Математический анализ Раздел: Функция нескольких переменных

Тема: Экстремум ФНП. Скалярное поле и его характеристики

Лектор Рожкова С.В.

§17. Экстремумы ФНП

Пусть z = f(x,y) определена в некоторой области $D \subseteq xOy$, $M_0(x_0,y_0) \in D$.

ОПРЕДЕЛЕНИЕ 1.

Точка $M_0(x_0,y_0)$ называется **точкой максимума** функции f(x,y), если $\forall M(x,y) \in U(M_0,\delta)$ выполняется неравенство $f(x,y) \leq f(x_0,y_0)$.

Точка $M_0(x_0,y_0)$ называется **точкой минимума** функции f(x,y), если $\forall M(x,y) \in U(M_0,\delta)$ выполняется неравенство $f(x,y) \geq f(x_0,y_0)$.

Точки максимума и минимума функции называются ее *точками экстремума*.

Значения функции в точках максимума и минимума называются соответственно *максимумами* и *минимумами* (экстремумами) этой функции.

Замечания.

- 1) По смыслу точкой максимума (минимума) функции f(x,y) могут быть только внутренние точки области D.
- 2) Если $\forall M(x,y)$ ∈ U*(M_0 , δ) выполняется неравенство

$$f(x,y) < f(x_0,y_0) \quad [f(x,y) > f(x_0,y_0)],$$

то точку M_0 называют **точкой строгого максимума** (соответственно **точкой строгого минимума**) функции f(x,y).

Определенные в 1 точки максимума и минимума называют иногда точками *нестрогого максимума* и *минимума*.

3) Понятия экстремумов носят локальный характер. В рассматриваемой области функция может совсем не иметь экстремумов, может иметь несколько (в том числе бесчисленно много) минимумов и максимумов. При этом некоторые минимумы могут оказаться больше некоторых ее максимумов.

ТЕОРЕМА 2 (необходимые условия экстремума).

Если функция z = f(x,y) в точке $M_0(x_0,y_0)$ имеет экстремум, то в этой точке либо обе ее частные производные первого порядка равны нулю, либо хотя бы одна из них не существует.

ГЕОМЕТРИЧЕСКИЙ СМЫСЛ теоремы 2.

Если $M_0(x_0,y_0)$ — точка экстремума функции z=f(x,y), то касательная плоскость к графику этой функции в точке $P_0(x_0,y_0,f(x_0,y_0))$ либо параллельна плоскости xOy, либо вообще не существует.

ДОКАЗАТЕЛЬСТВО

Точки, удовлетворяющие условиям теоремы 2, называются критическими точками функции z = f(x,y). TEOPEMA 3 (достаточные условия экстремума функции ДВУХ переменных).

Пусть $M_0(x_0,y_0)$ – критическая точка функции z=f(x,y) и в некоторой окрестности точки M_0 функция имеет непрерывные частные производные до 2-го порядка включительно.

Обозначим

$$A = f_{xx}^{"}(x_0, y_0), \quad B = f_{xy}^{"}(x_0, y_0), \quad C = f_{yy}^{"}(x_0, y_0).$$
 Тогда

- 1) если $A \cdot C B^2 < 0$, то точка $M_0(x_0, y_0)$ не является точкой экстремума;
- 2) если $A \cdot C B^2 > 0$ и A > 0, то в точке $M_0(x_0, y_0)$ функция имеет минимум;
- 3) если $A \cdot C B^2 > 0$ и A < 0, то в точке $M_0(x_0, y_0)$ функция имеет максимум;
- 4) если $A \cdot C B^2 = 0$, то никакого заключения о критической точке $M_0(x_0,y_0)$ сделать нельзя и требуются дополнительные исследования.

Замечание.

- 1) Если с помощью теоремы 3 исследовать критическую точку $M_0(x_0,y_0)$ не удалось, то ответ на вопрос о наличии в M_0 экстремума даст знак $\Delta f(x_0,y_0)$:
 - а) если при всех достаточно малых Δx и Δy имеем $\Delta f(x_0,y_0)<0,$ то $M_0(x_0,y_0)$ точка строгого максимума;
 - б) если при всех достаточно малых Δx и Δy имеем $\Delta f(x_0,y_0) > 0$, то $M_0(x_0,y_0)$ точка строгого минимума.

В случае нестрогих экстремумов при <u>некоторых</u> значениях Δx и Δy приращение функции будет нулевым

2) Определения максимума и минимума и необходимые условия экстремума легко переносятся на функции трех и более числа переменных.

Достаточные условия экстремума для функции n (n > 2) переменных ввиду их сложности в данном курсе не рассматриваются. Определять характер критических точек для них мы будем по знаку приращения функции.

§19. Скалярное поле

ОПРЕДЕЛЕНИЕ. Пусть G — некоторая область в пространстве Охуг [на плоскости xOy]. Говорят, что на G задано **скалярное поле**, если в каждой точке $M \in G$ определена функция 3-x переменных u = f(M) [функция 2-x переменных z = f(M)].

Поведение скалярного поля характеризуют

- 1) производная по направлению;
- 2) градиент.

1. Производная по направлению

Пусть z = f(x,y) определена в области $D \subseteq xOy$, $M_0(x_0,y_0) \in D$, $\overline{\mathbf{s}}$ – некоторый вектор.

Пусть $M(x_0 + \Delta x, y_0 + \Delta y) \in D$, такая, что $\mathbf{M}_0 \mathbf{M} \uparrow \uparrow \mathbf{\bar{s}}$.

ОПРЕДЕЛЕНИЕ. Если существует и конечен

$$\lim_{|M_0 M| \to 0} \frac{\Delta z(M_0)}{|M_0 M|} = \lim_{|M_0 M| \to 0} \frac{z(M) - z(M_0)}{|M_0 M|}$$

то его называют производной функции z = f(x,y) в точке $M_0(x_0,y_0)$ по направлению вектора $\overline{\bf s}$.

Обозначают:

$$\frac{\partial f(x_0, y_0)}{\partial s}, \quad \frac{\partial z(M_0)}{\partial s} \\
\frac{\partial f(x_0, y_0)}{\partial \ell}, \quad \frac{\partial z(M_0)}{\partial \ell}$$

ФИЗИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ ПО НАПРАВЛЕНИЮ

$$\frac{\Delta z(M_0)}{|M_0M|}$$
 — средняя скорость изменения функции $z=f(x,y)$ на отрезке M_0M .

$$\Rightarrow \lim_{|M_0M| \to 0} \frac{\Delta z(M_0)}{|M_0M|}$$
 — скорость изменения функции $z = f(x,y)$ в точке $M_0(x_0,y_0)$ в направлении вектора $\bar{\bf s}$.

Так же как и для функции одной переменной доказывается, что

- 1) если $\frac{\partial z(M_0)}{\partial s} > 0$, то функция в точке $M_0(x_0,y_0)$ в направлении вектора \bar{s} возрастает;
 2) если $\frac{\partial z(M_0)}{\partial s} < 0$, то функция в точке $M_0(x_0,y_0)$ в направлении вектора \bar{s} убывает;
 3) если $\frac{\partial z(M_0)}{\partial s} = 0$, то в направлении вектора \bar{s} функция не изменяется.

 - изменяется.
- \Rightarrow направление вектора \bar{s} направление линии уровня функции, проходящей через точку M_0 (вектор \bar{s} является касательным к линии уровня в точке M_0).

Замечание.

Частные производные функции являются частным случаем производной по направлению. А именно:

- 1) $f'_x(M_0)$ производная функции по направлению вектора **i** (направлению оси Ox);
- 2) $f_y'(M_0)$ производная функции по направлению вектора **j** (направлению оси Oy).

Пусть z = f(x,y) дифференцируема в точке $M_0(x_0,y_0)$. Тогда

$$\Delta z(M_0) = f'_x(x_0, y_0) \Delta x + f'_y(x_0, y_0) \Delta y + \mu \cdot \sqrt{(\Delta x)^2 + (\Delta y)^2},$$

где μ – бесконечно малая при $\sqrt{(\Delta x)^2 + (\Delta y)^2} \to 0$

Обозначим $\mid M_0 M \mid = \rho$. Тогда

$$\Delta x = \rho \cdot \cos \alpha$$
, $\Delta y = \rho \cdot \cos \beta$
$$\sqrt{(\Delta x)^2 + (\Delta y)^2} = \rho$$
,

где $\cos\alpha$, $\cos\beta$ — направляющие ко синусы вектора \bar{s} .

$$\Delta z(M_0) = f'_x(x_0, y_0) \rho \cos \alpha + f'_y(x_0, y_0) \rho \cos \beta + \mu \cdot \rho$$

Разделив на $|M_0M| = \rho$ и перейдя к пределу при $\rho \to 0$, получим

$$\lim_{|M_0 M| \to 0} \frac{\Delta z(M_0)}{|M_0 M|} = \lim_{\rho \to 0} \left(f_x'(x_0, y_0) \cos \alpha + f_y'(x_0, y_0) \cos \beta + \mu \right)$$

$$\Rightarrow \frac{\partial z(M_0)}{\partial s} = f'_x(x_0, y_0) \cos \alpha + f'_y(x_0, y_0) \cos \beta,$$

где $\cos\alpha$, $\cos\beta$ – направляющие косинусы вектора \bar{s} .

Замечание. Аналогично определяется и обозначается производная по направлению для функции 3-х переменных u = f(x,y,z). Для нее получим

$$\frac{\partial u(M_0)}{\partial s} = f'_x(M_0)\cos\alpha + f'_y(M_0)\cos\beta + f'_z(M_0)\cos\gamma,$$

где $\cos\alpha$, $\cos\beta$, $\cos\gamma$ – направляющие косинусы вектора \bar{s} .

2. Градиент

ОПРЕДЕЛЕНИЕ. Градиентом функции z = f(x,y) в точке $M_0(x_0,y_0)$ называется вектор с координатами $f'_x(x_0,y_0), f'_y(x_0,y_0).$

Обозначают: $\mathbf{grad}z(M_0)$.

СВОЙСТВА ГРАДИЕНТА

- 1) $\mathbf{grad}z(M_0)$ определяет направление, в котором функция в точке M_0 возрастает с наибольшей скоростью.
 - При этом | $\mathbf{grad}_{Z}(M_{0})$ | равен наибольшей скорости изменения функции в точке M_{0} .
- 2) **grad** $z(M_0)$ перпендикулярен к линии уровня функции z = f(x,y), проходящей через точку M_0 .
- Замечание. Для функции 3-х переменных градиент определяется и обозначается аналогичным образом, и сохраняет все свои свойства.