Математический анализ Раздел: Введение в анализ

Тема: *Бесконечно большие последовательности Предел функции*

(определение и свойства бесконечно больших, предел функции и его свойства)

Лектор Рожкова С.В.

3. Бесконечно большие последовательности

ОПРЕДЕЛЕНИЕ. Числовая последовательность $\{x_n\}$ называется **бесконечно большой**, если $\forall M \!\!>\!\! 0 \;\; \exists N \!\!\in\! \mathbb{N} \;\;$ такое, что $|x_n| \!\!>\!\! M \;, \; \forall n \!\!>\!\! N.$

ГЕОМЕТРИЧЕСКАЯ ИНТЕРПРЕТАЦИЯ БЕСКОНЕЧНО БОЛЬШОЙ ПОСЛЕДОВАТЕЛЬНОСТИ

Расширим множество $\mathbb R$.

<u>I способ</u>. Дополним множество \mathbb{R} элементами, обозначаемыми +∞ и -∞ (называют: «плюс бесконечность» и «минус бесконечность»)

При этом справедливо: $-\infty < r < +\infty$, $\forall r \in \mathbb{R}$.

<u>И способ</u>. Дополним множество \mathbb{R} элементом, обозначаемыми ∞ (называют: «бесконечность»)

При этом ∞ не связана с действительными числами отношением порядка.

Множество $\mathbb{R} \cup \{-\infty, +\infty\}$ и $\mathbb{R} \cup \{\infty\}$ называют *расширенным множеством действительных чисел* (способ расширения всегда понятен из контекста).

Обозначают: $\overline{\mathbb{R}}$.

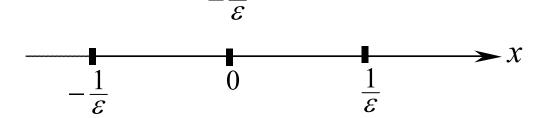
Элементы $-\infty$, $+\infty$, ∞ называют бесконечно удаленными точками числовой прямой.

 ϵ -окрестностью точек $-\infty$, $+\infty$, ∞ считают следующие множества:

$$U(+\infty, \varepsilon) = \{ x \in \mathbb{R} \mid x > 1/\varepsilon \}$$

$$U(-\infty, \varepsilon) = \{ x \in \mathbb{R} \mid x < -1/\varepsilon \}$$

$$U(\infty, \varepsilon) = \{ x \in \mathbb{R} \mid |x| > 1/\varepsilon \}$$



Если $\{x_n\}$ — бесконечно большая, то с геометрической точки зрения это означает, что в любой ϵ -окрестности точки ∞ находятся все члены последовательности, за исключением может быть конечного их числа.

(Геометрическая интерпретация бесконечно большой последовательности).

Записывают:
$$\lim_{n\to\infty} x_n = \infty$$
, $x_n \to \infty$

Говорят: «последовательность $\{x_n\}$ стремиться к ∞ ».

Частные случаи бесконечно больших последовательностей:

1) $\{x_n\}$ – бесконечно большая и $x_n \ge 0$, $\forall n$.

Тогда $|x_n| = x_n > M$, $\forall n > N$

 \Rightarrow все члены последовательности, за исключением может быть конечного их числа, находятся в любой ε -окрестности точки $+\infty$.

Записывают: $\lim x_n = +\infty$, $x_n \to +\infty$

Говорят: «последовательность $\{x_n\}$ стремиться $\kappa + \infty$ ».

2) $\{x_n\}$ – бесконечно большая и $x_n \le 0$, $\forall n$.

Записывают: $\lim x_n = -\infty, x_n \to -\infty$

Говорят: «последовательность $\{x_n\}$ стремиться $\kappa - \infty$ ».

СВОЙСТВА БЕСКОНЕЧНО БОЛЬШИХ ПОСЛЕДОВАТЕЛЬНОСТЕЙ

- 1) Если $\{x_n\}$ б.б., то последовательность $\{1/x_n\}$ б.м. Если последовательность $\{\alpha_n\}$ б.м, то $\{1/\alpha_n\}$ б.б. (связь бесконечно больших и бесконечно малых)
- 2) Если $\{x_n\}$ и $\{y_n\}$ б.б. последовательности одного знака, то их сумма $\{x_n + y_n\}$ б.б. того же знака.

- 3) Если $\{x_n\}$ б.б., а $\{y_n\}$ ограниченна, то их сумма $\{x_n+y_n\}$ б.б. последовательность.
- 4) Если $\{x_n\}$ и $\{y_n\}$ б.б., то их произведение $\{x_n\cdot y_n\}$ б.б. последовательность.
- 5) Если $\{x_n\}$ б.б., $\{y_n\}$ сходящаяся, причем то их произведение $\{x_n \cdot y_n\}$ б.б. последовательность.

$$\lim_{n \to \infty} y_n = a \neq 0$$

- ОПРЕДЕЛЕНИЕ. Последовательность $\{x_n\}$ называют **отделимой от нуля**, если существуют число K > 0 и номер N такие, что $|x_n| > K$, $\forall n > N$.
- 6) Если $\{x_n\}$ ограниченная и отделимая от нуля, $\{y_n\}$ б.б., то их произведение $\{x_n \cdot y_n\}$ б.б. последовательность.

7) Если последовательность $\{x_n\}$ — б.б. и для любого $n \in \mathbb{N}$ имеет место неравенство

$$|x_{n}| < |y_{n}| (|x_{n}| \le |y_{n}|),$$

то последовательность $\{y_n\}$ тоже является б.б.

знака.

8) Пусть $\{x_n\}$ и $\{y_n\}$ – б.б. одного знака и для любого $n \in \mathbb{N}$ имеет место неравенство $x_n \le z_n \le y_n$. Тогда последовательность $\{z_n\}$ тоже является б.б. того же

(лемма о двух милиционерах для б.б. последовательностей)

§3. Предел функции

1. Определение предела функции по Гейне и по Коши

Пусть функция f(x) определена в некоторой окрестности точки $x_0 \in \mathbb{R}$, кроме, может быть, самой точки x_0 .

 $U^*(x_0, \delta) = U(x_0, \delta) \setminus \{x_0\}$ – проколотая окрестность точки x_0 .

ОПРЕДЕЛЕНИЕ 1 (по Коши, на языке ε - δ).

Число $A \in \mathbb{R}$ называется **пределом функции** f(x) **при** x **стремящемся** κx_0 (пределом функции f(x) в точке x_0), если $\forall \varepsilon > 0 \; \exists \delta > 0 \; makoe$, что

если $x \in U^*(x_0, \delta)$, то $f(x) \in U(A, \epsilon)$.

Замечание.

1) Условие $x \in U^*(x_0, \delta)$ означает, что для x выполняется неравенство:

а)
$$0 < |x - x_0| < \delta$$
, если $x_0 \in \mathbb{R}$;

б)
$$|x| > 1/\delta$$
, если $x_0 = \infty$; в) $x > 1/\delta$, если $x_0 = +\infty$;

в)
$$x > 1/\delta$$
, если $x_0 = +\infty$;

$$\Gamma$$
) $x < -1/\delta$, если $x_0 = -\infty$.

2) Условие $f(x) \in U(A, \epsilon)$ означает, что для f(x) выполняется $|f(x) - A| < \varepsilon$ неравенство

Пусть функция f(x) определена в некоторой окрестности точки $x_0 \in \mathbb{R}$, кроме, может быть, самой точки x_0 .

ОПРЕДЕЛЕНИЕ 2 (по Гейне, на языке последовательностей). Число $A \in \mathbb{R}$ называется пределом функции f(x) при x**стремящемся к x_0**, если для любой последовательности $\{x_n\}$ значений аргумента, стремящейся к x_0 , соответствующая последовательность значений функции $\{f(x_n)\}$ сходится к A.

ТЕОРЕМА 1. Определение предела функции по Гейне и по Коши эквивалентны.

Обозначают: $\lim_{x \to x_0} f(x) = A$, $f(x) \to A$, $npu \ x \to x_0$

Говорят: $\langle f(x) \rangle$ стремится к A при x стремящемся к $x_0 \gg 1$.

2. Свойства пределов

- Из свойств сходящихся последовательностей и определения предела функции по Гейне получаем, что справедливы следующие утверждения.
- 1) Если функция имеет предел при $x \to x_0$, то он единственный.
- 2) Если $f(x) \rightarrow A$, то $|f(x)| \rightarrow |A|$.
- 3) Если функция f(x) имеет предел при $x \to x_0$, то она ограничена в некоторой проколотой окрестности точки x_0 (говорят: функция локально ограничена)

- ОПРЕДЕЛЕНИЕ. Функция $\alpha(x)$ называется бесконечно малой при $x \to x_0$, если $\lim_{x \to x_0} \alpha(x) = 0$
- 4) ЛЕММА 2 (о роли бесконечно малых функций). Число $A \in \mathbb{R}$ является пределом функции f(x) при $x \to x_0 \Leftrightarrow f(x) = A + \alpha(x)$, где $\alpha(x)$ – бесконечно малая при $x \to x_0$.
- 5) Пусть f(x) ограничена в некоторой проколотой окрестности точки x_0 , $\alpha(x)$ бесконечно малая при $x \to x_0$. Тогда $f(x) \cdot \alpha(x)$ бесконечно малая при $x \to x_0$.

6) Пусть f(x) и g(x) имеют предел при $x \to x_0$. Тогда их сумма, разность, произведение и частное тоже имеют предел при $x \to x_0$, причем

a)
$$\lim_{x \to x_0} [f(x) \pm g(x)] = \lim_{x \to x_0} f(x) \pm \lim_{x \to x_0} g(x)$$

b)
$$\lim_{x \to x_0} [f(x) \cdot g(x)] = \lim_{x \to x_0} f(x) \cdot \lim_{x \to x_0} g(x)$$

c)
$$\lim_{x \to x_0} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to x_0} f(x)}{\lim_{x \to x_0} g(x)} \quad \left(\lim_{x \to x_0} g(x) \neq 0 \right)$$

Следствие свойства 6. Если f(x) имеет предел при $x \to x_0$, то $\forall c \in \mathbb{R}$ функция $c \cdot f(x)$ тоже имеет предел при $x \to x_0$, причем $\lim_{x \to x_0} c \cdot f(x) = c \cdot \lim_{x \to x_0} f(x)$

Говорят: «константу можно вынести за знак предела». Замечание. Свойство 6 и его следствие обычно называют теоремами о пределах.

- 7) Пусть f(x) имеет предел при $x \to x_0$ и $\exists \delta > 0$ такое, что $f(x) \ge 0$ (или f(x) > 0), $\forall x \in U^*(x_0, \delta)$.

 Тогда $\lim_{x \to x_0} f(x) \ge 0$
- 8) Пусть f(x) и g(x) имеют пределы при $x \to x_0$ и $\exists \delta > 0$ такое, что $f(x) \ge g(x)$ (или f(x) > g(x)), $\forall x \in U^*(x_0, \delta)$. Тогда $\lim_{x \to x_0} f(x) \le \lim_{x \to x_0} g(x)$
- 9) ЛЕММА 3 (о двух милиционерах). Пусть f(x) и g(x) имеют одинаковый предел при $x \to x_0$ и $\exists \delta > 0$ такое, что $f(x) \le \varphi(x) \le g(x)$, $\forall x \in U^*(x_0, \delta)$. Тогда функция $\varphi(x)$ тоже имеет предел при $x \to x_0$, причем $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} \varphi(x) = \lim_{x \to x_0} g(x)$

10) Пусть $f: X \to Y$, $\varphi: Y \to Z$ и существуют пределы

$$\lim_{x \to x_0} f(x) = y_0, \qquad \lim_{y \to y_0} \varphi(y) = z_0$$

Тогда сложная функция $\varphi(f(x))$ имеет предел при $x \to x_0$, причем

 $\lim_{x \to x_0} \varphi(f(x)) = \lim_{y \to y_0} \varphi(y) = z_0 \tag{1}$

Формула (1) называется формулой замены переменной в пределе