Математический анализ

Раздел: Теория функций комплексного переменного

Тема: Функции комплексного переменного. Предел и непрерывность фкп

Лектор Рожкова С.В.

§3. Функция комплексного переменного

1. Основные определения

Пусть D,E — множества комплексных чисел.

ОПРЕДЕЛЕНИЕ. $Ecnu \ \forall z \in D$ поставлен в соответствие элемент $w \in E$ (один или несколько), то говорят, что на множестве D задана функция (отображение) c множеством значений E.

Записывают: $f: D \to E$, w = f(z) (где f – закон, осуществляющий соответствие)

Называют: D — множество определения функции z ($z \in D$) — аргумент (независимая переменная) E — множество значений w ($w \in E$) — зависимая переменная (функция)

Если $z \to w$, то функцию называют *однозначной*. Если $z \to w_1, w_2, \dots w_n, \dots$, то функцию называют *многозначной*. Пусть задана функция w = f(z).

Если
$$z = x + iy$$
, $w = u + iv$, то $u = u(x,y)$, $v = v(x,y)$.

Таким образом, $f(z) \leftrightarrow u(x,y)$, v(x,y).

Функции u(x,y) и v(x,y) называются соответственно **действи**-**тельной** и **мнимой частью функции** f(z)

Обозначают: Ref(z) и Imf(z).

Т.к. f(z) характеризуют 4 переменные (x, y, u, v), то геометрическая интерпретация f(z) невозможна.

Для геометрической иллюстрации f(z) используют 2 экземпляра комплексных плоскостей: O_1xy и O_2uv ($D \subset O_1xy$, $E \subset O_2uv$).

Задание функции f(z) устанавливает соответствие между двумя множествами D и E:

$$z \to w$$
, где $z \in D$, $w \in E$.

При этом устанавливается и обратное соответствие: $w \to z$.

Функция $z = \varphi(w)$ называется обратной к f(z).

Если f(z) и ее обратная $\phi(w)$ – обе однозначны, то функция f(z) называется **однолистной**.

2. Элементарные функции комплексного переменного

ОПРЕДЕЛЕНИЕ. Элементарной функцией называется функция, которая может быть задана одной формулой w = f(z), где f(z) — выражение, составленное из основных элементарных функций и комплексных чисел с помощью конечного числа операций сложения, вычитания, умножения, деления и взятия функции от функции.

ОСНОВНИЕ ЭЛЕМЕНТАРНЫЕ Ф.К.П.

1) Степенная: $w = z^n \ (n \in \mathbb{N})$.

Свойства функции

- a) $D = \overline{\mathbb{C}}$, $E = \overline{\mathbb{C}}$ $(\infty^n = \infty)$;
- б) однозначная, неоднолистная.
- **2) Корень** *n***-степени** $(n \in \mathbb{N})$: $w = \sqrt[n]{z}$ Свойства функции
 - a) $D = \mathbb{C}$, $E = \mathbb{C}$
 - б) многозначна $\forall z \in \mathbb{C} \setminus \{0; \infty\}$.

3) Показательная функция: $w = e^{z} \stackrel{\text{def}}{=} e^{x} \cdot (\cos y + i \sin y)$. Свойства функции

a)
$$D = \mathbb{C}$$
, $E = \mathbb{C} \setminus \{0\}$;

6)
$$e^{z}|_{z=x} = e^{x}$$
;

в) e^z – периодическая, $T = 2\pi i$.

4) Тригонометрические функции:

$$w = \cos z$$
, $w = \sin z$, $w = \operatorname{tg} z$, $w = \operatorname{ctg} z$.
Свойства $w = \cos z$, $w = \sin z$

- a) $D = \mathbb{C}$, $E = \mathbb{C}$;
- 6) $\cos z \Big|_{z=x} = \cos x$, $\sin z \Big|_{z=x} = \sin x$;
- в) периодические, $T = 2\pi$;
- г) неограниченные;
- д) $\cos z$ четная, $\sin z$ нечетная;
- е) имеют только действительные нули

$$\cos z = 0$$
 при $z = \pi/2 + \pi k$, $\sin z = 0$ при $z = \pi k$.

Свойства
$$w = tgz$$
, $w = ctgz$

- a) $D(\operatorname{tg} z) = \mathbb{C} \setminus \{\pi/2 + \pi k\}$, $E(\operatorname{tg} z) = \mathbb{C}$, $D(\operatorname{ctg} z) = \mathbb{C} \setminus \{\pi k\}$, $E(\operatorname{ctg} z) = \mathbb{C}$;
- 6) $\operatorname{tg} z \big|_{z=x} = \operatorname{tg} x$, $\operatorname{ctg} z \big|_{z=x} = \operatorname{ctg} x$;
- в) периодические, $T = \pi$;
- г) нечетные;
- д) имеют только действительные нули ${\rm ctg}z = 0 \ \ {\rm npu} \ \ z = \pi/2 + \pi {\rm k} \ ,$

$$\mathsf{tg}z = 0$$
 при $z = \pi \mathsf{k}$.

6) Гиперболические функции: chz, shz, thz, cthz.

Свойства w = chz, w = shz

- a) $D = \mathbb{C}$, $E = \mathbb{C}$;
- 6) $chz|_{z=x} = chx$, $shz|_{z=x} = shx$;
- в) периодические, $T = 2\pi i$;
- Γ) chz четная, shz нечетная;
- д) справедливы равенства (доказать самостоятельно):

$$ch^{2}z - sh^{2}z = 1$$

$$ch(z_{1} + z_{2}) = chz_{1} \cdot chz_{2} + shz_{1} \cdot shz_{2}$$

$$\Rightarrow ch2z = ch^{2}z + sh^{2}z;$$

$$sh(z_{1} + z_{2}) = shz_{1} \cdot chz_{2} + chz_{1} \cdot shz_{2}$$

$$\Rightarrow sh2z = 2shz \cdot chz;$$

$$ch(x + iy) = chx \cdot cosy + i \cdot shx \cdot siny;$$

$$sh(x + iy) = shx \cdot cosy + i \cdot chx \cdot siny.$$

Свойства w = thz, w = cthz

- a) $D(\text{th}z) = \mathbb{C} \setminus \{(\pi/2 + \pi k)i\}$, $E(\text{th}z) = \mathbb{C}$, $D(\text{cth}z) = \mathbb{C} \setminus \{\pi ki\}$, $E(\text{cth}z) = \mathbb{C}$;
- 6) $thz|_{z=x} = thx$, $cthz|_{z=x} = cthx$;
- в) периодические, $T = \pi i$;
- г) нечетные.

7) Натуральный логарифм: w = Lnz:

 $Lnz = ln|z| + i \cdot Argz = ln|z| + i \cdot argz + i \cdot 2\pi k.$

Многозначная функция, определенная на $\mathbb{C}\setminus\{0\}$.

Функция $\ln z = \ln |z| + i \cdot \arg z$ называется главным значением логарифма.

8) Обратные тригонометрические:

Arcsinz, Arccosz, Arctgz, Arcctgz.

Arcsin
$$z = -i \operatorname{Ln}(iz + \sqrt{1-z^2})$$
, Arccos $z = -i \operatorname{Ln}(z + \sqrt{z^2 - 1})$,

Arctg
$$z = -\frac{i}{2} \operatorname{Ln} \left(\frac{1+iz}{1-iz} \right)$$
, Arcctg $z = -\frac{i}{2} \operatorname{Ln} \left(\frac{iz-1}{iz+1} \right)$. $(z \neq \pm i)$

9) Общая степенная: $w = z^{\mu}$, где $\mu \in \mathbb{C}$.

Многозначная функция, определенная на $\mathbb{C}\setminus\{0\}$ формулой $w=z^{\mu}\triangleq \mathrm{e}^{\mu\cdot\mathrm{Ln}z}$.

Функция $w = e^{\mu \cdot \ln z}$ называется главным значением общей степенной функции.

10) Общая показательная: $w = a^z$, где $a \in \mathbb{C} \setminus \{0\}$.

Многозначная функция, определенная на \mathbb{C} формулой $w = a^z \stackrel{\text{def}}{=} e^{z \cdot \operatorname{Ln} a}$.

Функция $w = e^{z \cdot \ln a}$ называется главным значением общей показательной функции.

§4. Предел и непрерывность функции комплексного переменного

1. Предел функции комплексного переменного

Пусть f(z) определена в некоторой окрестности точки $z_0 \in \mathbb{C}$, кроме, может быть, самой точки z_0 .

 $\mathbf{U}^*(z_0,\delta) = \mathbf{U}(z_0,\delta) \setminus \{z_0\} -$ проколотая окрестность точки z_0 .

ОПРЕДЕЛЕНИЕ 1 (по Коши, на языке ε - δ).

Число $w_0 \in \mathbb{C}$ называется **пределом функции** f(z) **при** z **стремящемся** κ z_0 (пределом функции f(z) в точке z_0), если $\forall \varepsilon > 0 \; \exists \delta > 0 \; makoe$, что

если $z \in U^*(z_0, \delta)$, то $f(z) \in U(w_0, \varepsilon)$.

ОПРЕДЕЛЕНИЕ 2 (по Гейне, на языке последовательностей).

Число $w_0 \in \mathbb{C}$ называется пределом функции f(z) при z стремящемся κz_0 , если для любой последовательности $\{z_n\}$ значений аргумента, стремящейся κz_0 , соответствующая последовательность значений функции $\{f(z_n)\}$ сходится κw_0 .

ТЕОРЕМА 1. Определение предела функции по Гейне и по Коши эквивалентны.

Обозначают:
$$\lim_{z\to z_0} f(z) = w_0$$
, $f(z) \to w_0$, їðè $z \to z_0$

Пусть
$$f(z) = u(x,y) + iv(x,y)$$
, $z_0 = x_0 + iy_0$.

Из определения 2 и теоремы 1 §2 получаем, что справедлива следующая теорема

ТЕОРЕМА 2. Число
$$w_0 = u_0 + iv_0$$
 является пределом функции $f(z) = u(x,y) + iv(x,y)$ при $z \to z_0 \Leftrightarrow$

$$\lim_{\substack{x \to x_0 \\ y \to y_0}} u(x,y) = u_0 \quad \grave{e} \quad \lim_{\substack{x \to x_0 \\ y \to y_0}} v(x,y) = v_0$$

Из теоремы 2 следует, что на пределы ф.к.п. переносятся все свойства пределов функций нескольких переменных.

2. Непрерывность функции комплексного переменного

Пусть f(z) определена в некоторой окрестности точки $z_0 \in \mathbb{C}$. ОПРЕДЕЛЕНИЕ 1. Функция f(z) называется непрерывной в точке z_0 если справедливо равенство

$$\lim_{z \to z_0} f(z) = f(z_0). \tag{1}$$

ОПРЕДЕЛЕНИЕ 2 (на языке ε - δ).

Функция f(z) называется **непрерывной в точке** z_0 если $\forall \varepsilon > 0 \; \exists \delta > 0 \; makoe, что$

если
$$z \in U(z_0, \delta)$$
 (т.е. $|z - z_0| < \delta$),
mo $f(z) \in U(f(z_0), \epsilon)$ (т.е. $|f(z) - f(z_0)| < \epsilon$).

Функция, непрерывная в каждой точке множества $G \subseteq \mathbb{C}$, называется *непрерывной на множестве* G.

Пусть f(z) = u(x,y) + iv(x,y), $z_0 = x_0 + iy_0$.

Из теоремы 2 получаем, что справедлива следующая теорема

ТЕОРЕМА 3. Функция f(z) непрерывна в точке $z_0 \Leftrightarrow \phi$ ункции u(x,y) и v(x,y) непрерывны в точке $M_0(x_0,y_0)$.

Из теоремы 3 следует, что на непрерывные ф.к.п. переносятся все свойства непрерывных функций нескольких переменных.

В частности, для ф.к.п. будет справедлива следующая теорема.

ТЕОРЕМА 4 (аналог теоремы Вейерштрасса для ф.к.п.)

Пусть $D \subset \mathbb{C}$, D — замкнутое и ограниченное, f(z) — непрерывна на D.

Тогда 1) f(z) ограничена на D, т.е. $\exists M > 0$ такое, что |f(z)| < M, $\forall z \in D$;

2)модуль функции f(z) достигает в D наибольшего и наименьшего значения