излучения монокристаллом. Уравнения и Вульфа-Брэгга. Интерференция рентгеновских лучей поликристаллических веществах. Современные методы рентгенограмм. Метод Лауэ, Дебая-Шерера, дифрактометрический, вращающегося кристалла. Интерпретация информационное обеспечение метода. Идентификация минералов. Возможности и недостатки метода рентгеноструктурного анализа минералов.

Пекция. Электронография, нейтронография. Исследование тонкодисперсных минералов с помощью сканирующего электронного микроскопа. Изучение радиоактивных минералов методом радиографии.

Определение минералов методом инфракрасной спектроскопии. Особенности методики измерений характеристических спектров минералов. Современные инфракрасные спектрометры. Идентификация минералов в полиминеральной пробе.

Лабораторная работа № 2

Определение минералов методом инфракрасной спектроскопии (Shimadzu IRPrestige-21) – 4 часа.

Раздел 3. Современные методы определения вещественного состава минералов.

Лекция. Физические основы эмиссионного спектрального анализа минерального сырья. Особенности возбуждения эмиссионных спектров атомов химических элементов в минерале. Качественный и количественный спектральный анализ. Атомно-эмиссионный анализ, атомно-абсорбционный анализ, лазерный микрозонд. Современные приборы и техника спектрального эксперимента. Призменные и дифракционные спектрографы.

Возможности рентгенофлуоресцентной спектроскопии. Рентгеновский микроанализ. Вторичная электронная эмиссия и ее использование в электронных микроскопах.

Пекция. Стабильные изотопы в геологических исследованиях. Физические основы масс-спектрометрии. Разрешающая способность, чувствительность и конструкции масс-спектрометров. Анализ особо чистого минерального сырья. Методика определения изотопного состава. Вторично-ионная масс-спектрометрия (ВИМС). Особенности применения масс-спектрометрии для решения вопросов минералогии.

Ядерно-физические методы анализа элементного минералов. Виды ионизирующих излучений. Методы определения естественной радиоактивности. Источники и генераторы излучения (циклотроны, бетатроны, синхротроны, ядерные реакторы). Регистрация излучения. Нейтронно-активационный минерального сырья. Применение ионизирующего излучения для изучения физических СВОЙСТВ минералов (радиационная минералогия).

Физическая сущность эффекта Мессбауэра, Основные характеристики спектров резонансного поглощения. Аппаратура и возможности метода ЯМР (ядерного магнитного резонанса).

Классическая и квантовая теория электронно-парамагнитного резонанса (ЭПР). Тонкая и сверхтонкая структура. Методические особенности применения ЭПР в минералогии. Аппаратура ЭПР.

Лекция. Термический анализ. Методы экспресс-анализа минерального сырья.

Методы термобарометрии. Гомогенизация и декрепитация газово-жидких включений. Достоинства и недостатки вакуумного и термозвукового методов. Комплексный анализ методом синхронной регистрации радиочастотной электромагнитной и акустической эмиссии при нагревании минералов в вакууме.

Лабораторная работа №3

Определение содержания химических элементов в пробах методом рентгенофлуоресцентного анализа (Innov X-50) – 2 часа.

Лабораторная работа №4

Определение содержания химических элементов в минералах методом рентгенофлуоресцентного анализа (HORIBA XGT-7200) — 2 часа.

Лабораторная работа №5

Идентификация минералов методом рентгенофлуоресцентного анализа (HORIBA XGT-7200) – 4 часа.

Лабораторная работа №6

Изучение внутренней структуры минералов методом рентгенофлуоресцентного анализа (HORIBA XGT-7200) – 2 часа.

Лабораторная работа №7

Изучение структуры и фазового состава минералов с помощью электронного микроскопа (TESCAN VEGA 3 SBU с ЭДС OXFORD X-Max 50)— 2 часа.

Лабораторная работа №8

Изучение основных характеристик флюидных включений методом термобарогеохимии (Поляризационный микроскоп Axio Scope.A1 с термокамерой Lincam) – 2 часа.

Лабораторная работа №9

Определение элементного состава вещества атомноэмиссионным методом (DEMO PRODIGY DC) – 2 часа.

Раздел 4. **М**етоды исследования физических свойств минералов.

Пекция. Оптические свойства минералов и методы их изучения. Природа окраски минералов. Влияние внешних воздействий на оптические свойства минералов и кристаллов.

Определение твердости методом микровдавливания. Микротвердометры. Анизотропия твердости минералов. Основные принципы методики измерения твердости методом микровдавливания.

Колориметрический метод. Закон Бугера-Ламберта-Бера. Оптическая плотность, коэффициенты пропускания, спектры отражения. Фотоколориметрия. Регистрация спектров оптического поглощения минералов в видимой и ультрафиолетовой области.

Люминесцентные свойства минералов. Фотолюминесценция. Рентгенолюминесценция. Термолюминесценция. Спектры свечения. Методы и аппаратура для проведения люминесцентнобитуминологического анализа.

Современные приборы для анализа светопоглощения и светоиспускания. Фотоколориметры. Спектрофотометры. Монохроматоры. Фотоэлектронные умножители.

Электрофизические свойства минералов. Методы изучения электропроводности минералов.

Лабораторная работа №10

Определение твердости минералов на микротвердометре (ПМТ-3M) – 2 часа.

Лабораторная работа №11

Определение абсолютного значения показателя отражения рудных минералов при помощи спектрофотометра (МСФУ-К) — 2 часа.

Раздел 5. Прикладные вопросы минералогии.

Комплексирование физических методов для решения задач генетической минералогии. Синтез минералов. Радиационная минералогия. Геммология. Биоминералогия. Использование физических свойств минералов в технологическом картировании. Исследования в области применения новых физических методов изучения минералов и горных пород.

Определение контуров рудного тела люминесцентными эрозионного среза масштаба методами. Оценка И скрытого оруденения. Особенности выявления вертикальной и латеральной зональности ПО термолюминесценции минералов-индикаторов. Оценка зон окисления (восстановления) методом ЯМР. Геохимическая характеристика минералообразующей среды по данным электроннорезонанса. Рациональный парамагнитного комплекс физических методов исследования типоморфных свойств минералов в оценке рудоносности. Расчленение и корреляция карбонатных отложений радиационно-оптическими методами. Эколого-геохимическая оценка минерального сырья.

Лабораторная работа №12

Составление проекта комплексного изучения минерального вещества с применением физических методов — 4 часа.

4.2. Структура дисциплины по разделам, видам учебной деятельности и формам организации обучения

Таблица 3
Структура дисциплины по разделам, видам учебной деятельности и формам организации обучения

деятельности и формам организации обучения						
Nº	Название раздела	Аудиторная		CP	Контр.	Ито
	(темы)	работа (час)		С	работ	ГО
		Лекц Лабора		(час	а	
		ИИ	торные)		
			занятия			
1	Природа свойств минералов и	2		2		4
	методы их изучения					
2	Обогащение пробы и выделение		4	4		8
	минеральных концентратов		7	7		0
3	Методы исследования структуры	4		4		8
3	минералов	7		7		0
4	Определение минералов методом		4	2		6
_	инфракрасной спектроскопии		7			O
5	Современные методы определения	6		6		12
<u> </u>	вещественного состава минералов	U		U		12
	Определение содержания химических					
6	элементов в пробах методом		2	1		3
0	рентгенофлуоресцентного анализа			ı		3
	(Innov X-50)					
	Определение содержания химических					
7	элементов в минералах методом		2	3		5
'	рентгенофлуоресцентного анализа		2	3		5
	(HORIBA XGT-7200)					
	Идентификация минералов методом					
8	рентгенофлуоресцентного анализа	4		4		8
	(HORIBA XGT-7200)					
	Изучение внутренней структуры					
9	минералов методом		2	1		3
	рентгенофлуоресцентного анализа					
	Изучение структуры и фазового					
10	состава минералов с помощью		2	5		7
	электронного микроскопа					
	Изучение основных характеристик					
11	флюидных включений методом		2	4		6
	термобарогеохимии					
	Определение элементного состава					
12	вещества атомно-эмиссионным		2	4		6
	методом					
10	Методы исследования физических	2		2		4
13	свойств минералов	2		2		4
4.4	Определение твердости минералов		2	2		А
14	на микротвердометре		2	2		4
	Определение абсолютного значения					
15	показателя отражения рудных		2	3		5
	минералов при помощи					
	1		ı			

	спектрофотометра					
16	Прикладные вопросы минералогии	2		5		7
17	Составление проекта комплексного изучения минерального вещества с применением физических методов		4	8	идз	12
	Итого	16	32	60		108

5. Образовательные технологии

При освоении дисциплины «Физические методы исследования минералов» используются следующие сочетания видов учебной работы с методами и формами активизации познавательной деятельности студентов для достижения запланированных результатов обучения и формирования компетенций.

Специфика сочетания методов и форм организации обучения отражается в матрице (см. табл. 4).

Таблица 4. Методы и формы организации обучения

Ф00	Лекц.	Лаб.	Пр.	Tn *	CPC
	лекц.		•	Tp. ,	CFC
Методы		раб.	зан./сем.	Mκ˜	
IT-методы		+			+
Работа в команде	+	+			+
Игра	+	+			
Методы проблемного	+	+			+
обучения					
Обучение на основе опыта	+	+			
Опережающая самост. работа		+			+
Проектный метод		+			+
Поисковый метод		+			
Исследовательский метод		+			+

⁻ Тренинг, ^{**} - мастер-класс.

Для достижения поставленных целей преподавания дисциплины реализуются следующие средства, способы и организационные мероприятия:

- изучение теоретического материала дисциплины на лекциях с использованием компьютерных технологий;
- самостоятельное изучение теоретического материала дисциплины с использованием *Internet*-ресурсов, информационных баз, методических разработок, специальной учебной и научной литературы;
- закрепление теоретического материала при проведении практических занятий с использованием поисковых, творческих заданий.

6. Организация и учебно-методическое обеспечение самостоятельной работы студентов

Самостоятельная работа является наиболее продуктивной формой образовательной и познавательной деятельности студента в период обучения. Для реализации творческих способностей и более глубокого освоения дисциплины предусмотрены такие виды самостоятельной работы, как текущая и творческая проблемноориентированная.

6.1. Виды и формы самостоятельной работы

Самостоятельная работа студентов включает текущую и творческую проблемно-ориентированную самостоятельную работу (TCP).

Текущая СРС направлена на углубление и закрепление знаний студента, развитие практических умений и включает:

- опережающая самостоятельная работа по темам лабораторных занятий;
- оформлению отчётов по лабораторным работам;
- работа с информационными ресурсами Интернета;
- подготовка к контрольной работе, к зачету.

Творческая самостоятельная работа включает:

- поиске, анализе, структурировании и презентации информации;
- выполнении индивидуальных заданий;
- углубленное исследование вопросов по тематике лабораторных занятий;
- исследовательской работе и участии в научных студенческих конференциях, семинарах и олимпиадах.

6.2. Контроль самостоятельной работы

Оценка результатов самостоятельной работы осуществляется как единство двух форм: самоконтроль и контроль со стороны преподавателей.

При защите отчетов по лабораторным работам и индивидуальном домашнем задании проводится устное собеседование.

При выполнении самостоятельной работы рекомендуется использовать:

- комплект учебно-методической документации по дисциплине, основную и дополнительную литературу,
 - интернет-ресурсы,
 - программное обеспечение компьютерного класса.

7. Средства текущей и промежуточной оценки качества освоения дисциплины

Оценка качества освоения дисциплины производится по результатам следующих контролирующих мероприятий (см. табл. 5).

Таблица 5 Контролирующие мероприятия дисциплины

Контролирующие мероприятия

Результаты обучения по дисциплине

Индивидуальные задания

Презентации по тематике исследований

Защита и научная дискуссия

Тестирование по пройденным темам

Рефераты по теме самостоятельного изучения

Сдача экзамена, зачета и курсового

Текущий контроль результатов изучения дисциплины осуществляется в течение каждого месяца путем оценки самоподготовки к занятиям, выполнения лабораторных работ и контрольных работ по пройденному материалу. В конце каждого месяца определяется итоговая рейтинговая оценка в баллах.

Итоговый контроль предусмотрен в форме экзамена, предполагает оценку теоретических знаний студентов по каждому разделу данной дисциплины и способности студентов применять эти знания и приобретенные практические навыки к выбору физических методов исследования минералов для решения минералогических задач.

8. Рейтинг качества освоения дисциплины (модуля)

Оценка качества освоения дисциплины в ходе текущей и промежуточной аттестации обучающихся осуществляется в соответствии с «Руководящими материалами по текущему контролю успеваемости, промежуточной и итоговой аттестации студентов Томского политехнического университета», утвержденными приказом ректора № 77/од от 29.11.2011 г.

В соответствии с «Календарным планом изучения дисциплины»:

- текущая аттестация (оценка качества усвоения теоретического материала (ответы на вопросы и др.) и результаты практической деятельности (решение задач, выполнение заданий, решение проблем и др.) производится в течение семестра (оценивается в баллах (максимально 60 баллов), к моменту завершения семестра студент должен набрать не менее 33 баллов);

- промежуточная аттестация (экзамен, зачет) производится в конце семестра (оценивается в баллах (максимально 40 баллов), на экзамене (зачете) студент должен набрать не менее 22 баллов).

Итоговый рейтинг по дисциплине определяется суммированием баллов, полученных в ходе текущей и промежуточной аттестаций. Максимальный итоговый рейтинг соответствует 100 баллам.

9. Учебно-методическое и информационное обеспечение дисциплины

9.1. Основная литература

- 1. Гинзбург А.И., Кузьмин В.И., Сидоренко Г.А. Минералогические исследования в практике геологоразведочных работ. М.:Недра,1981.- 237 с.
- 2. Марфунин А.С. Спектроскопия, люминесценция и радиационные центры в минералах. М.: Недра, 1975. 327 с.
- 3. Таращан А.Н. Люминесценция минералов. Киев:Наукова думка,1978. 296 с.
- 4. Плюсина И.И. Инфракрасные спектры минералов.- М.: Изд-во МГУ, 1977.- 32 с.
- 5. Джонс М.П. Прикладная минералогия. -М.: Недра, 1991. 391 с.
- 6. Матросов И.И., Чистяков В.К., Погорелов Ю.Л. Исследование термолюминесценции геологических материалов.-Томск: Изд-во Томского ун-та, 1979. 114 с.
- 7. Афонин В.П., Гуничева Т.Н., Пискунов Л.Ф. Рентгенофлуоресцентный силикатный анализ. Новосибирск: Наука, 1984. 226 с.
- 8. Гурвич М.Ю. Современные методы исследования минералов, горных пород и руд (учебное пособие). М.: РГГРУ. 2009. 143 с.
- 9. Красильщикова О.А., Таращан А.Н., Платонов А.И. Окраска и люминесценция природного флюорита. Киев:Наукова думка, 1986. 224 с.
- 10. Эшкин В.Ю., Сальдау Э.П., Абакумова Н.Б. и др. Лабораторные методы исследования минералов - Л.: Ленинградский горный институт, 1988.- 111 с.
- 11. Методы изучения и оценки месторождений кварцевого сырья./ Сост.: Е.П.Мельников, С.В.Колодиева, М.Ф.Ярмак и др. М.:Недра, 1990. 168 с.

9.2. Дополнительная литература

- 1. Марфунин А.С. Введение в физику минералов. М.:Недра, 1974. 324 с.
- 2. Буланов В.А., Сизых А.И. Кристаллохимизм породообразующих минералов: учебное пособие. Иркутск: Иркут. Унт. 2005. 220 с.
- 3. Ракчеев А.Д. Термолюминесценция минералов и горных пород и ее значение для геологии // Изв.ВУЗов. Геология рудных месторождений. 1962. № 5. С.11-22.
- 4. Минералогия и кристаллофизика ювелирных разновидностей кремнезема / В. Г. Балакирев, Е. Я. Киевленко, Л. В. Никольская, М.И. Самойлович, В. Е. Хаджи, Л. И. Цинобер. М. : Недра, 1979. 149 с.
 - 5. Физические исследования кварца. М.: Недра, 1975. 65 с.
- 6. Морозова Н.К. Конспект лекций по курсу «Кристаллография и методы исследования структур». М.:МГУ, 1973.
- 7. Патнис А., Мак-Коннэл Дж. Основные черты поведения минералов. М.: Мир, 1983. 304 с.
- 8. Вотяков С.Л., Краснобаев А.А., Крохалев В.Я. Проблемы прикладной спектроскопии минералов. Екатеринбург.: УИФ"Наука", 1993. 236 с.
- 9. Кузнецов Г.В., Таращан А.Н. Люминесценция минералов гранитных пегматитов. Киев:Наукова думка, 1988. 180 с.
- 10. Бокий Г.Б., Порай-Кошиц М.А. Рентгеноструктурный анализ. –М.: МГУ, 1964.
- 11. Гаранин В.К., Кудрявцева Г.П. Применение электроннозондовых приборов для исследования минерального вещества. –М.: Недра, 1984.
- 12. Горобец Б.С., Гафт М.Л., Подольский А.М. Люминесценция минералов и руд. –М.: ИПК Мингео СССР, 1989.
- 13. Ермолаев В.А., Похолков Ю.П. и др. Радиография и радиографические ячейки. Томск, 1997. 224 с.
- 14. Иванова В.П. и др. Термический анализ минералов в горных породах. –Л.: Недра, 1974.
- 15. Ишков Ю.М., Рейф Ф.Г. Лазерно-спектральный анализ включений рудоносных флюидов в минералах. Новосибирск: Наука, 1990.
 - 16. Электронно-зондовый микроанализ. –М.: Мир, 1974.
- 17. Эмиссионно-спектральный анализ в геохимии. Новосибирск: Наука, 1976.
- 18. Ядерно-геохимические методы анализа вещества. Новосибирск, 1976.
- 19. Конеев Р. И., Кушмурадов О. К., Туресебеков А. Х. Микроминералогия предмет, методы, применение. Ташкент : Изд-во Университет, 1994. 89 с.

- 20. Рамдор П. Рудные минералы и их срастания. М.: Изд-во иностранной литературы, 1962. 1142 с.
- 21. Изоитко В.М. Технологическая минералогия и оценка руд. СПб.: Наука, 1997. 577 с.

9.3. Интернет-ресурсы

www.mindat.org
www.elibrary.ru
http://www.sciencedirect.com

9.4. Периодические издания

Геология и геофизика. Геология рудных месторождений. Доклады академии наук. Minerals Engineering. Physics and Chemistry of Minerals.

10. Материально-техническое обеспечение модуля (дисциплины)

Лекции по дисциплине читаются в аудитории, оборудованной мультимедийной техникой. Лабораторные работы выполняются в лабораториях кафедры, оснащенных современным оборудованием, компьютерами и необходимым программным обеспечением. Все компьютеры имеют выход в *Internet*:

№ п/п	Наименование (компьютерные классы, учебные лаборатории, оборудование)	Корпус, ауд., количество установок
1	Лаборатория исследования физических свойств пород и руд	1, 112
2	Лаборатория исследований горных пород и руд	1, 215
3	Лаборатория	1, 023
4	Лаборатория геологии золота	1, 003
5	Лекционная аудитория	1, 111

При изучении основных разделов дисциплины используются учебная и учебно-методическая литература, имеющаяся в библиотеке и разработанная на кафедре ГРПИ ИПР ТПУ.

Для проведения лабораторных и лекционных занятий по курсу «Физические методы исследования минералов» на кафедре ГРПИ имеется оборудование:

- Модуль:щековая дробилка Бойд/делитель (фирма Роклабс);
 - Спектрофотометр ИК-Фурье IR Prestige-21;

- Рентгено-флуоресцентный анализатор Innov X50;
- Рентгено-флуоресцентный микроанализатор HORIBA XGT-7200;
- Поляризационный микроскоп Axio Scope.A1 с термокамерой Lincam для изучения флюидных включений;
- Сканирующий электронный микроскоп TESCAN VEGA 3 SBU с ЭДС OXFORD X-Max 50;
- Исследовательский микроскоп для изучения минералов Axio Imager.A2m;
 - Микроспектрофотометр МСФУ-К;
 - Микротвердомер ПМТ-3М;
- Спектрометр дуговой атомно-эмиссионный DEMO PRODIGY DC;
- Комплекс атомно-абсорбционных спектрометров фирмы Varian.

Программа составлена на основе Стандарта ООП ТПУ в соответствии с требованиями ФГОС по специальности **21.05.02** «Прикладная геология».

Программа одобрена на заседании кафедры ГРПИ ИПР ТПУ

(протокол № 26 от «18» ___05._<u>2016_</u> г.).

Авторы Рудмин М.А., ассистент каф. ГРПИ ТПУ

Рецензент Ворошилов В.Г., профессор каф. ГРПИ ТПУ