Раздел: Теория вероятностей и математическая статистика

Тема: *Основные теоремы теории* вероятностей

Лектор Рожкова С.В.

§5. Основные теоремы теории вероятностей

Основными теоремами в теории вероятностей называются

- 1) теорема сложения вероятностей и
- 2) теорема умножения вероятностей.

1. Зависимые события. Условная вероятность

ОПРЕДЕЛЕНИЕ. **Два события** называются **независимыми**, если появление одного из них не изменяет вероятности появления другого.

В противном случае (появление одного события изменяет вероятность появления другого) события называются зависимыми.

ПРИМЕР.

- 1) Бросаем две монеты.
 - A «появление герба на первой монете»,
 - B «появление герба на второй монете».
 - A и B независимые.
- 2) В урне 2 белых шара и один черный. Два человека вынимают из урны по одному шару.
 - A «первый человек достал белый шар»,
 - B «второй человек достал белый шар».
 - A и B зависимые.

Независимые события обладают следующими свойствами.

- СВОЙСТВО 1. Если события A и B независимые, то события A и \overline{B} тоже независимые.
- СВОЙСТВО 2. Если два события независимы, то независимы и противоположные им события.

- ОПРЕДЕЛЕНИЕ. *Несколько событий* называются *незави- симыми в совокупности* (или просто *независимыми*), если:
 - а) независимы любые два из них;
 - б) любое из них и произведение любого количества из остальных независимы.
- Замечание. Для независимости в совокупности нескольких событий недостаточно их попарной независимости.
- ОПРЕДЕЛЕНИЕ. Вероятность события A, вычисленная при условии, что событие B произошло, называется условной вероятностью события A и обозначается P(A|B).
- Из определения независимости событий получаем, что A и B независимые $\Leftrightarrow P(A|B) = P(A), \ P(B|A) = P(B)$.
- ПРИМЕР. Из колоды в 36 карт последовательно вынуты 2 карты. Найти вероятность того, что
 - 1) вторая карта окажется тузом, если первая карта не туз.
 - 2) вторая карта окажется тузом, если первая карта туз.

2. Теорема умножения вероятностей

ТЕОРЕМА 1 (умножения вероятностей).

Вероятность произведения двух событий равна произведению вероятности одного из них на условную вероятность другого, найденную в предположении, что первое событие произошло:

$$P(AB) = P(A) \cdot P(B|A); \quad P(AB) = P(B) \cdot P(A|B)$$
 ДОКАЗАТЕЛЬСТВО

СЛЕДСТВИЕ 2. Вероятность произведения двух независимых событий равна произведению вероятностей этих событий:

$$P(AB) = P(A) \cdot P(B).$$

Справедливо утверждение, обратное следствию 1:

СЛЕДСТВИЕ 3. Если вероятность произведения двух событий равна произведению их вероятностей, то эти события независимые.

ПРИМЕРЫ.

- 1) На некотором предприятии 96% изделий признаны годными. Среди годных изделий 75% первого сорта. Найти вероятность того, наугад взятое изделие этого предприятия будет первого сорта.
- 2) Два охотника стреляют одновременно и независимо друг от друга по зайцу. Заяц убит, если попали оба охотника. Первый охотник попадает с вероятностью $p_1 = 0.8$, второй с вероятностью $p_2 = 0.75$. Какова вероятность, что заяц убит?

Теорему умножения вероятностей можно обобщить на любое конечное число событий.

ТЕОРЕМА 4 (обобщение теоремы умножения вероятностей).

Вероятность произведения нескольких событий равна произведению вероятности одного из этих событий на условные вероятности других; при этом условная вероятность каждого последующего события вычисляется в предположении, что все предыдущие события произошли:

$$P(A_1 \cdot A_2 \cdot A_3 \cdot ... \cdot A_n) = P(A_1) \cdot P(A_2 | A_1) \cdot P(A_3 | A_1 \cdot A_2) \cdot ... \cdot P(A_n | A_1 \cdot A_2 \cdot ... \cdot A_{n-1}).$$

СЛЕДСТВИЕ 5.

Вероятность произведения независимых событий A_1 , A_2 , A_3 , ..., A_n равна произведению вероятностей этих событий:

$$P(A_1 \cdot A_2 \cdot A_3 \cdot \ldots \cdot A_n) = P(A_1) \cdot P(A_2) \cdot P(A_3) \cdot \ldots \cdot P(A_n).$$

Утверждение, обратное следствию 5, не справедливо.

Для независимости в совокупности нескольких событий недостаточно выполнения последнего равенства.

ПРИМЕР.

Банк экзаменационных заданий содержит 25 вопросов. Студент получает оценку отлично, если он отвечает на три случайно выбранных вопроса.

Какова вероятность получить «отлично», если студент подготовил только 20 вопросов.

3. Теорема сложения вероятностей

ТЕОРЕМА 6 (сложения вероятностей несовместных событий).

Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий:

$$P(A + B) = P(A) + P(B)$$
.
ДОКАЗАТЕЛЬСТВО

СЛЕДСТВИЕ 7.

Сумма вероятностей противоположных событий равна единице: $P(A) + P(\overline{A}) = 1$.

ПРИМЕР.

Стрелок стреляет по мишени, разделенной на 2 части. Вероятность попадания в первую часть — 0,4; во вторую — 0,35. Какова вероятность попадания в мишень при одном выстреле.

Методом математической индукции теорему 7 можно обобщить на любое конечное число несовместных событий.

ТЕОРЕМА 8. Вероятность появления одного из нескольких попарно несовместных событий $A_1,\ A_2,\ A_3,\ \dots\ ,\ A_n,$ безразлично какого, равна сумме вероятностей этих событий:

$$P(A_1 + A_2 + A_3 + \dots + A_n) = P(A_1) + P(A_2) + P(A_3) + \dots + P(A_n)$$
.

СЛЕДСТВИЕ 9. Если события A_1 , A_2 , A_3 , ..., A_n образуют полную группу несовместных событий, то сумма их вероятностей равна 1:

$$P(A_1) + P(A_2) + P(A_3) + \dots + P(A_n) = 1$$
.

ТЕОРЕМА 10 (сложения вероятностей совместных событий).

Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления:

$$P(A + B) = P(A) + P(B) - P(AB).$$
 ДОКАЗАТЕЛЬСТВО

ПРИМЕР

Прибор состоит из двух блоков, дублирующих друг руга (т.е. блоки подсоединены параллельно). Найти надежность (вероятность безотказной работы) прибора, если надежность первого блока 0,8, второго блока – 0,7.

ПРИМЕР (10, стр38)

Аналогично вероятность суммы трех совместных событий вычисляется по формуле

$$P(A+B+C) = P(A)+P(B)+P(C) - P(AB) - P(AC) - P(BC) + P(ABC)$$
.

Методом математической индукции можно доказать общую формулу для вероятности суммы конечного числа совместных событий:

$$P(\sum_{i=1}^{n} A_{i}) = \sum_{i} P(A_{i}) - \sum_{i,j} P(A_{i} A_{j}) + \sum_{i,j,k} P(A_{i} A_{j} A_{k}) + \dots + (-1)^{n-1} P(A_{1} A_{2} \dots A_{n})$$

где суммы распространяются на различные значения индексов $i;\ i,j;\ i,j,k,$ и так далее.

ПРИМЕР

Три орудия производят залп по одной цели независимо друг от друга. Вероятность попадания для первого орудия равна 0,5; для второго — 0,7; для третьего — 0,9. Найти вероятность разрушения цели, если для этого достаточно одного попадания.

Формула вычисления вероятности суммы трех и более совместных событий весьма громоздка, поэтому вероятность суммы нескольких совместных событий проще находить, используя противоположное событие.

Пусть события A_1, A_2, \ldots, A_n совместны. Тогда

$$P(A_1 + A_2 + ... + A_n) = 1 - P(A_1 + A_2 + ... + A_n) =$$

$$= 1 - P(\overline{A_1} \cdot \overline{A_2} \cdot ... \cdot \overline{A_n})$$

Если при этом события A_1 , A_2 , A_3 , ..., A_n независимые, то и противоположные им события тоже независимы (свойство 2) и по следствию 5 получаем:

$$P(A_1 + A_2 + \dots + A_n) = 1 - P(\overline{A_1}) \cdot P(\overline{A_2}) \cdot \dots \cdot P(\overline{A_n}).$$

Таким образом, имеет место теорема. ТЕОРЕМА 7.

Вероятность появления хотя бы одного из событий, независимых в совокупности, равна разности между единицей и произведением вероятностей противоположных событий.

ПРИМЕР.

Техническое устройство состоит из 7 узлов. На каждом узле, независимо от других может возникнуть неисправность. Вероятность этого — 0,05. Если хотя бы один узел неисправен — произойдет авария. Какова вероятность аварии?

4. Формула полной вероятности

Формула полной вероятности — следствие обеих основных теорем теории вероятностей.

Пусть требуется найти вероятность события A, которое может произойти вместе с одним из событий $H_1,\ H_2,\ \dots\ ,\ H_n$, образующих полную группу несовместных событий.

События H_1, H_2, \dots, H_n называются **гипотезами**.

ТЕОРЕМА 8 (формула полной вероятности).

Вероятность события А равна сумме произведений вероятности каждой гипотезы на условную вероятность события А при этой гипотезе:

$$P(A) = P(H_1) \cdot P(A|H_1) + P(H_2) \cdot P(A|H_2) + \dots + P(H_n) \cdot P(A|H_n) =$$

$$= \sum_{i=1}^{n} P(H_i) \cdot P(A|H_i).$$

ПРИМЕР.

1) По самолету производится три выстрела. Вероятность попадания при первом выстреле равна 0,4; при втором — 0,5; при третьем — 0,7. Для вывода самолета из строя заведомо достаточно трех попаданий. При одном попадании самолет выходит из строя с вероятностью 0,2, при двух — с вероятностью 0,6. Найти вероятность выхода самолета из строя.

Ответ: 0,458

2) Минное заграждение состоит из трех примыкающих участков, протяженностью $\ell_1 = 1,2$ км, $\ell_2 = 3,6$ км и $\ell_3 = 2,4$ км. Вероятности подорваться на этих участках соответственно равны $p_1 = 0,82,\ p_2 = 0,65,\ p_3 = 0,37.$ Какова вероятность подорваться при форсировании этой полосы, если ее форсирование равновозможно в любом месте.

Ответ: 0,59.

5. Формула Байеса

Формула Байеса — следствие теоремы умножения и формулы полной вероятности.

Пусть H_1, H_2, \ldots, H_n – полная группа несовместных гипотез.

Вероятности гипотез до опыта известны и равны соответственно $P(H_1), P(H_2), \dots, P(H_n)$.

Произведен опыт, в результате которого произошло событие A.

Факт появления события A позволяет произвести переоценку вероятностей гипотез, вычислив $P(H_i \mid A)$ по формуле:

$$P(H_i \mid A) = \frac{P(H_i) \cdot P(A \mid H_i)}{P(A)}, \quad i = 1, 2, ..., n.$$

Эта формула называется формулой Байеса или теоремой гипотез.

Замечание.

Вероятность P(A) в формуле Байеса, как правило, вычисляется по формуле полной вероятности.

Поэтому формулу Байеса часто записывают в виде

$$P(H_i | A) = \frac{P(H_i) \cdot P(A | H_i)}{\sum_{j=1}^{n} P(H_j) \cdot P(A | H_j)}.$$

ПРИМЕРЫ.

- 1) Радиолампа может принадлежать к одной из трех партий с вероятностями 0,25; 0,5 и 0,25 соответственно. Вероятность того, что лампа проработает заданное число часов, для этих партий равна 0,1; 0,2 и 0,4 соответственно. Определить вероятность того, что
 - а) случайно взятая лампа проработает заданное число часов;
 - б) проработавшая заданное число часов лампа, принадлежит первой партии.

Ответ: а) 0,225; б) 0,11

2) В цехе 30% приборов собирают специалисты, имеющие 1-й разряд, и 70% — специалисты, имеющие 2-й разряд. Надежность работы прибора, собранного специалистом с первым разрядом — 0,9, со вторым разрядом — 0,8. Наудачу взятый прибор оказался надежным. Определить вероятность того, что он был собран специалистом, имеющим 1-й разряд.

Ответ: 0,325