Линейная алгебра и аналитическая геометрия

Тема: Векторы. Линейные операции на множестве векторов Понятие линейного пространства

Лектор Рожкова С.В.

Глава II. Векторная алгебра. Элементы теории линейных пространств и линейных операторов

- Раздел математики, в котором изучаются свойства операций над векторами, называется *векторным исчислением*.
- Векторное исчисление подразделяют на векторную алгебру и векторный анализ.
- В векторной алгебре изучаются линейные операции над свободными векторами (сложение векторов и умножение вектора на число) и различные произведения векторов (скалярное, псевдоскалярное, векторное, смешанное и двойное векторное).
- В векторном анализе изучают векторы, являющиеся функциями одного или нескольких скалярных аргументов.

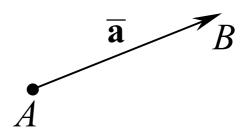
§ 6. Векторы. Линейные операции на множестве векторов

1. Определение вектора. Основные отношения на множестве векторов

ОПРЕДЕЛЕНИЕ. **Вектором** называется направленный отрезок (т.е. отрезок, у которого одна из ограничивающих его точек принимается за начало, а вторая — за конец).

Обозначают: $\overline{\mathbf{AB}}$ (где A- начало вектора, а B- его конец), $\overline{\mathbf{a}}$, $\overline{\mathbf{b}}$ и т. д.

Изображают:



Расстояние от начала вектора до его конца называется *длиной* (или *модулем*) вектора. Обозначают: $|\overline{\bf AB}|$ или $|\overline{\bf a}|$.

Вектор, длина которого равна единице, называется единичным.

Вектор, начало и конец которого совпадают, называется **нулевым**. Обозначают: $\overline{\mathbf{0}}$.

Нулевой вектор не имеет определенного направления и имеет длину, равную нулю.

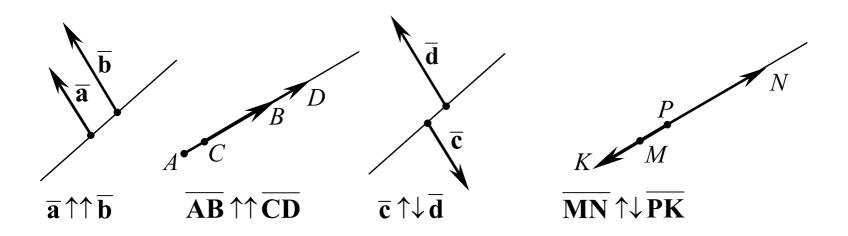
Векторы, лежащие на одной или параллельных прямых, называются *коллинеарными* (*параллельными*).

Записывают: $\bar{\bf a} \parallel \bar{\bf b} -$ если векторы $\bar{\bf a}$ и $\bar{\bf b}$ коллинеарные, $\bar{\bf a} \not\parallel \bar{\bf b} -$ если векторы $\bar{\bf a}$ и $\bar{\bf b}$ неколлинеарные.

Коллинеарные векторы **AB** и **CD** называются *сонаправлен-*

- их концы лежат по одну сторону от прямой, соединяющей их начала (для векторов лежащих на параллельных прямых)
- один из лучей [AB) или [CD) целиком содержит в себе другой (для векторов, лежащих на одной прямой).
- В противном случае коллинеарные векторы называются противоположно направленными.

Записывают: $\bar{\bf a} \uparrow \uparrow \bar{\bf b}$ — если векторы $\bar{\bf a}$ и $\bar{\bf b}$ сонаправленные, $\bar{\bf a} \uparrow \downarrow \bar{\bf b}$ — если $\bar{\bf a}$ и $\bar{\bf b}$ противоположно направленные.



Два вектора $\bar{\mathbf{a}}$ и $\bar{\mathbf{b}}$ называются *равными*, если они сонаправлены и имеют одинаковую длину.

Записывают: $\bar{\mathbf{a}} = \bar{\mathbf{b}}$.

Все нулевые векторы считаются равными.

Векторы $\bar{\bf a}$ и $\bar{\bf b}$, лежащие на перпендикулярных прямых, называются *перпендикулярными* (*ортогональными*).

Записывают: $\bar{\bf a} \perp \bar{\bf b}$.

Три вектора, лежащие в одной или в параллельных плоскостях, называются *компланарными*.

2. Линейные операции на множестве векторов

1) Умножение на число; 2) Сложение векторов

ОПРЕДЕЛЕНИЕ. Произведением вектора $\bar{\bf a} \neq \bar{\bf 0}$ на число $\alpha \neq 0$ называется вектор, длина которого равна $|\alpha| \cdot |\bar{\bf a}|$, а направление совпадает с направлением вектора $\bar{\bf a}$ при $\alpha > 0$ и противоположно ему при $\alpha < 0$.

Eсли $\mathbf{\bar{a}} = \mathbf{\bar{0}}$ или $\alpha = 0$, то их произведение полагают равным $\mathbf{\bar{0}}$.

Обозначают: α **ā**

Частный случай: произведение $(-1)\bar{\mathbf{a}}$

Вектор $(-1)\bar{\bf a}$ называют *противоположным вектору* $\bar{\bf a}$ и обозначают $-\bar{\bf a}$.

ЛЕММА 1 (критерий коллинеарности векторов).

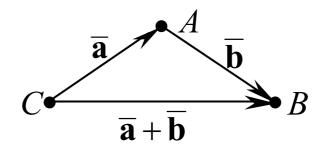
Два вектора $\bar{\bf a}$ и $\bar{\bf b}$ коллинеарны тогда и только тогда, когда $\bar{\bf a} = \alpha \cdot \bar{\bf b}$, для некоторого числа $\alpha \neq 0$.

ОПРЕДЕЛЕНИЕ (правило треугольника).

Пусть даны два вектора $\bar{\mathbf{a}}$ и $\bar{\mathbf{b}}$.

Возьмем произвольную точку C и построим последовательно векторы $\overline{\mathbf{C}\mathbf{A}} = \overline{\mathbf{a}}$ и $\overline{\mathbf{A}\mathbf{B}} = \overline{\mathbf{b}}$.

Вектор $\overline{\bf CB}$, соединяющий начало первого и конец второго построенных векторов, называется суммой векторов $\bar{\bf a}$ и $\bar{\bf b}$ и обозначается $\bar{\bf a}+\bar{\bf b}$.

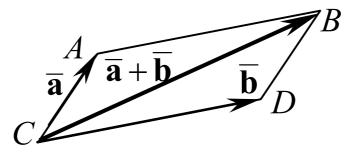


ОПРЕДЕЛЕНИЕ (правило параллелограмма).

Пусть даны два вектора $\bar{\mathbf{a}}$ и $\bar{\mathbf{b}}$.

Возьмем произвольную точку C и построим векторы $\overline{\mathbf{C}\mathbf{A}} = \overline{\mathbf{a}}$ и $\overline{\mathbf{C}\mathbf{D}} = \overline{\mathbf{b}}$.

Суммой векторов $\bar{\bf a}$ и $\bar{\bf b}$ будет вектор ${\bf CB}$, имеющий начало в точке C и совпадающи<u>й с</u> диагональю параллелограмма, построенного на векторах $\bar{\bf CA} = \bar{\bf a}$ и $\bar{\bf CD} = \bar{\bf b}$.



Частный случай: сумма $\bar{\bf a} + (-\,\bar{\bf b}\,)$

Сумму $\bar{\bf a}$ + (- $\bar{\bf b}$) называют *разностью векторов* $\bar{\bf a}$ *u* $\bar{\bf b}$ и обозначают $\bar{\bf a}$ - $\bar{\bf b}$.

СВОЙСТВА ЛИНЕЙНЫХ ОПЕРАЦИЙ НАД ВЕКТОРАМИ

- 1) $\bar{\mathbf{a}} + \bar{\mathbf{b}} = \bar{\mathbf{b}} + \bar{\mathbf{a}}$ (коммутативность сложения векторов);
- 2) $(\bar{\mathbf{a}} + \bar{\mathbf{b}}) + \bar{\mathbf{c}} = \bar{\mathbf{a}} + (\bar{\mathbf{b}} + \bar{\mathbf{c}})$ (ассоциативность сложения векторов);
- 3) $\bar{a} + \bar{0} = \bar{a}$;
- 4) $\bar{a} + (-\bar{a}) = \bar{0}$;
- 5) $\alpha \cdot (\beta \bar{\mathbf{a}}) = (\alpha \cdot \beta) \bar{\mathbf{a}}$ (ассоциативность относительно умножения чисел);
- 6) $(\alpha + \beta)\bar{a} = \alpha\bar{a} + \beta\bar{a}$ (дистрибутивность умножения на вектор относительно сложения чисел);
- 7) $\alpha(\bar{\mathbf{a}} + \bar{\mathbf{b}}) = \alpha \bar{\mathbf{a}} + \alpha \bar{\mathbf{b}}$ (дистрибутивность умножения на число относительно сложения векторов);
- 8) $1 \cdot \mathbf{\bar{a}} = \mathbf{\bar{a}}$.

Свойства линейных операций над матрицами

$$1) \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$

2)
$$(A + B) + C = A + (B + C)$$

3)
$$A + O = A$$

4)
$$A + (-A) = 0$$

5)
$$\alpha(\beta \mathbf{A}) = (\alpha \beta) \mathbf{A}$$

6)
$$(\alpha + \beta)\mathbf{A} = \alpha \mathbf{A} + \beta \mathbf{A}$$

7)
$$\alpha(\mathbf{A} + \mathbf{B}) = \alpha \mathbf{A} + \alpha \mathbf{B}$$

$$8) 1\mathbf{A} = \mathbf{A}$$

Свойства линейных операций над векторами

1)
$$\overline{\mathbf{a}} + \overline{\mathbf{b}} = \overline{\mathbf{b}} + \overline{\mathbf{a}}$$

2)
$$(\overline{\mathbf{a}} + \overline{\mathbf{b}}) + \overline{\mathbf{c}} = \overline{\mathbf{a}} + (\overline{\mathbf{b}} + \overline{\mathbf{c}})$$

3)
$$\overline{\mathbf{a}} + \mathbf{0} = \overline{\mathbf{a}}$$
;

4)
$$\overline{\mathbf{a}} + (-\overline{\mathbf{a}}) = \overline{\mathbf{0}}$$
;

5)
$$\alpha(\beta \overline{\mathbf{a}}) = (\alpha \beta) \overline{\mathbf{a}}$$

6)
$$(\alpha + \beta)\overline{\mathbf{a}} = \alpha \overline{\mathbf{a}} + \beta \overline{\mathbf{a}}$$

7)
$$\alpha(\overline{\mathbf{a}} + \overline{\mathbf{b}}) = \alpha \overline{\mathbf{a}} + \alpha \overline{\mathbf{b}}$$

8)
$$1\overline{\mathbf{a}} = \overline{\mathbf{a}}$$
.

§ 7. Понятие линейного пространства

1. Определение и примеры

- Пусть L некоторое множество, элементы которого можно складывать и умножать на числа из \boldsymbol{F} (где \boldsymbol{F} множество рациональных, действительных или комплексных чисел).
- ОПРЕДЕЛЕНИЕ 1. *Множество* L называется **линейным пространством над** F если для любых элементов $a,b,c \in L$ и для любых чисел $\alpha,\beta \in F$ выполняются условия:
- 1. a+b=b+a (коммутативность сложения элементов из L);
- 2. (a+b)+c=a+(b+c) (ассоциативность сложения элементов из L);
- 3. Во множестве L существует такой элемент o, что a+o=a. Элемент o называют **нулевым элементом** множества L;
- 4. Для любого элемента $a \in L \exists$ элемент $-a \in L$ такой, что a+(-a)=o. Элемент -a называют **противоположным** κ a;
- 5. $\alpha(\beta a) = (\alpha \beta)a$ (ассоциативность относительно умножения чисел);
- 6. (α+β)*a*=α*a*+β*a* (дистрибутивность умножения на элемент из L относительно сложения чисел);
- 7. $\alpha(a+b)=\alpha a+\alpha b$ (дистрибутивность умножения на число относительно сложения элементов из L);
- 8. 1a = a.

Линейное пространство над \mathbb{R} называют еще вещественным (действительными) линейным пространством, а над \mathbb{C} – комплексным.

ПРИМЕРЫ линейных пространств:

- 1) $M(m \times n, \mathbb{R})$ матрицы размера $m \times n$ с элементами из \mathbb{R} ;
- 2) $V^{(3)}(V^{(2)})$ множество свободных векторов пространства (плоскости);
- 3) \mathbb{R}^n множество последовательностей действительных чисел. \mathbb{R}^n называют *арифметическим линейным пространством*, элементы пространства \mathbb{R}^n называют *п-мерными векторами*
- 4) $\mathbb{R}[x]$ множество многочленов с коэффициентами из \mathbb{R} ;
- 5) ${\bf C}[a;b]$ множество функций, непрерывных на [a;b] .

ЛЕММА 2 (простейшие свойства элементов линейного пространства).

Пусть L — линейное пространство над F. Тогда для любых элементов $a,b \in L$ и любых чисел $\alpha,\beta \in F$ справедливы следующие утверждения:

- 1) $0 \cdot a = o$, $\alpha \cdot o = o$;
- 2) $(-\alpha) \cdot a = \alpha \cdot (-a) = -\alpha a$, $(-\alpha) \cdot (-a) = \alpha a$;
- 3) $\alpha \cdot (a-b) = \alpha a \alpha b$, $(\alpha-\beta) \cdot a = \alpha a \beta a$. ДОКАЗАТЕЛЬСТВО

Наряду с термином «линейное пространство» используется также термин «*векторное пространство*», а элементы линейного пространства принято называть *векторами*.

2. Подпространства линейных пространств

- Пусть L линейное пространство над F, L_1 непустое подмножество в L.
- ОПРЕДЕЛЕНИЕ. Говорят, что L_1 является подпространством линейного пространства L (или линейным подпространством), если оно само образует линейное пространство относительно операций, определенных на L.
- Если L_1 является подпространством линейного пространства L, то пишут: $L_1 \le L$
- ТЕОРЕМА 3 (критерий подпространства).

 Π усть L – линейное пространство над F,

 L_1 – непустое подмножество в L .

 L_1 является подпространством линейного пространства L $\Leftrightarrow \forall a,b \in L_1$ и $\forall \alpha \in \mathbf{F}$ выполняются условия:

- 1) $a b \in L_1$;
- 2) $\alpha \cdot a \in L_1$.

ПРИМЕРЫ линейных подпространств:

- 1) $V^{(2)} \leq V^{(3)}$;
- 2) $\mathbb{R}^{n}[x]$ множество многочленов с коэффициентами из \mathbb{R} , имеющих степень меньше n.

$$\mathbb{R}^{n}[x] \leq \mathbb{R}[x]$$
;

3) Пусть $\mathbf{AX} = \mathbf{O} - \mathbf{C} \mathbf{Л} \mathbf{O} \mathbf{У}$, имеющая нетривиальные решения. \mathcal{H} – множество решений $\mathbf{C} \mathbf{Л} \mathbf{O} \mathbf{Y} \mathbf{A} \mathbf{X} = \mathbf{O}$.

$$\mathcal{H} \leq \mathbb{R}^n$$
;

- 4) $O = \{o\}$ подпространство любого линейного пространства (*тривиальное подпространство*);
- 5) Пусть L линейное пространство над ${\pmb F}$, $a_1,a_2,\dots a_k$ \in L . $\mathcal{L}(a_1,a_2,\dots a_k) = \{\alpha_1a_1 + \alpha_2a_2 + \dots + \alpha_ka_k \mid \alpha_i \in {\pmb F}\}$ $\mathcal{L}(a_1,a_2,\dots a_k) \quad \text{называют} \quad \textit{линейной} \quad \textit{оболочкой} \quad \textit{векторов}$ $a_1,a_2,\dots a_k$

$$\mathcal{L}(a_1, a_2, \dots a_k) \le L$$