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Preface

This text is intended as a first course in the physics of nuclear
reactors. It is designed to be appropriate as an introduction to reactor
theory within an undergraduate nuclear engineering curriculum, as
well as for a stand-alone course that can be taken by undergraduates
in mechanical, electrical, or other fields of engineering who have not
had a previous background in nuclear energy. Likewise, it is planned
to be useful to practicing engineers from a variety of disciplines
whose professional responsibilities call for familiarity with the phy-
sics of nuclear reactors.

Why a new book on reactor physics when a number of legacy
texts are still in print? The better of these are well written, and since
the fundamentals of the subject were already worked out at the time
of their publication, they remain useful today. My conviction, how-
ever, is that for today’s undergraduates and practicing engineers an
introduction to reactor physics is better presented through both reor-
ganizing and refocusing the material of earlier texts, and in doing that
emphasizing the characteristics of modern power reactors.

Earlier textbooks most commonly have begun with the relevant
nuclear physics and neutron interactions, and then presented a
detailed treatment of neutron slowing down and diffusion in homo-
geneous mixtures of materials. Only in the latter parts of such texts
does the analysis of the all-important time-dependent behavior of
fissionable systems appear, and the dependence of criticality on lat-
tice structures of reactor cores typically is late in receiving attention.
To some extent such a progression is necessary for the logical devel-
opment of the subject. However, both in teaching undergraduates and
in offering continuing education instruction for practicing engineers,
I have found it advantageous to present a quantitative but more
general overview early in the text, while deferring where possible
more detailed analysis, and also the more advanced mathematics that
accompanies it, to later. Thus I have moved the treatment of reactor
kinetics forward, attempting to inculcate an understanding of the
time-dependent behavior of chain reactions, before undertaking the
detailed treatment of spatial power distributions, reflector saving,
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and other topics dependent on the solution of the neutron diffusion
equation. Likewise, the compositions of power reactor cores are
incorporated into the discussion early on, emphasizing the interdis-
ciplinary nature of neutronic and thermal design.

My intent in this text is to emphasize physical phenomena,
rather than the techniques necessary to obtain highly accurate
results through advanced numerical simulation. At the time the
legacy texts appeared, computers were emerging as powerful tools
for reactor analysis. As a result, the pedagogy in teaching reactor
theory often emphasized the programming of finite differencing tech-
niques, matrix solution algorithms, and other numerical methods in
parallel with the analysis of the physical behavior of reactors, and
thus extended the range of solutions beyond what could be obtained
with paper and pencil. Now, however, high level programming lan-
guages, such as Mathcad� or MATLAB�, allow students to solve
transcendental or linear systems of equations, to integrate differen-
tial equations, and to perform other operations needed to solve the
preponderance of problems encountered in an introductory course
without programming the algorithms themselves. Concomitantly,
the numerical simulation of reactor behavior has become a highly
sophisticated enterprise; one to which I have devoted much of my
career. But I believe that the numerical techniques are better left to
more advanced courses, after a basic understanding of the physical
behavior of reactors has been gained. Otherwise the attempt to incor-
porate the numerical approaches employed in reactor design dilutes
the emphasis on the physical phenomena that must first be
understood.

By reorganizing and refocusing the materials along these lines,
I hope to have broadened the audience for whom the text may be
useful, in particular those advancing their professional development,
even while they may not be taking a formal reactor physics course in
a university setting. My goal is that the book may be read and
physical insight gained, even though for lack of time or background
some of the more mathematical sections are read and the results
accepted without following each step of the development in detail.
With this in mind, many of the results are presented in graphical as
well as analytical form, and where possible I have included represen-
tative parameters for the major classes of power reactors in order to
provide the student with some feel for the numbers.

Examples are integrated into the text’s narrative, and a selection
of problems is provided at the end of each chapter. The problems both
enforce the concepts that have been covered and in some cases
expand the scope of the material. The majority of the problems can
be solved analytically, or with the use of a pocket calculator. In some
cases, where multiple solutions or graphical results are called for, use
of the formula menu of a spreadsheet program, such as Excel
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removes any drudgery that might otherwise be entailed. Selected
problems require the use of one of the earlier mentioned high level
computing languages for the solution of transcendental or differential
equations. These are marked with an asterisk.

The preparation of this text would have been immensely more
difficult if not impossible without the help and encouragement of
many friends, colleagues, and students. Advice and assistance from
the staff of the Nuclear Engineering Division of Argonne National
Laboratory have been invaluable in the text’s preparation. Won Sik
Yang, in particular, has provided advice, reactor parameters, graphical
illustrations, and more as well—taking the time to proofread the draft
manuscript in its entirety. Roger N. Blomquist, Taek K. Kim, Chang-ho
Lee, Giuseppe Palmiotti, Micheal A. Smith, Temitope Taiwo, and
several others have also pitched in. Bruce M. Bingman and his collea-
gues at the Naval Reactors Program have also provided much appre-
ciated help. Finally the feedback of Northwestern University students
has been most helpful in evolving a set of class notes into this text.
Most of all, Ann, my wife, has endured yet another book with grace
and encouragement, while covering for me in carrying much more
than her share of our family’s responsibilities.
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CHAPTER 1

Nuclear Reactions

1.1 Introduction

Albert Einstein’s E = mc2 relating energy to mass and the speed of
light arguably is the most celebrated formula in the modern world.
And the subject of this text, nuclear power reactors, constitutes the
most widespread economic ramification of this formula. The nuclear
fission reactions that underlie power reactors—that is, reactors built
to produce electric power, propulsion for ships, or other forms of
energy use—convert measurable amounts of mass to energy. Thus
an appropriate place to begin a study of the physics of nuclear power
is with the underlying nuclear reactions. To understand the large
amounts of energy produced by those reactions in relation to the
mass of fuel consumed it is instructive to introduce our study by
comparing the production of nuclear power with that created by
fossil fuels: coal, oil, or natural gas. Contrasting these energy sources,
which result from chemical reactions, to nuclear energy assists in
understanding the very different ratios of energy created to the
masses of fuel consumed and the profound differences in the quan-
tities of by-products produced.

Coal is the fossil fuel that has been most widely used for the
production of electricity. Its combustion results predominantly
from the chemical reaction: CþO2 ! CO2. In contrast, energy pro-
duction from nuclear power reactors is based primarily on the
nuclear reaction neutronþuranium-235! fission. Energy releases
from both chemical and nuclear reactions is measured in electron
volts or eV, and it is here that the great difference between chemical
and nuclear reactions becomes obvious. For each carbon atom com-
busted about 4.0 eV results, whereas for each uranium atom fissioned
approximately 200 million eV, or 200 MeV is produced. Thus roughly
50 million times as much energy is released from the nuclear fission
of a uranium nucleus as from the chemical combustion of a carbon
atom.

For comparison, consider two large electrical generation plants,
each producing 1000 megawatts of electricity (i.e., 1000 MW(e)), one
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burning coal and the other fissioning uranium. Taking thermal
efficiency and other factors into account, the coal plant would
consume approximately 10,000 tons of fuel per day. The uranium
consumed by the nuclear plant producing the same amount of elec-
trical power, however, would amount to approximately 20 tons per
year. These large mass differences in fuel requirements account for
differences in supply patterns. The coal plant requires a train of 100
or more large coal cars arriving each day to keep it operating. The
nuclear power plant does not require a continual supply of fuel.
Instead, after its initial loading, it is shut down for refueling once
every 12 to 24 months and then only one-fifth to one-fourth of its fuel
is replaced. Similar comparisons can be made between fossil and
nuclear power plants used for naval propulsion. The cruises of oil-
powered ships must be carefully planed between ports where they
can be refueled, or tanker ships must accompany them. In contrast,
ships of the nuclear navy increasingly are designed such that one fuel
loading will last the vessel’s planned life.

The contrast in waste products from nuclear and chemical reac-
tions is equally as dramatic. The radioactive waste from nuclear plants
is much more toxic than most by-products of coal production, but that
toxicity must be weighed against the much smaller quantities of waste
produced. If reprocessing is used to separate the unused uranium from
the spent nuclear fuel, then the amount of highly radioactive waste
remaining from the 1000-MW(e) nuclear plant amounts to substan-
tially less than 10 tons per year. In contrast, 5% or more of the coal
burned becomes ash that must be removed and stored in a landfill or
elsewhere at the rate of more than five 100-ton-capacity railroad cars
per day. Likewise it may be necessary to prevent nearly 100 tons of
sulfur dioxide and lesser amounts of mercury, lead, and other impu-
rities from being released to the environment. But the largest environ-
mental impact from burning fossil fuels may well be the global
warming caused by the thousands of tons of CO2 released to the
atmosphere each day by a 1000-MW(e) coal-fired power plant.

1.2 Nuclear Reaction Fundamentals

While an in-depth understanding of the physics of the nucleus can be a
prodigious undertaking, a relatively simple model of the nucleus will
suffice for our study of nuclear power reactors. The standard model of
an atom consists of a very dense positively charged nucleus, sur-
rounded by negatively charged orbiting electrons. Compared to the
size of atoms, with diameters of roughly 10�8 cm, the size of the
nucleus is very small, of the order of 10�12 cm. For modeling purposes
we consider a nucleus to be made up of N neutrons and Z protons.
Both are referred to as nucleons, thus the nucleus has NþZ nucleons.
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The number of protons, Z, is the atomic number; it determines an
atom’s chemical properties, while NþZ is its atomic weight. Nuclei
with the same atomic number but different atomic weights, due to
different numbers of neutrons, are isotopes of the same chemical
element. We refer to a nucleus as NþZ

ZX, where X is the symbol used
in the periodic table to designate the chemical element.

Reaction Equations

Nuclear reactions are written as

Aþ B! CþD: ð1:1Þ

An example of a nuclear reaction is

4
2Heþ 6

3Li! 9
4Beþ 1

1H: ð1:2Þ

This equation does not tell us how likely the reaction is to take place,
or whether it is exothermic or endothermic. It does, however, illus-
trate two conservation conditions that always hold: conservation of
charge (Z) and conservation of nucleons (NþZ). Conservation of
charge requires that the sum of the subscripts on the two sides
of the equation be equal, in this case 2þ 3 = 4þ 1. Conservation of
nucleons requires that the superscripts be equal, in this case
4þ 6 = 9þ 1.

Nuclear reactions for the most part take place in two stages. First
a compound nucleus is formed from the two reactants, but that
nucleus is unstable and so divides, most often into two components.
This being the case, we might write Eq. (1.2) in two stages:

1
2Heþ 6

3Li! 10
5B! 9

4Beþ 1
1H: ð1:3Þ

However, in most of the reactions that we will utilize the compound
nucleus disintegrates instantaneously. Thus no harm is done in
eliminating the intermediate step from the reaction equation. The
exception is when the compound nucleus is unstable but disinte-
grates over a longer period of time. Then, instead of writing a single
equation, such as Eq. (1.3), we write two separate reaction equations.
For example, when a neutron is captured by indium, it emits only a
gamma ray:

1
0nþ 116

49In! 117
49Inþ 0

0�: ð1:4Þ

The gamma ray has neither mass nor charge. Thus we give it both
super- and subscripts of zero: 0

0�. Indium-117 is not a stable nuclide but
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rather undergoes radioactive decay, in this case the indium decays to
tin by emitting an electron, and an accompanying gamma ray:

117
49In! 117

50Snþ 0
�1eþ 0

0�: ð1:5Þ

The electron is noted by 0
�1e, with a subscript of �1, since is has the

opposite charge of a proton and a superscript of zero since its mass is
only slightly more than one two-thousandths of the mass of a proton
or neutron. A rudimentary way of looking at the nuclear model would
be to view the electron emission as resulting from one of the neutrons
within the nucleus decomposing into a proton and an electron.

Decay reactions such as Eq. (1.5) take place over time and are
characterized by a half-life, referred to as t1=2 . Given a large number
of such nuclei, half of them will decay in a time span of t1=2 , three-
fourths of them in 2t1=2 , seven-eighths of them in 3t1=2 , and so on.
The half-life of indium-117 is 54 minutes. Half-lives vary over many
orders of magnitude, depending on the nuclide in question. Some
radioactive materials with very long half-lives appear naturally in
the surface of the earth. For example,

234
92U! 230

90Thþ 4
2He ð1:6Þ

with t1=2 = 2.45� 105 years. We will return to the mathematical
description of half-lives and radioactive decay later in the chapter.

Gamma rays are sometimes omitted from reaction equations;
since they carry neither mass nor charge they do not affect the nucleon
and charge balances that we have thus far discussed. Gamma rays,
however, are important in the energy conservation law that we will
discuss subsequently. Their role may be understood as follows. Fol-
lowing a nuclear collision, reaction, or radioactive decay the nucleus
generally is left in an excited state. It then relaxes to its ground or
unexcited state by emitting one or more gamma rays. These rays are
emitted at distinct energies, corresponding to the quantum energy
levels of the nucleus. This nuclear phenomenon is analogous to the
situation in atomic physics where an orbital electron in an excited
state emits a photon as it drops to its ground state. Both gamma rays
and photons are electromagnetic radiation. However, they differ
greatly in energy. For while the photons emitted from the relaxation
of orbital electrons typically are in the electron volt range, the energies
of gamma rays are measured in millions of electron volts.

One remaining nuclear radiation, which we have not mentioned, is
the neutrino. In conjunction with electron emission a neutrino is cre-
ated, and carries off a part of the reaction energy. Since neutrinos do not
interact with matter to any significant extent, the energy they carry away
is for all practical purposes lost. However, they must be included in the
energy conservation considerations of the following section.
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Notation

Before proceeding, the introduction of some shorthand notation is
useful. Note from Eqs. (1.5) and (1.6) that the helium nucleus and the
electron are both emitted from the decay of radionuclides. When
emitted from nuclei these are referred to as alpha and beta particles,
respectively. A nearly universal convention is to simplify the nota-
tion by simply referring to them as � and � particles. In like manner
since gamma rays carry neither charge nor mass, and the mass and
charge of neutrons and protons are simple to remember, we refer to
them simply as �, n, and p, respectively. In summary, we will often
use the simplifications:

4
2He) �

0
�1 e) �

0
0� ) �

1
0n) n

1
1H) p: ð1:7Þ

Likewise the notation for two important isotopes of hydrogen,
deuterium and tritium, is also simplified as 2

1H) D and 3
1H) T.

Instead of using the form of Eq. (1.1) we may write reaction
equations more compactly as AðB;CÞD, where the nuclei of smaller
atomic number are usually the ones placed inside the parentheses.
Thus, for example,

1
0nþ 14

7N! 14
6Cþ 1

1p ð1:8Þ

may be compacted to
14
7Nðn; pÞ14

6C or alternately as
14
7N �!ðn;pÞ 14

6C.

Likewise radioactive decay such as in Eq. (1.5) is often expressed as
117
49In �!� 117

50Sn, where in all cases it is understood that some energy is

likely to be carried away as gamma rays and neutrinos.

Energetics

Einstein’s equation for the equivalence between mass and energy
governs the energetics of nuclear reactions:

Etotal ¼mc2; ð1:9Þ

where Etotal, m, and c represent the total energy of a nucleus, its mass,
and the speed of light, respectively. The mass in this equation, how-
ever, depends on the particles speed relative to the speed of light:

m ¼m0

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðv=cÞ2

q
; ð1:10Þ

where m0 is the rest mass, or the mass of the particle when its speed
v ¼ 0. For situations in which v� c, we may expand the square root
term in powers of ðv=cÞ2,
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m ¼m0 1þ 1=2ðv=cÞ2 þOðv=cÞ4
h i

ð1:11Þ

and retain only the first two terms. Inserting this result into Eq. (1.9),
we have

Etotal ¼m0c2 þ 1=2 m0v2: ð1:12Þ

The first term on the right is the rest energy, and the second is the
familiar form of the kinetic energy. The neutrons found in reactors, as
well as the nuclei, will always be nonrelativistic with v� c allowing
the use of Eq. (1.12). We hereafter use E to designate kinetic energy.
Thus for a nonrelativistic particle with rest mass MX, we have

E ¼ 1=2 MXv2: ð1:13Þ

Some high-energy electrons, however, may travel at speeds that are
a substantial fraction of the speed of light, and in these cases the relati-
vistic equations must be used. We then must determine Etotal from Eqs.
(1.9) and (1.10) and take E ¼ Etotal �m0c2. Finally gamma rays have no
mass and travel at the speed of light. Their energy is given by

E ¼ h� ð1:14Þ

where h is Plank’s constant and � is their frequency.
We are now prepared to apply the law that total energy must be

conserved. For the reaction of Eq. (1.1) this is expressed as

EA þMAc2 þ EB þMBc2 ¼ EC þMCc2 þ ED þMDc2; ð1:15Þ

where EA and MA are the kinetic energy and rest mass of A, and
likewise for B, C, and D. If one of the reactants is a gamma ray, then
for it EþMc2 is replaced by h� since it carries no mass. The Q of a
reaction, defined as

Q ¼ EC þ ED � EA � EB; ð1:16Þ

determines whether the reaction is exothermic or endothermic. With
a positive Q kinetic energy is created, and with negative Q it is lost.
Equation (1.15) allows us to write Q in terms of the masses as

Q ¼ MA þMB �MC �MDð Þc2: ð1:17Þ

A positive Q indicates an exothermic reaction, which creates kinetic
energy and results in a net loss of rest mass. Conversely, endothermic
reactions result in a net increase in rest mass. Strictly speaking
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these same arguments apply to chemical as to nuclear reactions.
However, when one is dealing with the energy changes of the order of
a few eV in chemical reactions, as opposed to changes of MeV magnitudes
in nuclear reactions, the changes in mass are much too small to measure.

1.3 The Curve of Binding Energy

The foregoing conservation arguments do not indicate which nuclear
reactions are likely to be exothermic or endothermic. We must
examine mass defects and binding energies to understand which
nuclear reactions produce rather than absorb energy. If we add the
masses of the Z protons and N neutrons that make up a nucleus, say
of element X, we find that the weights of these constituent masses
exceed the weight MX of the nucleus as a whole. The difference is
defined as the mass defect:

D ¼ Z MP þN MN �MX; ð1:18Þ

which is positive for all nuclei. Thus the nucleus weighs less than
the neutrons and protons from which it is composed. Multiplying
the mass defect by the square of the speed of light then yields
units of energy: Dc2. This is the binding energy of the nucleus. We
may interpret it as follows. If the nucleus could be pulled apart
and separated into its constituent protons and neutrons, there
would be an increase in mass by an amount equal to the mass
defect. Thus an equivalent amount of energy—the binding
energy—would need to be expended to carry out this disassembly.
All stable nuclei have positive binding energies holding them
together. If we normalize the binding energy to the number of
nucleons, we have

Dc2
�
ðN þ ZÞ: ð1:19Þ

This quantity—the binding energy per nucleon—provides a mea-
sure of nuclear stability; the larger it is the more stable the nucleus
will be.

Figure 1.1 is the curve of binding energy per nucleon. At low
atomic mass the curve rises rapidly. For larger atomic weights, above
40 or so, the curve becomes quite smooth reaching a maximum of
slightly less than 9 MeV and then gradually decreases. Exothermic
reactions are those in which result in reaction products with
increased binding energy, going from less to more stable nuclei.
Two classes of such reaction are candidates for energy production:
fusion reactions in which two light weight nuclei combine to form
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a heaver nuclei, higher on the binding energy curve, and fission
reactions in which a heavy nucleus splits to form two lighter nuclei,
each with a higher binding energy per nucleon.

1.4 Fusion Reactions

Equation (1.2) is an example of a charged particle reaction, since both
nuclei on the left have atomic numbers greater than zero. Such
reactions are difficult to bring about, for after the orbiting electrons
are stripped from the nuclei, the positive charges on the nuclei
strongly repel one another. Thus to bring about a reaction such as
Eq. (1.2), the nuclei must collide at high speed in order to overpower
the coulomb repulsion and make contact. The most common meth-
ods for achieving such reactions on earth consist of using particle
accelerations to impart a great deal of kinetic energy to one of the
particles and then slam it into a target made of the second material.
An alternative is to mix the two species and bring them to a very high
temperature, where they become a plasma. Since the average kinetic
energy of a nucleus is proportional to its absolute temperature, if high
enough temperatures are reached the electrical repulsion of the
nuclei is overpowered by the kinetic energy, and a thermonuclear
reaction results.

500
0

2

4

6

8

10

100

Mass number

2H

6Li

4He

12C
238U

16O

B
in

di
ng

 e
ne

rg
y 

pe
r 

nu
cl

eo
n,

 M
eV

150 200 250

FIGURE 1.1 Curve of binding energy per nucleon.
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Two reactions based on fusing isotopes of hydrogen have been
widely considered as a basis for energy production, deuterium–
deuterium and deuterium–tritium:

D-D
2

1
Hþ 2

1
H! 3

2
Heþ 1

0
nþ 3:25 MeV;

2

1
Hþ 2

1
H! 3

1
Hþ 1

1
Hþ 4:02 MeV;

D-T
2

1
Hþ 3

1
H! 4

2
Heþ 1

0
nþ 17:59 MeV:

ð1:20Þ

The difficulty is that these are charged particle reactions. Thus for the
nuclei to interact the particles must be brought together with very high
kinetic energies in order to overcome the coulomb repulsion of the
positively charged nuclei. As a practical matter, this cannot be accom-
plished using a particle accelerator, for the accelerator would use much
more energy than would be produced by the reaction. Rather, means
must be found to achieve temperatures comparable to those found in
the interior of the sun. For then the particles’ heightened kinetic energy
would overcome the coulomb barrier and thermonuclear reactions
would result. While thermonuclear reactions are commonplace in the
interior of stars, on earth the necessary temperatures have been
obtained to date only in thermonuclear explosions and not in the con-
trolled manner that would be needed for sustained power production.

Long-term efforts continue to achieve controlled temperatures
high enough to obtain power from fusion reactions. Investigators
place most emphasis on the D-T reaction because it becomes feasible
at lower temperatures than the D-D reaction. The D-T reaction,
however, has the disadvantage that most of the energy release
appears as the kinetic energy of 14-MeV neutrons, which damage
whatever material they impact and cause it to become radioactive.

We will not consider fusion energy further here. Rather, we will
proceed to fission reactions, in which energy is released by splitting a
heavy nucleus into two lighter ones that have greater binding ener-
gies per nucleon. Neutrons may initiate fission. Thus there is no
requirement for high temperatures, since there is no electrical repul-
sion between the neutron and the nucleus. Figuratively speaking, the
neutron may slide into the nucleus without coulomb resistance.

1.5 Fission Reactions

Consider now a fission reaction for uranium-235 as shown in Fig. 1.2.
From the reaction come approximately 200 MeV of energy, two or
three neutrons, two lighter nuclei (called fission fragments), and a
number of gamma rays and neutrinos. The fission fragments undergo
radioactive decay producing additional fission products. The energy
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produced from fission, the neutrons, and the fission products all play
critical roles in the physics of nuclear power reactors. We consider
each of them in turn.

Energy Release and Dissipation

The approximately 200 MeV of energy released by a fission reaction
appears as kinetic energy of the fission fragments, neutrons, and
gamma rays, as well as that from the beta particles, gamma rays,
and neutrinos emitted as the fission products undergo radioactive
decay. This kinetic energy is dissipated to heat nearly instanta-
neously as the reaction products interact with the surrounding
media. The forms that the interactions take, however, differ signifi-
cantly according to whether the particles are electrically charged or
neutral.

The fission fragments are highly charged, for the high speeds at
which they emerge from fission cause electrons to be ripped from
their shells as they encounter surrounding atoms. Charged particles
interact strongly with the surrounding atoms or molecules traveling
at high speed, causing them to ionize. Creation of ion pairs requires
energy, which is lost from the kinetic energy of the charged particle
causing it to decelerate and ultimately come to rest. The positive ions
and free electrons created by the passage of the charged particle will
subsequently reunite, liberating energy in the form of heat. The
distance required to bring the particle to rest is referred to as its
range. The range of fission fragments in solids amounts to only a
few microns, and thus most of the energy of fission is converted to
heat very close to the point of fission. Other charged particles, such
as the alpha and beta particles emitted in radioactive decay, behave
analogously, rapidly decelerating and coming to rest; for lighter
charged particles the ranges are somewhat longer.

Neutron U235 U236

sec

U236

Fissioning

Fission
fragment

Neutron

Neutron

Neutron

Fission fragment

1
10,000,000

Gamma radiation

FIGURE 1.2 A fission reaction.
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Neutrons, gamma rays, and neutrinos are neutral and behave quite
differently. They are affected neither by the negative charge of electrons
surrounding a nucleus nor the electric field caused by a positively
charged nucleus. They thus travel in straight lines until making
a collision, at which point they scatter or are absorbed. If absorbed,
they cease to exist, with their energy dissipated by the collision. If they
scatter, they change direction and energy, and continue along another
straight line. The flight paths between collisions amount to very large
numbers of interatomic distances. With neutrinos these distances
are nearly infinite; for neutrons and gamma rays traveling in solids
they are typically measured in centimeters. Neutrons scatter only from
nuclei, whereas gamma rays are scattered by electrons as well. Except
at very low energies, a neutron will impart significant kinetic energy to
the nucleus, causing it to become striped of orbital electrons and there-
fore charged. The electrons that gain kinetic energy from gamma ray
collisions, of course, are already charged. In either case the collision
partner will decelerate and come to rest in distances measured in
microns, dissipating its energy as heat very close to the collision site.

More than 80% of the energy released by fission appears as the
kinetic energy of the fission fragments. The neutrons, beta particles,
and gamma and neutrino radiation account for the remainder. The
energy of the neutrinos, however, is lost because they travel nearly
infinite distances without interacting with matter. The remainder of
the energy is recovered as heat within a reactor. This varies slightly
between fissionable isotopes; for uranium-235 it is approximately
193 MeV or � ¼ 3:1�10�11 J/fission.

The difference in energy dissipation mechanisms between
charged and neutral particles also causes them to create biological
hazards by quite different mechanisms. The alpha and beta radiation
emitted by fission products or other radioisotopes are charged parti-
cles. They are referred to as nonpenetrating radiation since they
deposit their energy over a very short distance or range. Alpha or
beta radiation will not penetrate the skin and therefore is not a
significant hazard if the source is external to the body. They pose
more serious problems if radioisotopes emitting them are inhaled or
ingested. Then they can attack the lungs and digestive tract, and
other organs as well, depending on the biochemical properties of
the radioisotope. Radiostrontium, for example, collects in the bone
marrow and does its damage there, whereas for radioiodine the
thyroid gland is the critical organ. In contrast, since neutral particles
(neutrons and gamma rays) travel distances measured in centimeters
between collisions in tissue, they are primarily a hazard from
external sources. The damage neutral particles do is more uniformly
distributed over the whole body, resulting from the ionization of
water and other tissue molecules at the points where neutrons col-
lide with nuclei or gamma rays with electrons.
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Neutron Multiplication

The two or three neutrons born with each fission undergo a num-
ber of scattering collisions with nuclei before ending their lives in
absorption collisions, which in many cases cause the absorbing
nucleus to become radioactive. If the neutron is absorbed in a
fissionable material, frequently it will cause the nucleus to fission
and give birth to neutrons of the next generation. Since this pro-
cess may then be repeated to create successive generations of
neutrons, a neutron chain reaction is said to exist. We characterize
this process by defining the chain reaction’s multiplication, k, as
the ratio of fission neutrons born in one generation to those born
in the preceding generation. For purposes of analysis, we also
define a neutron lifetime in such a situation as beginning with
neutron emission from fission, progressing—or we might say
aging—though a succession of scattering collisions, and ending
with absorption.

Suppose at some time, say t = 0, we have no neutrons produced
by fission; we shall call these the zeroth generation. Then the first
generation will contain kno neutrons, the second generation k2no,
and so on: the ith generation will contain kino. On average, the time
at which the ith generation is born will be t ¼ i � l, where l is the
neutron lifetime. We can eliminate i between these expressions to
estimate the number of neutrons present at time t:

nðtÞ ¼ nokt=l: ð1:21Þ

Thus the neutron population will increase, decrease, or remain the
same according to whether k is greater than, less than, or equal to
one. The system is then said to be supercritical, subcritical, or criti-
cal, respectively.

A more widely used form of Eq. (1.21) results if we limit our
attention to situations where k is close to one: First note that the
exponential and natural logarithm are inverse functions. Thus for
any quantity, say x, we can write x ¼ exp½lnðxÞ� Thus with x ¼ kt=l

we may write Eq. (1.21) as

nðtÞ ¼ no exp½ðt=lÞ lnðkÞ�: ð1:22Þ

If k is close to one, that is, k� 1j j � 1, we may expand lnðkÞ about 1
as lnðkÞ � k� 1, to yield:

nðtÞ ¼ no exp½ðk� 1Þt=l�: ð1:23Þ

Thus the progeny of the neutrons created at time zero behaves
exponentially as indicated in Fig. 1.3. Much of the content of the
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following chapters deals with the determination of the multiplica-
tion, how it depends on the composition and size of a reactor, and
how the time-dependent behavior of a chain reaction is affected by
the presence of the small fraction of neutrons whose emission
following fission is delayed. Subsequently we will examine changes
in multiplication caused by changes in temperature, fuel depletion,
and other factors central to the design and operation of power
reactors.

Fission Products

Fission results in many different pairs of fission fragments. In most
cases one has a substantially heavier mass than the other. For exam-
ple, a typical fission reaction is

nþ 235

92
U! 140

54
Xeþ 94

38
Srþ 2nþ 200 MeV: ð1:24Þ

Fission fragments are unstable because they have neutron to
proton ratios that are too large. Figure 1.4, which plots neutrons
versus protons, indicates an upward curvature in the line of stable
nuclei, indicating that the ratio of neutrons to protons increases
above 1:1 as the atomic number becomes larger (e.g., the prominent
isotopes of carbon and oxygen are 12

6C and 16
8O but for lead and

thorium they are 207
82Pb and 232

90Th). As a nucleus fissions the ratio of
neutrons to protons would stay the same in the fission fragments—
as indicated by the dashed line in Fig. 1.4—were it not for the 2 to
3 neutrons given off promptly at the time of fission. Even then, the
fission fragments lie above the curve of stable nuclei. Less than 1%
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t

FIGURE 1.3 Neutron population versus time in (A) supercritical system,
(B) critical system, (C) subcritical system.
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of these fragments decay by the delayed emission of neutrons. The
predominate decay mode is through beta emission, accompanied by
one or more gamma rays. Such decay moves the resulting nuclide
toward the line of stable nuclei as the arrows in Fig. 1.4 indicate.
However, more than one decay is most often required to arrive at
the range of stable nuclei. For the fission fragments in Eq. (1.24) we
have

140

54
Xe �!� 140

55
Cs �!� 140

56
Ba �!� 140

57
La �!� 140

58
Ce ð1:25Þ

and

94

38
Sr �!� 94

39
Y �!� 94

40
Zr: ð1:26Þ

Each of these decays has a characteristic half-life. With some notable
exceptions the half-lives earlier in the decay chain tend to be shorter
than those occurring later. The fission fragments taken together with
their decay products are classified as fission products.
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FIGURE 1.4 Fission fragment instability.
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Equation (1.24) shows only one example of the more than 40
different fragment pairs that result from fission. Fission fragments
have atomic mass numbers between 72 and 160. Figure 1.5 shows
the mass frequency distribution for uranium-235, which is typical
for other fissionable materials provided the neutrons causing fis-
sion have energies of a few eV or less. Nearly all of the fission
products fall into two broad groups. The light group has mass
numbers between 80 and 110, whereas the heavy group has mass
numbers between 125 and 155. The probability of fissions yielding
products of equal mass increases with the energy of the incident
neutron, and the valley in the curve nearly disappears for fissions
caused by neutrons with energies in the tens of MeV. Because
virtually all of the 40 fission product pairs produce characteristic
chains of radioactive decay from successive beta emissions, more
than 200 different radioactive fission products are produced in a
nuclear reactor.

Roughly 8% of the 200 MeV of energy produced from fission is
attributable to the beta decay of fission products and the gamma rays
associated with it. Thus even following shutdown of a chain reaction,
radioactive decay will continue to produce significant amounts of
heat. Figure 1.6 shows the decay heat for a reactor that has operated at
a power P for a long time. The heat is approximated by the Wigner-
Way formula as
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FIGURE 1.5 Fission product yields for uranium-235.
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PdðtÞ ¼ 0:0622 Po t�0:2 � ðto þ tÞ�0:2
h i

ð1:27Þ

where

PdðtÞ= power generation due to beta and gamma rays,
Po = power before shutdown,
to= time, in seconds, of power operation before shutdown,
t = time, in seconds, elapsed since shutdown.

As a result of decay heat, cooling must be provided to prevent over-
heating of reactor fuel for a substantial period of time following
power plant shutdown.

1.6 Fissile and Fertile Materials

In discussing nuclear reactors we must distinguish between two
classes of fissionable materials. A fissile material is one that will
undergo fission when bombarded by neutrons of any energy. The
isotope uranium-235 is a fissile material. A fertile material is one
that will capture a neutron, and transmute by radioactive decay into a
fissile material. Uranium-238 is a fertile material. Fertile isotopes
may also undergo fission directly, but only if impacted by a high-
energy neutron, typically in the MeV range. Thus fissile and fertile
materials together are defined as fissionable materials. Fertile mate-
rials by themselves, however, are not capable of sustaining a chain
reaction.

Uranium-235 is the only naturally occurring fissile material.
Moreover, it constitutes only 0.7% of natural uranium. Except for
trace amounts of other isotopes, uranium-238 constitutes the
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FIGURE 1.6 Heat produced by decay of fission products.
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remaining 99.3% of natural uranium. By capturing a neutron,
uranium-238 becomes radioactive and decays to plutonium-239:

nþ 238

92
U�! 239

92
U �!� 239

93
Np �!� 239

94
Pu: ð1:28Þ

If a neutron of any energy strikes plutonium-239, there is a strong
probability that it will cause fission. Thus it is a fissile isotope.
Plutonium-239 itself is radioactive. However its half-life of 24.4
thousand years is plenty long enough that it can be stored and used
as a reactor fuel. There is a smaller probability that the plutonium
will simply capture the neutron, resulting in the reaction

nþ 239

94
Pu! 240

94
Pu: ð1:29Þ

Plutonium-240, however, is again a fertile material. If it captures a
second neutron it will become plutonium-241, a fissile material.

In addition to uranium-238, a second fertile material occurring in
nature is thorium-232. Upon capturing a neutron it undergoes decay
as follows:

nþ 232

90
Th�! 233

90
Th �!� 233

91
Pa �!� 233

92
U; ð1:30Þ

yielding the fissile material uranium-233. This reaction is of particu-
lar interest for sustaining nuclear energy over the very long term
since the earth’s crust contains substantially more thorium than
uranium.

Fissile materials can be produced by including the parent fertile
material in a reactor core. Returning to Fig. 1.2, we see that if more
than two neutrons are produced per fission—and the number is about
2.4 for uranium-235—then there is the possibility of utilizing one
neutron to sustain the chain reaction, and more than one to convert
fertile to fissile material. If this process creates more fissile material
than it destroys, the reactor is said to be a breeder; it breeds more
fissile material than it consumes.

Since most power reactors are fueled by natural or partially
enriched uranium, there is a bountiful supply of uranium-238 in
the reactor for conversion to plutonium. However, as subsequent
chapters will detail, to sustain breeding the designer must prevent a
large fraction of the fission neutrons from being absorbed in nonfis-
sile materials or from leaking from the reactor. This is a major
challenge. Most reactors burn more fissile material than they create.

Because half-lives, cross sections, and other properties of fissile
and fertile isotopes are ubiquitous to reactor theory, the following
unambiguous shorthand frequently is used for their designation.
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Their properties are designated by the last digits of their atomic
charge, and atomic mass: Thus properties of fissionable element
abc
deX are simply designated sub- or superscripts ‘‘ec.’’ For example,

232
90Th! 02; 235

92U! 25; 238
92U! 28; and 239

94Pu! 49.
One question remains: Where do the neutrons come from to

initiate a chain reaction? Some neutrons occur naturally, as the result
of very high-energy cosmic rays colliding with nuclei and causing
neutrons to be ejected. If no other source were present these would
trigger a chain reaction. Invariably, a stronger and more reliable source
is desirable. Although there are a number of possibilities, probably
the most widely used is the radium beryllium source. It combines
the alpha decay of a naturally occurring radium isotope

226

88
Ra �!� 222

86
Rn; ð1:31Þ

which has a half-life of 1600 years with the reaction

9

4
Be �!ð�;nÞ

12

6
C ð1:32Þ

to provide the needed neutrons.

1.7 Radioactive Decay

To understand the behavior of fission products, the rates of conver-
sion of fertile to fissile materials, and a number of other phenomena
related to reactor physics we must quantify the behavior of radio-
active materials. The law governing the decay of a nucleus states that
the rate of decay is proportional to the number of nuclei present. Each
radioisotope—that is, an isotope that undergoes radioactive decay—
has a characteristic decay constant �. Thus if the number of nuclei
present at time t is NðtÞ, the rate at which they decay is

d

dt
NðtÞ ¼ ��NðtÞ: ð1:33Þ

Dividing by NðtÞ, we may integrate this equation from time zero to t,
to obtain

Z NðtÞ

Nð0Þ
dN=N ¼ ��

Z t

0
dt; ð1:34Þ

where Nð0Þ is the initial number of nuclei. Noting that dN=N ¼
d lnðNÞ, Eq. (1.34) becomes
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ln NðtÞ=Nð0Þ½ � ¼ ��t; ð1:35Þ

yielding the characteristic exponential rate of decay,

NðtÞ ¼ Nð0Þ expð��tÞ: ð1:36Þ

Figure 1.7 illustrates the exponential decay of a radioactive
material.

The half-life, t1=2
, is a more intuitive measure of the times over

which unstable nuclei decay. As defined earlier, t1=2
is the length

of time required for one-half of the nuclei to decay. Thus it may
be obtained by substituting Nðt1=2

Þ ¼ Nð0Þ=2 into Eq. (1.35) to yield
lnð1=2Þ ¼ �0:693 ¼ ��t1=2

, or simply

t1=2
¼ 0:693=�: ð1:37Þ

A second, less-used measure of decay time is the mean time to decay,
defined by

�t ¼
Z 1

0
tNðtÞdt

,Z 1
0

NðtÞdt ¼ 1=�: ð1:38Þ

Before proceeding, a word is in order concerning units.
Normally we specify the strength of a radioactive source in terms
of curies (Ci) where 1 Ci is defined as 3.7�1010 disintegrations per
second, which is the rate decay of one gram of radium-226; the
becquerel (Bq), defined as one disintegration per second, has also
come into use as a measure of radioactivity. To calculate the
number of nuclei present we first note that Avogadro’s number,

0

0.25

0.5

0.75

1

N
 (t

  )/
 N

 (0
 )

λt
0 1 2 3 4

FIGURE 1.7 Exponential decay of a radionuclide.
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No ¼ 0:6023 � 1024, is the number of atoms in one gram molecular
weight, and thus the total number of atoms is just mNo=A where
m is the mass in grams and A is the atomic mass of the isotope. The
concentration in atoms/cm3 is then �No=A, where � is the density
in grams/cm3.

Saturation Activity

Radionuclides are produced at a constant rate in a number of situa-
tions. For example, a reactor operating at constant power produces
radioactive fission fragments at a constant rate. In such situations,
we determine the time dependence of the inventory of an isotope
produced at a rate of Ao nuclei per unit time by adding a source term
Ao to Eq. (1.33):

d

dt
NðtÞ ¼ Ao � �NðtÞ: ð1:39Þ

To solve this equation, multiply both sides by an integrating factor of
expð�tÞ. Then utilizing the fact that

d

dt
NðtÞ expð�tÞ½ � ¼ d

dt
NðtÞ þ �NðtÞ

� �
expð�tÞ; ð1:40Þ

we have

d

dt
NðtÞ expð�tÞ½ � ¼ Ao expð�tÞ: ð1:41Þ

Now if we assume that initially there are no radionuclides present,
that is, Nð0Þ ¼ 0, we may integrate this equation between 0 and t and
obtain

�NðtÞ ¼ Ao 1� expð��tÞ½ �; ð1:42Þ

where �NðtÞ is the activity measured in disintegrations per unit time.
Note that initially the activity increases linearly with time, since for
�t�1, expð��tÞ� 1��t. After several half-lives, however, the expo-
nential term becomes vanishingly small, and the rate of decay is then
equal to the rate of production or �Nð1Þ ¼ Ao. This is referred to as
the saturation activity. Figure 1.8 illustrates the buildup to saturation
activity given by Eq. (1.42).

To illustrate the importance of saturation activity, consider
iodine-131 and strontium-90, which are two of the more important
fission products stemming from the operation of power reactors.
Assume a power reactor produces them at rates of 0:85 � 1018 nuclei/s
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and 1:63 � 1018 nuclei/s, respectively, and ask how many curies of
activity each produces after 1 week, 1 month, and 1 year of operation.

The two isotopes have half-lives of 8.05 days and 10,628 days. Thus
from Eq. (1.37) we have �I ¼ 0:0861/day, and �Sr ¼ 6:52 � 10�5/day. To
express the activity in curies we divide Eq. (1.42) by 3:7 � 1010 nuclei/s.
Thus AI ¼ 2:30 � 107Ci, and ASr ¼ 4:40 � 107Ci. We take t = 7 days, 30
days, and 365 days (i.e., 1 week, 1 month, and 1 year) in Eq. (1.42) and
obtain:

�INIð7Þ ¼ 10:4 � 106 Ci; �SrNSrð7Þ ¼ 2:01 � 103 Ci
�INIð30Þ ¼ 21:2 � 106 Ci; �SrNSrð30Þ ¼ 8:61 � 104 Ci

�INIð365:25Þ ¼ 23:0 � 106 Ci; �SrNSrð365:25Þ ¼ 1:04 � 106 Ci:

The shorter half-lived iodine-131 has nearly reached saturation at
the end of 1 month, and remains constant thereafter with a value that
is proportional to the reactor power. In contrast the activity of
strontium-90, with a much longer half-life, increases linearly with
time and will continue to do so for a number of years. The plot of activity
versus �t shown in Fig. 1.8 illustrates these effects more clearly. At t = 1
year, �Srt¼ 6:52 � 10�5 � 365:25¼ 0:0238�1, which is far short of the
time required to reach saturation. Thus over the first year—and for
substantially longer—the inventory of strontium-90 will grow in propor-
tion to the total energy that the reactor has produced since start-up. In
contrast, at 1 month �It ¼ 0:0861 � 30 ¼ 2:58 and thus, as Fig. 1.8 indi-
cates, iodine-131 is very close to saturation.

Decay Chains

The foregoing reactions may be represented as a simple decay pro-
cess: A! BþC. As Eqs. (1.25) and (1.26) indicate, however, chains of
decay often occur. Consider the two-stage decay
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FIGURE 1.8 Activity versus time for a radionuclide produced at a constant
rate.
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A! BþC

&
Dþ E

ð1:43Þ

and let the decay constants of A and B be denoted by �A and �B. For
isotope A we already have the solution in the form of Eq. (1.36).
Adding subscripts to distinguish it from B, we have

NAðtÞ ¼ NAð0Þ expð��AtÞ; ð1:44Þ

and �ANAðtÞ is the number of nuclei of type A decaying per unit time.
Since for each decay of a nucleus of type A a nucleus of type B is
produced, the rate at which nuclei of type B is produced is also
�ANAðtÞ. Likewise if there are NBðtÞ of isotope B present, its rate of
decay will be �BNBðtÞ. Thus the net rate of creation of isotope B is

d

dt
NBðtÞ ¼ �ANAðtÞ � �BNBðtÞ: ð1:45Þ

To solve this equation, we first replace NAðtÞ by Eq. (1.44). We
then move �BNBðtÞ to the left and use the same integrating factor
technique as before: We multiply both sides of the equation by
expð�BtÞ and employ Eq. (1.40) to simplify the left-hand side:

d

dt
NBðtÞ expð�BtÞ½ � ¼ �ANAð0Þ exp½ð�B � �AÞt�: ð1:46Þ

Multiplying by dt and then integrating from 0 to t yields

NBðtÞ expð�BtÞ �NBð0Þ ¼
�A

�B � �A
NAð0Þ exp½ð�B � �AÞt� � 1f g: ð1:47Þ

If we assume that the isotope B is not present initially so that
NBð0Þ ¼ 0, we have

NBðtÞ ¼
�A

�B � �A
NAð0Þ e��At � e��Bt

� �
: ð1:48Þ

Figure 1.9 shows the time-dependent behavior of the activities
AAðtÞ¼�ANAðtÞ and ABðtÞ¼�BNBðtÞ for cases for which �A��B,
�A��B, and �Affi�B. If �A��B, that is, if the half-life of A is much
longer than that of B, then expð��BtÞ decays much faster than
expð��AtÞ and after a few half-lives of B we obtain from Eqs. (1.44)
and (1.48) �BNBðtÞ��ANAðtÞ, meaning that the decay rates of A and B
are approximately equal. This is referred to as secular equilibrium.
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On the other hand, if �A��B, that is, if the half-life of A is much
shorter than that of B, then expð��AtÞ will decay much faster than
expð��BtÞ, and after a few half-lives of A we can assume that it has
vanished. In that case Eq. (1.48) reduces to NBðtÞ�NAð0Þ expð��BtÞ.
Of course, if �Affi�B, neither of these approximations hold.
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Problems

1.1. The following isotopes frequently appear in reactor cores. What
are their chemical symbols and names?

a.
90
38? b:

91
40? c:

137
55? d:

157
64? e:

178
72? f:

137
93? g:

241
95?

1.2. There are several possible modes of disintegration for the
unstable nucleus 27

13
Al. Complete the following reactions:

27
13

Al! ?þ 1
0
n, 27

13
Al! ?þ 1

1
p, 27

13
Al! ?þ 2

1
H, 27

13
Al! ?þ 4

2
He

1.3. Complete the following reactions: 9
?
Beþ 4

2
He! ?þ 1

1
H,

60
?
Co! ?þ 0

�1e, 7
3
Liþ 1

1
H! ?þ 4

2
He, 10

5
Bþ 4

2
He! ?þ 1

1
H

1.4. What target isotope must be used for forming the compound
nucleus 60

28
Ni if the incident projective is

a. an alpha particle
b. a proton
c. a neutron?

1.5. The average kinetic energy of a fission neutron is 2.0 MeV.
Defining the kinetic energy as Etotal �m0c2, what is the
percent error introduced into the kinetic energy from using
Eq. (1.12) instead of Eq. (1.9)?

1.6. Consider the following nuclear and chemical reactions:

a. A uranium-235 nucleus fissions as a result of being bombarded
by a slow neutron. If the energy of fission is 200 MeV,
approximately what fraction of the reactant’s mass is
converted to energy?

b. A carbon-12 atom undergoes combustion following collision
with an oxygen-16 molecule, forming carbon dioxide. If 4 eV
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of energy is released, approximately what fraction of the
reactant’s mass is converted to energy?

1.7. a. If plutonium-239 captures two neutrons followed by a beta
decay, what isotope is produced?

b. If plutonium-239 captures three neutrons, followed by two
beta decays, what isotope is produced?

1.8. To first approximation a nucleus may be considered to be a
sphere with the radius in cm given by R¼ 1:25 � 10�13A1=3cm,
where A is the atomic mass number. What are the radii of

a. hydrogen
b. carbon-12
c. xenon-140
d. uranium-238?

1.9. A reactor operates at a power of 103 MW(t) for 1 year. Calculate
the power from decay heat

a. 1 day following shutdown,
b. 1 month following shutdown,
c. 1 year following shutdown.
d. Repeat a, b, and c, assuming only one month of operation,

and compare results.

1.10. In Eq. (1.28) the uranium-239 and neptunium-239 both undergo
beta decay with half-lives of 23.4 m and 2.36 d, respectively. If
neutron bombardment in a reactor causes uranium-239 to be
produced at a constant rate, how long will it take plutonium-239
to reach

a. ½ of its saturation activity
b. 90% of its saturation activity
c. 99% of its saturation activity? (Assume that plutonium-239

undergoes no further reactions.)

1.11. Uranium-238 has a half-life of 4.51� 109 yr, whereas the half-
life of uranium-235 is only 7.13� 108 yr. Thus since the earth
was formed 4.5 billion years ago, the isotopic abundance of
uranium-235 has been steadily decreasing.

a. What was the enrichment of uranium when the earth was
formed?

b. How long ago was the enrichment 4%?

1.12. How many curies of radium-226 are needed in the reaction
given in Eqs. (1.31) and (1.32) to produce 106 neutrons/s?
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1.13. Suppose that a specimen is placed in a reactor, and neutron
bombardment causes a radioisotope to be produced at a rate of
2� 1012 nuclei/s. The radioisotope has a half-life of 2 weeks.
How long should the specimen be irradiated to produce 25 Ci of
the radioisotope?

1.14. The decay constant for the radioactive antimony isotope 124
51

Sb
is 1.33� 10�7 s�1.

a. What is its half-life in years?
b. How many years would it take for it to decay to 0.01% of its

initial value?
c. If it were produced at a constant rate, how many years would

it take to reach 95% of its saturation value?

1.15. Approximately what mass of cobalt-60, which has a half-life of
5.26 yr, will have the same number of curies as 10 g of
strontium-90, which has a half-life of 28.8 yr?

1.16. Ninety percent of an isotope decays in 3 hours.

a. What fraction decays in 6 hours?
b. What is the half-life?
c. If the isotope is produced in a reactor at the rate of 109 nuclei

per hour, after a long time how many nuclei will be present
in the reactor?

1.17. A fission product A with a half-life of 2 weeks is produced at
the rate of 5.0� 108 nuclei/s in a reactor.

a. What is the saturation activity in disintegrations per second?
b. What is the saturation activity in curies?
c. How long after the start-up of the reactor will 90 percent of

the saturation activity be reached?
d. If the fission product undergoes decay A!B!C, where B

also has a 2-week half-life, what will be the activity of B
after 2 weeks?

1.18. Suppose the radioactive cobalt and strontium sources in
problem 1.15 are allowed to decay for 10 years. It is found
that after 10 years 1.0 Ci of cobalt-60 remains. How many
curies of strontium-90 will remain?

1.19. Polonium-210 decays to lead-206 by emitting an alpha particle
with a half-life of 138 days, and an energy of 5.305 MeV.

a. How many curies are there in 1 g of pure polonium?
b. How many watts of heat are produced by 1 g of polonium?
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1.20 Consider the fission product chain A �!� B �!� C with decay
constants �A and �B. A reactor is started up at t = 0 and
produces fission product A at a rate of Ao thereafter. Assuming
that B and C are not produced directly from fission:

a. Find NAðtÞ and NBðtÞ.
b. What are NAð1Þ and NBð1Þ?

Nuclear Reactions 27



CHAPTER 2

Neutron Interactions

2.1 Introduction

The behavior of the neutrons emitted from fission as they interact
with matter determines the nature of neutron chain reactions, for to
create a sustained chain reaction, on average one of the two or more
neutrons created by each fission must survive to create a subsequent
fission. The kinetic energy of the neutrons as well as the manner in
which they travel though space and interact with nuclei lie at the
basis of their behavior in nuclear reactors. At the core of neutron
interactions is the concept of the cross section—that is, the cross-
sectional area of a nucleus as it appears to an oncoming neutron.
Such cross sections, their dependence on the neutron’s kinetic
energy, and the relative probabilities that a collision will result in
scattering, capture, or fission form the basic physical data upon
which the properties of chain reactions rest.

This chapter first describes neutrons’ behavior as they travel
through space and defines microscopic and macroscopic cross sec-
tions. We then distinguish between cross sections for scattering,
absorption, and other reaction types. After determining the range of
kinetic energies over which neutrons may exist in a reactor, we
describe the dependence of cross section on neutron energy, and
then conclude the chapter by describing the distributions of energies
of scattered neutrons.

2.2 Neutron Cross Sections

Neutrons are neutral particles. Neither the electrons surrounding a
nucleus nor the electric field caused by a positively charged nucleus
affect a neutron’s flight. Thus neutrons travel in straight lines,
deviating from their path only when they actually collide with a
nucleus to be scattered into a new direction or absorbed. The life of a
neutron thus consists typically of a number of scattering collisions
followed by absorption at which time its identity is lost. To a

29



neutron traveling through a solid, space appears to be quite empty.
Since an atom has a radius typically of the order of 10�8 cm and a
nucleus only of the order of 10�12 cm, the fraction of the cross-
sectional area perpendicular to a neutron’s flight path blocked by a
single tightly packed layer of atoms would be roughly (10�12)2/
(10�8)2 = 10�8, a small fraction indeed. Thus neutrons on average
penetrate many millions of layers of atoms between collisions with
nuclei. If the target material is thin—say, a piece of paper—nearly
all of neutrons would be expected to pass through it without making
a collision.

Microscopic and Macroscopic Cross Sections

To examine how neutrons interact with nuclei, we consider a
beam of neutrons traveling in the x direction as indicated in
Fig. 2.1. If the beam contains n000 neutrons per cm3 all traveling
with a speed v in the x direction, we designate I ¼ n000v as the
beam intensity. With the speed measured in cm/s, the beam
intensity units are neutrons/cm2/s. Assume that if a neutron
collides with a nucleus it will either be absorbed or be scattered
into a different direction. Then only neutrons that have not col-
lided will remain traveling in the x direction. This causes the
intensity of the uncollided beam to diminish as it penetrates
deeper into the material.

Let IðxÞ represent the beam intensity after penetrating x cm into
the material. In traveling an additional infinitesimal distance dx,
the fraction of neutrons colliding will be the same as the fraction of

I (0 ) I (x ) I (x + dx )

dxx

FIGURE 2.1 Neutron passage through a slab.
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the 1-cm2 section perpendicular to the beam direction that is shadowed
by nuclei. If dx is small, and the nuclei are randomly placed, then the
shadowing of one nucleus by another can be ignored. (Only in the rarely
encountered circumstance where neutrons are passing through a single
crystal does this assumption break down.) Now assume there are N
nuclei/cm3 of the material; there will then be N dx per cm2 in the
infinitesimal thickness. If each nucleus has a cross-sectional area of
� cm2, then the fraction of the area blocked is N�dx, and thus we have

Iðx þ dxÞ ¼ ð1�N�dxÞIðxÞ: ð2:1Þ

Using the definition of the derivative, we obtain the simple differen-
tial equation

d

dx
IðxÞ ¼ �N�IðxÞ; ð2:2Þ

which may rewritten as

dIðxÞ
IðxÞ ¼ �N�dx ð2:3Þ

and integrated between 0 and x to yield

IðxÞ ¼ Ið0Þ expð�N�xÞ: ð2:4Þ

We next define the macroscopic cross section as

� ¼ N�: ð2:5Þ

Here �, which has units of cm2/nucleus, is referred to as the micro-
scopic cross section. Since the units of N are nuclei/cm3, �, the
macroscopic cross section, must have units of cm�1.

The cross section of a nucleus is very small. Thus instead of
measuring microscopic cross sections in cm2 the unit of the barn is
commonly used. One barn, abbreviated as ‘‘b,’’ is equal to 10�24 cm2.
The unit is said to have originated from early determinations of
neutron cross sections when one of the investigators exclaimed,
‘‘That’s as big as a barn’’ in reaction to one of the measurements.

The foregoing equations have a probabilistic interpretation.
Since dIðxÞ is the number of neutrons that collide in dx, out of a
total of IðxÞ, �dIðxÞ=IðxÞ ¼ �dx, as given by Eq. (2.3), must be the
probability that a neutron that has survived without colliding until x,
will collide in the next dx. Likewise IðxÞ=Ið0Þ ¼ expð��xÞ is the
fraction of neutrons that have moved through a distance x without
colliding; it may also be interpreted as the probability of a neutron
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traveling a distance x without making a collision. If we then ask what
is the probability pðxÞdx that a neutron will make its first collision in
dx, it is the probability that it has survived to dx and that it will
collide in dx. If its probability of colliding in dx is independent of its
past history, the required result is obtained simply by multiplying the
probabilities together, yielding

pðxÞdx ¼ � expð��xÞdx: ð2:6Þ

From this we can calculate the mean distance traveled by a neutron
between collisions. It is called the mean free path and denoted by�:

� ¼
Z 1

0
xpðxÞdx ¼

Z 1
0

x� expð��xÞdx ¼1=�: ð2:7Þ

Thus the mean free path is just the inverse of the macroscopic cross
section.

Uncollided Flux

The neutrons included in IðxÞ have not made a collision. They are
sometimes designated as an uncollided flux to distinguish them from
the total population of neutrons, which also includes those that have
made one or more collisions. The neutrons in IðxÞ all travel in the
same positive x direction, while those that have made collisions may
be found traveling in all directions. The neutron beam IðxÞ may be
written as the product of the neutron speed v, in cm/s, and n000u ðxÞ, the
density of uncollided neutrons, measured in neutrons/cm3. We thus
have IðxÞ ¼ vn000u ðxÞ, and it is this form in which the flux, which is
usually designated by �, is written. Thus for the neutron beam the
uncollided flux is

�uðxÞ ¼ vn000u ðxÞ: ð2:8Þ

The uncollided flux may be written for other configurations than
the beam of neutrons used here to define the cross section. A point
source is particularly useful in distinguishing the difference between
geometric and material attenuation of the uncollided flux. Let a
source emit sp neutrons per second. At any location all of the uncol-
lided neutrons travel in a single direction: radially outward from the
source. In a vacuum the flux is only attenuated geometrically since
no material is present: at a distance r from the source the neutrons
will pass through a surface of area 4�r2 of a sphere of radius r,
and thus the number passing through 1 cm2/s is �uðrÞ= sp=ð4�r2Þ.
With a material present, however, only a fraction expð��rÞ of the
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neutrons will survive to a distance r without undergoing a collision.
Thus accounting for both geometrical and material attenuations
results in the uncollided flux at a distance r from a point source being

�uðrÞ ¼ expð��rÞ
4�r2 sp: ð2:9Þ

Nuclide Densities

Both factors in Eq. (2.5)—the nuclide density N and the microscopic
cross section �—require further discussion. First, consider the
densities. Avogadro’s number, N0 ¼ 0:6023 � 1024, is the number of
molecules in one gram molecular weight of a substance, Thus if A is
the molecular weight, N0=A is the number of molecules in 1g of the
substance. If we designate � as the density in grams/cm3, then

N ¼ �N0=A ð2:10Þ

is the number of molecules/cm3. Equation (2.5) becomes

� ¼ �N0

A
�; ð2:11Þ

where the density is in grams/cm3 and � is in cm2. Usually the
microscopic cross sections are tabulated in barns (designated as b)
where 1b = 10�24 cm2.

In many cases the formulas above may be applied directly to a
chemical element even though mixtures of isotopes are included,
provided the cross sections are measured for the elements as they
exist in nature. Thus, for example, we treat iron as a single cross
section without specifying the isotope, even though it has a molecu-
lar weight of 55.8 because the isotopes iron—54, 56, and 57—all are
present in significant amounts. In situations where the cross sections
are measured from particular isotopes, A in the foregoing equations is
the atomic weight of the particular isotope.

In reactor physics the need sometimes arises to express the cross
section of an element in terms of cross sections of its constituent
isotopes. To accomplish this we first let N i=N denote the atomic
fraction of the isotope with atomic weight Ai. The atomic weight of
the mixture is then

A ¼
P

i

ðN i=NÞAi; ð2:12Þ

where N ¼
P

i N i and the macroscopic cross section of the combina-
tion of isotopes may be written as
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� ¼ �No

A

P
i

Ni

N
� i; ð2:13Þ

where � i is the microscopic cross section of the ith isotope.
To compute the cross sections of molecules, the cross sections of

the number of atoms of each element in the molecule must be
included. Thus for water, with molecular weight 18, account must
be taken for the number of hydrogen and oxygen atoms:

�H2O ¼ �H2ONo

18
2�H þ �O
� �

: ð2:14Þ

We may define a composite microscopic cross section for a molecule,
in the case of water

�H2O ¼ 2�H þ �O; ð2:15Þ

so thatEq. (2.14) simplifies to�H2O ¼ NH2O�
H2O withNH2O ¼ �H2ONo=18.

Frequently, materials are combined by volume fractions. Let Vi

be the volumes, and Vi=V the volume fractions, where V ¼
P

i Vi.
The cross section for the mixture is then

� ¼
P

i

ðVi=VÞNi�
i; ð2:16Þ

where each of the nuclide number densities is given by

Ni ¼ �iN0=Ai; ð2:17Þ

and �i and Ai are the densities and atomic weights corresponding to a
nuclide with a microscopic cross section of �i. Equation (2.16) may, of
course, also be written in terms of the macroscopic cross sections of
the constituents:

� ¼
P

i

ðVi=VÞ�i; ð2:18Þ

where �i ¼ Ni�
i. Sometimes mixtures are given in terms of mass

fractions. We treat such situations by combining Eqs. (2.16) and
(2.17) to write:

� ¼
P

i

ðMi=MÞ �No

Ai
�i; ð2:19Þ

where Mi=M ¼ �iVi=�V is the mass fraction, M ¼
P

i Mi, and the
density is given by � ¼M=V.
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Enriched Uranium

The cross sections designated for uranium are for natural uranium, which
consists of 0.7% uranium-235 and 99.3% uranium-238. Frequently, how-
ever, designers call for enriched uranium in order to increase the ratio of
fissile to fertile material. Enrichment may be defined in two ways.
Atomic enrichment is the ratio of uranium-235 atoms to the total num-
ber of uranium atoms. Using the shorthand notation for fissile and fertile
isotopes introduced in Section 1.6, the atomic enrichment is

~ea ¼ N25=ðN25 þN28Þ; ð2:20Þ

and hence 1� ~ea ¼ N28=ðN25 þN28Þ. Inserting these expressions into
Eqs. (2.12) and (2.13) yields a uranium cross section of

�U ¼ �UNo

~ea235þ ð1� ~eaÞ238
~ea�

25 þ ð1� ~eaÞ�28
� �

: ð2:21Þ

Alternately, mass (or weight) enrichment is the ratio of the mass of
uranium-235 to the total uranium mass:

~ew ¼M25=ðM25 þM28Þ; ð2:22Þ

and correspondingly 1� ~ew ¼M28=ðM25 þM28Þ. Then from Eq. (2.19)
the uranium cross section is

�U ¼ �UNo
1

235
~ew�

25 þ 1

238
ð1� ~ewÞ�28

� �
: ð2:23Þ

The two enrichments are often quoted as atom percent (a/o) and
weight percent (w/o), respectively. They are closely related. Noting
that Ni ¼ �iNo=Ai and Mi ¼ �iV, we may eliminate the densities
between Eqs. (2.20) and (2.22) to obtain:

~ea ¼ ð1þ 0:0128~ewÞ�11:0128~ew : ð2:24Þ

Thus if we take ~ew ¼ 0:00700 for natural uranium, then ~ea ¼ 0:00709,
and the fractional differences become smaller for higher enrichments.
Except were very precise calculations are called for, we may ignore these
small differences and allow both Eqs. (2.21) and (2.23) to be simplified to

�U ’ �UNo

238
�U ð2:25Þ

with uranium’s microscopic cross section approximated by

�U ¼ ~e�25 þ ð1� ~eÞ�28: ð2:26Þ
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Except were stated otherwise, the pages that follow will take ~e to
be the atom enrichment, and utilize Eqs. (2.12) and (2.13) for deter-
mining uranium cross sections.

Cross Section Calculation Example

Frequently more than one of the foregoing formulas must be used in
combination to obtain a macroscopic cross section. For example,
suppose we want to calculate the cross sections for 8% enriched
uranium dioxide (UO2) that is mixed in a 1:3 volume ratio
with graphite (C). The basic data required are the microscopic cross
sections of the uranium isotopes, and of oxygen and carbon:
�25 ¼ 607:5 b, �28 ¼ 11:8 b, �O ¼ 3:5 b, �C ¼ 4:9 b. We also need the
densities of UO2 and carbon: �UO2

¼ 11:0 g=cm3, �C ¼ 1:60 g=cm3.
We first calculate the composite microscopic cross section for

8% enriched uranium. From Eq. (2.26) we have

�U ¼ 0:08 � 607:5þ ð1� 0:08Þ � 11:8 ¼ 59:5 b:

The microscopic cross section of UO2 is then

�UO2 ¼ 59:5þ 2 � 3:5 ¼ 66:5 b:

Noting that 1 b = 10�24 cm2, the macroscopic cross section of the
enriched UO2 is

�UO2 ¼ 11 � 0:6023 � 1024

238þ 2 � 16
66:5 � 10�24¼ 1:63 cm�1:

The macroscopic cross section of carbon is

�C ¼ 1:6 � 0:6023 � 1024

12
4:9 � 10�24¼ 0:39 cm�1:

Since UO2 and C are mixed in a 1:3 ratio by volume, form Eq. (2.18)
we obtain

� ¼ 1

4
�UO2 þ 3

4
�C ¼ 1

4
1:63þ 3

4
0:39 ¼ 0:70 cm�1:

Reaction Types

Thus far we have considered only the probability that a neutron
has made a collision, without consideration of what happens
subsequently. The cross section that we have been dealing with is
designated as the total cross section, and often denoted with a
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subscript t: �t. Upon striking a nucleus, the neutron is either scat-
tered or it is absorbed. The relative likelihoods of a scattering or an
absorption are represented by dividing the total cross section into
scattering and absorption cross sections:

�t ¼ �s þ �a: ð2:27Þ

Given a collision, �s=�t is the probability that the neutron will be
scattered and �a=�t the probability that it will be absorbed. Scattering
may be either elastic or inelastic. Thus in the most general case we
may divide the scattering cross section to read

�s ¼ �n þ �n0 : ð2:28Þ

Here �n denotes the elastic scattering cross section. Elastic scattering
conserves both momentum and kinetic energy; it may be modeled as
a billiard ball collision between a neutron and a nucleus. In an
inelastic scattering collision, with cross section denoted by �n0 , the
neutron gives up some of its energy to the nucleus, leaving it in an
excited state. Thus while momentum is conserved in an inelastic
collision, kinetic energy is not; the nucleus gives up excitation
energy by emitting one or more gamma rays along with the neutron.

In its simplest form, the absorption reaction creates a compound
nucleus in an excited state. But instead of reemitting a neutron it
eliminates the excitation energy by emitting one or more gamma
rays. This is referred to as a capture reaction, and denoted by ��. In
many cases the new isotope thus created is not stable and will later
undergo radioactive decay. In a fissionable material, following neutron
absorption, the neutron may simply be captured, or it may cause fission.
For fissionable materials we thus divide the absorption cross section as

�a ¼ �� þ �f ; ð2:29Þ

where �f is the fission cross section. We again may make a
probabilistic interpretation: Given a neutron absorption, ��=�a is
the probability that the neutron will be captured and �f=�a the prob-
ability that a fission will result.

We express macroscopic cross sections for particular reaction
types by using Eq. (2.5) in the same way as before. Suppose we let
x = s, a, �, f signify scattering, absorption, capture, fission, and so on.
Then we may write

�x ¼ N�x; ð2:30Þ

and analogous modifications may be made by adding these subscripts
to preceding equations for microscopic and macroscopic cross sections.
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From the foregoing equations we may also easily show that macro-
scopic cross sections for different reaction types add in the same way
as microscopic cross sections. Thus analogous to Eq. (2.27) we have
�t ¼ �s þ �a and so on.

2.3 Neutron Energy Range

Thus far we have not discussed the dependence of cross sections on
neutron kinetic energy. To take energy into account we write each of
the above cross sections as functions of energy by letting �x ! �xðEÞ
and similarly, as a result of Eq. (2.30), �x ! �xðEÞ. The energy depen-
dence of cross sections is fundamental to neutron behavior in chain
reactions and thus warrants detailed consideration. We begin by
establishing the upper and lower limits of neutron energies found in
fission reactors.

Neutrons born in fission are distributed over a spectrum of
energy. Defining �ðEÞdE as the fraction of fission neutrons born
with energies between E and EþdE, a reasonable approximation to
the fission spectrum is given by

�ðEÞ ¼ 0:453 expð�1:036EÞ sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2:29E
p� �

; ð2:31Þ

where E is in MeV and �ðEÞ is normalized to one:

Z 1
0
�ðEÞdE ¼ 1: ð2:32Þ

The logarithmic energy plot of Fig. 2.2 shows the fission spec-
trum, �ðEÞ. Fission neutrons are born in the MeV energy range with
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FIGURE 2.2 Fission and thermal neutron energy spectra.
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an average energy of about 2 MeV, and the most probable energy
is about 3/4 MeV. The numbers of fission neutrons produced with
energies greater than 10 MeV is negligible, which sets the upper limit
to the energy range of neutrons in reactors.

Neutrons born in fission typically undergo a number of scattering
collisions before being absorbed. A neutron scattering from a stationary
nucleus will transfer a part of its momentum to that nucleus, thus
losing energy. However at any temperature above absolute zero, the
scattering nuclei will possess random thermal motions. According to
kinetic theory, the mean kinetic energy of such nuclei is

�E ¼ 3

2
kT; ð2:33Þ

where k is the Boltzmann constant and T is the absolute temperature.
For room temperature of T = 293.61 K the mean energy amounts to
0.0379 eV. Frequently, thermal neutron measurements are recorded
at 1.0 kT, which, at room temperature, amounts to 0.0253 eV. In
either case these energies are insignificant compared to the MeV
energies of fission neutrons. Thus the scatting of neutrons causes
them to lose kinetic energy as they collide with nearly stationary
nuclei until they are absorbed or are slowed down to the eV range. In
the idealized situation where no absorption is present, the neutrons
would eventually come to equilibrium with the thermal motions of
the surrounding nuclei. The neutrons would then take the form of
the famed Maxwell-Boltzmann distribution

MðEÞ ¼ 2�

ð�kTÞ3=2
E1=2 expð�E=kTÞ; ð2:34Þ

where E is in eV, Boltzmann’s constant is k = 8.617065� 10�5 eV/K,
and MðEÞ is normalized to one:

Z 1
0

MðEÞdE ¼ 1: ð2:35Þ

Figure 2.2 shows MðEÞ along with �ðEÞto indicate the energy
range over which neutrons may exist in a nuclear reactor. Realize,
however, that some absorption will always be present. As a result the
spectrum will be shifted upward somewhat from MðEÞ since the
absorption precludes thermal equilibrium from ever being completely
established. The fraction of neutrons with energies less than 0.001eV
in the room temperature Maxwell-Boltzmann distribution is quite
small, and we thus take it as the lower bound of energies that we
need to consider. In general, we may say the primary range of interest
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for neutron in a chain reactor is in the range 0.001 eV<E<10 MeV.
Thus the neutron energies range over roughly 10 orders of magnitude!

For descriptions of neutron cross sections important to reactor phy-
sics, it is helpful to divide them into to three energy ranges. We refer to
fast neutrons as being those with energies over the range where signifi-
cant numbers of fission neutrons are emitted: 0.1 MeV<E< 10 MeV.
We call thermal neutrons those with small enough energies that
the thermal motions of the surrounding atoms can significantly affect
their scattering properties: 0.001 eV<E< 1.0 eV. We lump all the neu-
trons in between as epithermal or intermediate energy neutrons:
1.0 eV<E< 0.1 MeV.

2.4 Cross Section Energy Dependence

We begin our description of the energy dependence of cross sections
with hydrogen; since it consists of a single proton, its cross section is
easiest to describe. Hydrogen has only elastic scattering and absorp-
tion cross sections. Since it has no internal structure, hydrogen is
incapable of scattering neutrons inelastically. Figure 2.3a is a plot of
hydrogen’s elastic scattering cross section. The capture cross section,
shown in Fig. 2.3b, is inversely proportional to

ffiffiffi
E
p

, and since energy
is proportional to the square of the speed, it is referred to as a 1/v or
‘‘one-over-v’’ cross section. Hydrogen’s capture cross section—which
is the same as absorption since there is no fission—is only large
enough to be of importance in the thermal energy range. The absorp-
tion cross section is written as

�a Eð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
Eo=E

p
�a Eoð Þ: ð2:36Þ

Conventionally, the energy is evaluated at Eo ¼ kT, in combi-
nation with the standard room temperature of T = 293.61 K. Thus
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FIGURE 2.3 Microscopic cross sections of hydrogen-1 (from http://www.
dne.bnl.gov/CoN/index.html). (a) Elastic scattering, (b) Absorption.
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Eo = 0.0253 eV. For most purposes we may ignore the low- and high-
energy tails in the scattering cross section. The total cross section
may then be approximated as

�t Eð Þ ¼ �s þ
ffiffiffiffiffiffiffiffiffiffiffi
Eo=E

p
�a Eoð Þ: ð2:37Þ

Hydrogen-2, or deuterium, cross sections have an analogous
behavior, except that the scattering cross section is moderately
larger, and the absorption cross section much smaller.

Like hydrogen, other nuclei have elastic scattering cross sections,
which may be equated to simple billiard ball collisions in which kinetic
energy is conserved. These are referred to as potential scattering cross
sections because the neutron scatters from the surface of the nucleus,
rather than entering its interior to form a compound nucleus. Potential
scattering cross sections are energy independent except at very low or
high energies. Their magnitude is directly proportional to the cross-
sectional area of the nucleus, where the radius of the nucleus may be
given in terms of the atomic weight as R = 1.25� 10�13 A1/3 cm. Further
understanding of neutron cross sections, however, requires that we
examine reactions resulting from the formation of compound nuclei.

Compound Nucleus Formation

If a neutron enters a nucleus—instead of scattering from its surface as
in potential scattering—a compound nucleus is formed, and it is in
an excited state. There are two contributions to this excitation
energy. The first derives from the kinetic energy of the neutron. We
determine excitation energy as follows. Suppose a neutron of mass m
and velocity v hits a stationary nucleus of atomic weight A and forms
a compound nucleus. Conservation of momentum requires that

mv ¼ ðmþAmÞV: ð2:38Þ

Kinetic energy, however, is not conserved the formation. The
amount lost is

DEke ¼
1

2
mv2 � 1

2
ðmþAmÞV2; ð2:39Þ

where V is the speed of the resulting compound nucleus. Eliminating
V between these equations then yields

DEke ¼
A

1þA

1

2
mv2; ð2:40Þ

which may be shown to be identical to the neutron kinetic energy before
the collision measured in the center of mass system. Hence we hereafter
denote it by Ecm. The second contribution to the excitation energy is the
binding energy of the neutron, designated by EB. The excitation energy of
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the compound nucleus is Ecm þ EB. Note that even very slow moving
thermal neutrons will excite a nucleus, for even though Ecm � EB, the
binding energy by itself may amount to a MeV or more.

The effects of the excitation energy on neutron cross sections
relate strongly to the internal structure of the nucleus. Although the
analogy is far from complete, these effects can be roughly understood
by comparing atomic to nuclear structures. The electrons surrounding
a nucleus are in distinct quantum energy states and can be excited to
higher states by imparting energy from the outside. Likewise, the
configurations of nucleons that form a nucleus are in quantum states,
and the addition of a neutron accompanied by its kinetic energy create
a compound nucleus that is in an excited state. Following formation of
a compound nucleus one of two things happen: the neutron may be
reemitted, returning the target nucleus to its ground state; this scatter-
ing is elastic, even though a compound nucleus was formed tempora-
rily in the process. Alternately, the compound nucleus may return to
its ground state by emitting one or more gamma rays; this is a neutron
capture reaction through which the target nucleus is transmuted to a
new isotope as the result of the neutron gained.

With higher incoming neutron energies the compound nucleus may
gain sufficient excitation energy to emit both a lower energy neutron and
a gamma ray; thus inelastic scattering results, and at yet higher energies
other reactions may result as well. In fissile and fertile materials, of
course, the fission reaction is the most important consequence of com-
pound nucleus formation. Before considering these reactions in detail,
we first examine the resonance structure of compound nuclei and the
effect that it has on scattering and absorption cross sections.

Resonance Cross Sections

The likelihood of compound nucleus formation greatly increases if
the excitation energy brought by the incident neutron corresponds to
a quantum state of the resulting nuclei. Scattering and absorption
cross sections exhibit resonance peaks at neutron kinetic energies
corresponding to those quantum states. Figure 2.4 illustrates the
peaks in the scattering and capture cross sections of sodium-23.
Each nuclide has its own unique resonance structure, but generally
the heavier a nucleus is, the more energy states it will have, and they
will be more closely packed together. Figure 2.5 illustrates this
progression of state packing using carbon, aluminum, and uranium
isotopes as examples. The correlation between quantum state
density and atomic weight results in the resonance of lighter nuclides
beginning to occur only at higher energies. For example, the lowest
resonance in carbon-12 occurs at 2 MeV, in oxygen-16 at 400 keV, in
sodium-23 at 3 keV, and in uranium-238 at 6.6 eV. Likewise the
resonances of lighter nuclei are more widely spaced and tend to
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FIGURE 2.4 Microscopic cross sections of sodium-23 (from http://www.
dne.bnl.gov/CoN/index.html). (a) Elastic scattering, (b) Absorption.
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have a smaller ratio of capture to scattering cross section. Comparing
the cross sections of uranium-238 given in Fig. 2.6 with those of
sodium-23 in Fig. 2.4 illustrates these trends in resonance structure.

A noteworthy feature of the uranium cross sections in Fig. 2.6 is
that the resonances appear to suddenly stop at approximately 10 keV. In
fact, they extend to higher energies but are so tightly packed that at
present they cannot be resolved experimentally. Thus the apparently
smooth curve conceals unresolved resonances at higher energies. These
must be treated by statistical theory until more refined experiments are
able to resolve them. The situation is similar for other heavy nuclides.

Nuclear theory predicts that the energy dependence of the cross
sections in the vicinity of each resonance will take the form of the
Breit-Wigner formula. For the capture cross sections

��ðEÞ ¼ �o
��
�

Er

E

	 
1=2 1

1þ 4ðE� ErÞ2=�2
; ð2:41Þ

where Er is the resonance energy, and G is approximately equal to the
width of the resonance at half of the cross section’s maximum value.
In general, not all of the neutrons that collide near a resonance energy
will be captured; some will be reemitted in resonance elastic
scattering. The elastic scattering cross section in the vicinity of the
resonance has three contributions:

�nðEÞ ¼ �o
�n

�

1

1þ 4ðE� ErÞ2=�2
þ �o

2R

�o

2ðE� ErÞ=�

1þ 4ðE� ErÞ2=�2
þ 4�R2:

ð2:42Þ

The first term is the resonance scattering, while the third is the
energy-independent potential scattering. The second term arises
from a quantum mechanical interference effect between resonance
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FIGURE 2.6 Microscopic cross sections of uranium-238 (from http://www.
dne.bnl.gov/CoN/index.html). (a) Elastic scattering, (b) Absorption.
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and potential scattering. In heavier nuclei, such as uranium, the inter-
ference is visible as a dip in the scattering cross section just below the
resonance energy. For nonfissionable materials � ¼ �� þ �n, and thus
�o is the resonance cross section when E = Er, and �o is the reduced
neutron wavelength. In reactor problems distinguishing between reso-
nance and potential scattering is sometimes advantageous. We do this
by writing Eq. (2.42) as

�nðEÞ ¼ �nrðEÞ þ �np; ð2:43Þ

where the first two terms of Eq. (2.41) are included in the resonance
contribution, �nr, and the third constitutes the potential scattering, �np.

No discussion of resonance cross sections is complete without a
description of Doppler broadening. Strictly speaking, neutron cross
sections are written in terms of the relative speed between neutron
and nucleus in the center of mass system. Normally, the kinetic
energy of the incident neutron is so much larger than that of the
nucleus, which is caused only by thermal motion, that the nucleus
can be assumed to be stationary. Thus the cross section formulas above
do not account for the thermal motions of the target nuclei. If the cross
sections are a relatively smooth function of energy, these motions are
unimportant. However, when cross sections are sharply peaked, as
they are for the resonances described by the Breit-Wigner formulas,
the formulas must be averaged over the range of relative speeds char-
acterized as a function of temperature by the Maxwell-Boltzmann
distribution of atom velocities. This averaging has the net effect of
slightly smearing the resonances in energy, making them appear wider
and less peaked. The smearing becomes more pronounced with
increased temperature, as shown in exaggerated form for the resonance
capture cross section curve of Fig. 2.7. The importance of Doppler

T1

T2

E

σ a
(E

 )

FIGURE 2.7 Doppler broadening of resonance capture cross section, with
T1<T2.
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broadening in providing negative temperature feedback and thus sta-
bility to nuclear reactors is discussed in Chapter 9.

Threshold Cross Sections

With higher incident neutron energies—and as a result higher
excitation energies—additional reactions become possible. These
we refer to as threshold reactions because the cross section is zero
below the threshold energy. Inelastic scattering cross sections exhibit
threshold behavior because for such scattering to occur the incident
neutron must have enough kinetic energy both to raise the target
nucleus to an excited quantum state and to overcome the binding
energy and be reemitted. Referring again to the examples of Fig. 2.5
we note that the lowest excited state of a nucleus generally decreases
with increasing atomic weight. As a result the threshold for inelastic
scattering also decreases with increasing atomic number. For the
lighter nuclides, inelastic scattering thresholds are so high that the
reaction is insignificant in reactors: The threshold for carbon-12 is
4.8 MeV, whereas that for oxygen-16 is 6.4 MeV. However, for heavier
elements the threshold is lower; in uranium-238 is it at 0.04 MeV.
Fertile materials, such as uranium-238, also have thresholds above
which fission becomes possible; the threshold for uranium-238 fis-
sion is approximately 1.0 MeV. Figure 2.8 depicts the threshold cross
section for both the inelastic scattering and fission in uranium-238.
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FIGURE 2.8 Microscopic threshold cross sections for uranium-238
(courtesy of W. S. Yang, Argonne National Laboratory).
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A third class of threshold reaction that emits neutrons is (n, 2n) in
which the incident neutron ejects two neutrons from a nuclide.
However, the threshold for this reaction is sufficiently high and the
cross section small enough that generally it can be ignored in ele-
mentary treatments of reactor physics.

Fissionable Materials

Fissionable isotopes are either fissile or fertile, as discussed in
Chapter 1. Incident neutrons of any energy cause fission in a fissile
material. Figure 2.9 depicts the fission cross section of urainium-
235, the only fissile material that occurs naturally. Uranium-238,
which makes up 99.3% of natural uranium, fissions only from
neutrons with an incident energy of a MeV or more as illustrated
by the threshold in its fission cross section plotted in Fig. 2.8. It is,
however, fertile, for following neutron capture it decays according
to Eq. (1.28) to plutonium-239, which is fissile. Figure 2.10 shows
the fission cross section of plutonium-239. If plutonium-239 cap-
tures an additional neutron instead of fissioning, it becomes plu-
tonium-240, which is also a fertile isotope, for and if it captures an
additional neutron it becomes plutonium-241, which is fissile. In
addition to uranium-238, thorium-232 is a naturally occurring
fertile isotope, for following neutron capture it undergoes radio-
active decay to become uranium-233, which is fissile. The fission
cross section of uranium-233 appears similar to those plotted in
Figs. 2.9 and 2.10.

103

102

101

100

10–1

10–1 100 101 102

Neutron energy (eV)

C
ro

ss
 s

ec
tio

n 
(b

ar
ns

)

103 104 105 106 107

FIGURE 2.9 Microscopic fission cross sections of uranium-235 (from
http://www.dne.bnl.gov/CoN/index.html).
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2.5 Neutron Scattering

The neutron energy spectrum in a reactor lies between the extremes
of fission and thermal equilibrium. It is determined largely by the
competition between scattering and absorption reactions. For
neutrons with energies significantly above the thermal range, a
scattering collision results in degradation of the neutron energy,
whereas neutrons near thermal equilibrium may either gain or
lose energy in interacting with the thermal motions of the nuclei
of the surrounding media. Energy degradation caused by scattering
is referred to as neutron slowing down. In a medium for which the
average energy loss per collision and the ratio of scattering to
absorption cross section is large, the neutron spectrum will be
close to thermal equilibrium and is then referred to as a soft or
thermal spectrum. Conversely, in a system with small ratios of
neutron degradation to absorption, neutrons are absorbed before
significant slowing down takes place. The neutron spectrum then
lies closer to the fission spectrum and is said to be hard or fast. To
gain a more quantitative understanding of neutron energy distribu-
tions we consider first elastic and then inelastic scattering. Recall
that in elastic scattering mechanical energy is conserved, that is,
the sums of the kinetic energies of the neutron and the target
nucleus are the same before and after the collision. In inelastic
scattering the neutron leaves the target nucleus in an excited—
that is, more energetic—state. Thus the sum of the neutron and
nucleus kinetic energies following the collision is less than before
by the amount of energy deposited to form the excited state. Both
elastic and inelastic scattering are of considerable importance in
nuclear reactors. We treat elastic scattering first.
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Elastic Scattering

For simplicity we first consider the head-on collision between a
neutron with speed v and a stationary nucleus of atomic mass A. If
we take m as the neutron mass then the nuclear mass will be
approximately Am. If v0 and V are the neutron and nucleus speeds
after the collision then conservation of momentum yields

m � v ¼m � v0 þ ðAmÞV; ð2:44Þ

while from conservation of mechanical energy

1

2
m � v2 ¼ 1

2
m � v02 þ 1

2
ðAmÞV2: ð2:45Þ

Letting E and E0 be the neutron energy before and after the collision,
we may solve these equations to show that the ratio of neutron
energies is

E0

E
¼ A� 1

Aþ 1

	 
2

: ð2:46Þ

Clearly the largest neutron energy losses result from collisions with
light nuclei. A neutron may lose all of its energy in a collision with a
hydrogen nucleus, but at the other extreme, it can lose no more
than 2% of its energy as the result of an elastic collision with
uranium-238.

Of course, head-on collisions cause the maximum neutron energy
loss, although in reality most neutrons will make glancing collisions in
which they are deflected and lose a smaller part of their energy. If
elastic scattering is analyzed not in the laboratory but in the center
of mass system as a collision between two spheres, all deflection
angles are equally likely, and the scattering is said to be isotropic in
the center of mass system (or often just isotropic). Detailed analyses
found in more advanced texts result in a probability distribution for
neutron energies following a collision. Suppose a neutron scatters
elastically at energy E. Then the probability that its energy following
collision will be between E0 and E0 þ dE0 will be

pðE! E0ÞdE0 ¼
1

ð1� 	ÞE dE0; 	E � E0 � E;

0 otherwise

8<
: ð2:47Þ

where

	 ¼ ðA� 1Þ2
.
ðAþ 1Þ2: ð2:48Þ
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Often the need arises to combine the probability distribution for
scattered neutrons with the scattering cross section. We then define

�sðE! E0Þ ¼ �sðEÞpðE! E0Þ; ð2:49Þ

where the corresponding macroscopic form is

�sðE! E0Þ ¼ �sðEÞpðE! E0Þ: ð2:50Þ

A similar expression applies to mixtures of nuclides:

�sðE! E0Þ ¼
P

i

Ni�siðE! E0Þ; ð2:51Þ

where

�siðE! E0Þ ¼ �siðEÞpiðE! E0Þ: ð2:52Þ

Alternately Eq. (2.50) is directly applicable, provided we define the
composite scattering probability as

pðE! E0Þ ¼ 1

�sðEÞ
X

i

�siðEÞpiðE! E0Þ: ð2:53Þ

Slowing Down Decrement

The most widely employed measure of a nuclide’s ability to slow
neutrons down by elastic scattering is the slowing down decrement.
It is defined as the mean value of the logarithm of the energy loss
ratio or lnðE=E0Þ:


 � lnðE=E0Þ ¼
Z

lnðE=E0ÞpðE! E0ÞdE0: ð2:54Þ

Employing Eq. (2.47) once again we have


 ¼
Z E

	E
lnðE=E0Þ 1

ð1� 	ÞE dE0; ð2:55Þ

which reduces to


 ¼ 1þ 	

1� 	 ln	: ð2:56Þ

The slowing down decrement is independent of the energy of the
scattered neutron. Thus in elastic collisions the neutron loses on
average the same logarithmic fraction of its energy, regardless of its
initial energy, for 
 depends only on the atomic mass of the scattering
nuclide. The slowing down decrement may be expressed in terms of
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the atomic mass of the scattering nuclide. Thus for A = 1, 
= 1, and
for A > 1 a reasonable approximation is


 � 2

Aþ 2=3
; ð2:57Þ

which gives an error of roughly 3% for A = 2, and successively smal-
ler errors for larger values of A.

Using the definition of 
 we may make a rough estimate of the
number n of elastic collisions required to slow a neutron from fission
to thermal energy. Suppose we let E1, E2, E3, . . ., En be the neutron
energies after the first, second, third, and so on collisions. Then

lnðE0=EnÞ ¼ lnðE0=E1Þ þ lnðE1=E2Þ þ lnðE3=E3Þ þ � � � þ lnðEn�1=EnÞ:
ð2:58Þ

Assuming that each of the n terms can be replaced by the average
logarithmic energy loss 
, we have

n ¼ 1



lnðE0=EnÞ: ð2:59Þ

Taking fission energy as E0 = 2 MeV and thermal energy as En = 0.025 eV,
we have lnðE0=EnÞ ¼ lnð2:0 � 106=0:025Þ ¼ 18:2 and hence n ¼ 18:2=
.
Thus for hydrogen n� 18, for deuterium (A = 2) n� 25, for carbon
(A = 12) n� 115, and for uranium-238 n� 2275. From this we observe
that if we desire to slow neutrons down to thermal energies, light atomic
weight materials are desirable components of a reactor core. Conversely,
if fast neutrons are desired, lightweight materials should be avoided.
Chapter 3 focuses considerable attention on elastic scattering, as well
as the other properties of neutron cross sections, in examining their
effects on the neutron energy spectra in reactors.

In situations where more than one nuclide is present, an average
slowing down decrement may be derived by employing Eqs. (2.53) in
Eq. (2.54):

�
 ¼ 1

�sðEÞ
X

i

�siðEÞ
Z

lnðE=E0ÞpiðE! E0ÞdE0: ð2:60Þ

Employing Eq. (2.47) for the scattering kernel with 	! 	i then
leads to

�
 ¼ 1

�s

X
i


i�si; ð2:61Þ
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where for brevity we have assumed energy-independent scattering
cross sections.

Suppose, for example, we want to evaluate 
H2O. In the denomi-
nator, we may use Eq. (2.14) for the scattering cross section of water
directly, �H2O

s ¼ NH2O 2�H þ �O
� �

. However, in the numerator we
must use �H

s ¼ 2NH2O�
H
s and �O

s ¼ NH2O�
O, the macroscopic cross

sections of hydrogen and oxygen, separately. After cancellation of
NH2O from numerator and denominator, Eq. (2.61) becomes


H2O ¼
2
H�

H
s þ 
O�

O
s

2�H
s þ �O

s

; ð2:62Þ

with �H
s ¼ 20 b and �O

s ¼ 3:8 b, knowing that 
H ¼ 1 and from Eq. (2.57)
that 
O ¼ 2=ð16þ 2=3Þ ¼ 0:12 we have 
H2O ¼ ð2 � 1 � �H

s þ 0:12 � �O
s Þ=

ð2 � �H
s þ �O

s Þ ¼ 0:924.

Inelastic Scattering

The situation for inelastic scattering is quite different. Elastic scatter-
ing cross sections are significant over the entire energy range of neu-
trons. But whereas low atomic weight nuclei cause large energy losses
for elastic scattering, heavy isotopes do not, and so the effects of their
elastic scattering on reactor physics are small. Conversely, as discussed
earlier, only neutrons with energies above a threshold that is a char-
acteristic of the target isotope can scatter inelastically. Moreover, these
thresholds are low enough for significant inelastic scattering to occur
only for the heavier atomic weight materials, such as uranium.

Inelastic scattering causes neutrons to lose substantial energy.
The unique structure of energy levels that characterizes each nuclide,
such as those illustrated in Fig. 2.5, determines the energies of inelas-
tically scattered neutrons. To scatter inelastically the neutron must
elevate the target nucleus to one of these states, from which it decays
by emitting one or more gamma rays. The threshold for inelastic
scattering is determined by the energy of the lowest excited state of
the target nucleus, whereas the neutron’s energy loss is determined
predominantly by the energy level of the state that it excites. For

E1

E2

E3

E
E ′

FIGURE 2.11 Inelastically scattered neutrons from energy E to E0:
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example, if the neutron energy E is greater than the first three energy
levels E1, E2, or E3, then following the inelastic scatter the neutron
would have energy E0= E�E1, E�E2, or E�E3. This is illustrated in
Fig. 2.11. The peaks, however, are slightly smeared over energy, since
as in elastic scattering conservation of momentum requires that a
neutron deflected through a larger angle will lose more energy than
one deflected through a smaller angle. As the energy of the incident
neutron increases, the spectrum of scattered neutrons can become
quite complex if many states can be excited by the neutron’s energy.
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Problems

2.1. Neutrons impinge on a material with a cross section of
� = 0.8 cm�1. How thick must the material be if no more than
5.0% of the neutrons are to penetrate the material without
making a collision? What fraction of the neutrons make their
first collision within the first 2.0 cm of the material?

2.2. The uncollided flux at a distance r from a point source emitting
neurons is given by Eq. (2.9).

a. If you are 1 m away from a very small 1-Ci source of neutrons,
what is the flux of neutrons in n/cm2/s, neglecting scattering
and absorption in air?

b. If a shield is placed between you and the source, what
absorption cross section would be required to reduce the
flux by a factor of 10?
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c. Suppose the shield made of the material specified in part b is
only 0.5 m thick. How far must you be from the source, for
the flux to be reduced by the same amount as in part b?

2.3. A material has a neutron cross section of 3.50� 10�24 cm2/
nuclei, and contains 4.20� 1023 nuclei/cm3.

a. What is the macroscopic cross section?
b. What is the mean free path?
c. If neutrons impinge perpendicularly on a slab of the material

that is 3.0 cm thick what fraction of them will penetrate the
slab without making a collision?

d. What fraction of the neutrons in part c will collide in the slab
before penetrating a distance of 1.5 cm?

2.4. A boiling water reactor operates at 1000 psi. At that pressure the
density of water and of steam are, respectively, 0.74 g/cm3 and
0.036 g/cm3. The microscopic cross sections of H and O thermal
cross sections are 21.8 b and 3.8 b.

a. What is the macroscopic total cross section of the water?
b. What is the macroscopic total cross section of the steam?
c. If, on average, 40% of the volume is occupied by steam, then

what is the macroscopic total cross section of the steam–
water mixture?

d. What is the macroscopic total cross section of water under
atmospheric conditions at room temperature?

2.5.* Determine the following:

a. The fraction of fission neutrons born with energies of less
than 0.1 MeV.

b. The fraction of fission neutrons born with energies greater
than 10 MeV.

2.6. Neutrons are distributed in the Maxwell-Boltzmann distribution
given by Eq. (2.34):

a. Verify Eq. (2.35).
b. Verify Eq. (2.33).
c. Determine the most probable neutron energy.

2.7. How may parts per million of boron must be dissolved in water
at room temperature to double its absorption cross section for
thermal neutrons?

2.8. What is the total macroscopic thermal cross section of
uranium dioxide (UO2) that has been enriched to 4%?
Assume �25 ¼ 607:5 b, �28 ¼ 11:8 b, �O ¼ 3:8b, and that UO2

has a density of 10.5 g/cm3.
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2.9. In the Breit-Wigner formula for the capture cross section
show that G is equal to the width of the resonance at half
height. What, if any, assumptions must you make to obtain
this result?

2.10. Verify Eqs. (2.46) and (2.56).

2.11. Boron is frequently used as a material to shield against thermal
neutrons. Using the data in Appendix E, estimate the thickness
of boron required to reduce the intensity of a neutron beam by
factors 100, 1000, 10,000, and 100,000.

2.12. A 5.0-cm-thick layer of purely absorbing material is found to
absorb 99.90% of a neutron beam. The material is known
to have a density of 4.0� 1022 nuclei/cm3. Determine the
following:

a. The macroscopic cross section.
b. The mean free path.
c. The microscopic cross section.
d. Is the cross section as big as a barn?

2.13. Equal volumes of graphite and iron are mixed together. Fifteen
percent of the volume of the resulting mixture is occupied
by air pockets. Find the total macroscopic cross section given
the following data: �C = 4.75 b, �Fe = 10.9 b, �C = 1.6 g/cm3,
�Fe = 7.7 g/cm3. Is it reasonable to neglect the cross section of
air? Why?

2.14. Neutrons scatter elastically at 1.0 MeV. After one scattering
collision, determine the fraction of the neutrons that will
have energies of less than 0.5 MeV if they scatter from the
following:

a. Hydrogen.
b. Deuterium.
c. Carbon-12.
d. Uranium-238.

2.15. What is the minimum number of elastic scattering collisions
required to slow a neutron down from 1.0 MeV to 1.0 eV in the
following?

a. Deuterium.
b. Carbon-12.
c. Iron-56.
d. Uranium-238.

2.16. Using the macroscopic scattering cross sections in Appendix
Table E-3, calculate the slowing down decrement for UO2,
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where U is natural uranium. Does the presence of oxygen
have a significant effect on the slowing down decrement?

2.17. Prove that 
 ¼ 1 for hydrogen.

2.18. a. Show that for elastic scattering E� E0 �
R
ðE� E0ÞpðE! E0ÞdE0

is equal to 1=2ð1� 	ÞE.
b. Evaluate E� E0 for ordinary water.
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CHAPTER 3

Neutron Distributions
in Energy

3.1 Introduction

In Chapter 1 we briefly introduced the concept of neutron multi-
plication, defining it as

k ¼ number of neutrons in ithþ 1 generation

number of neutrons in ith generation
, ð3:1Þ

where neutrons in a particular generation are considered to be born in
fission, undergo a number of scattering collisions, and die in absorp-
tion collisions. Understanding what determines the magnitude of the
multiplication is central to the study of neutron chain reactions. This
chapter examines the determinants of multiplication with primary
emphasis placed on the kinetic energy of the neutrons, for as we saw
in Chapter 2, the basic data—the neutron cross sections—are
strongly energy dependent. These energy dependencies define the
two broad classes of reactors: thermal and fast. We first discuss the
properties of nuclear fuel and of materials that moderate the neutron
spectrum. With this background we proceed to provide a more
detailed description of the energy distributions of neutrons in nuclear
reactors, and then discuss the averaging of neutron cross sections
over energy. We conclude by defining the neutron multiplication in
terms of energy-averaged cross sections.

This chapter’s discussions maintain two simplifications in order
to focus the analysis on the energy variable. First, we assume that all
neutrons are produced instantaneously at the time of fission, post-
poning discussion of the effects created by the small fraction of
neutrons whose emission following fission is delayed until the
detailed treatment of reactor kinetics in Chapter 5. Second, we defer
analysis of the spatial distributions of neutrons in nuclear reactors to
later chapters. For now we take the finite size of a reactor into account
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simply by noting that for many systems the multiplication can by
approximated by

k ¼ k1PNL; ð3:2Þ

where PNL is the neutron nonleakage probability and k1 is the multi-
plication that would exist if a reactor’s dimensions were infinitely
large. Chapters 6 and 7 treat neutron leakage and other spatial effects
in some detail. Our focus here is on neutron energy, and how
the energy dependence of the cross sections dominates the determi-
nation of k1.

3.2 Nuclear Fuel Properties

Much of the physics of nuclear reactors is determined by the energy
dependence of the cross sections of fissile and fertile materials over
the range of incident neutron energies between the fission spectrum
and the Maxwell-Boltzmann distribution of thermal neutrons, thus
over the range between roughly 10 MeV and 0.001 eV. Recall that
fissile nuclides have significant fission cross sections over this entire
range as indicated by Figs. 2.9 and 2.10 for those of uranium-235 and
plutonium-239. In contrast, fission of a fertile material is possible
only for incident neutrons above some threshold; Fig. 2.8 indicates
that the threshold for uranium-238 is at approximately 1.0 MeV. Not
all of the neutrons absorbed by a fissile nucleus will cause fission.
Some fraction of them will be captured, and that fraction is also
energy dependent. As a result, the number of fission neutrons pro-
duced per neutron absorbed plays a central role in determining a
reactor’s neutron economy:

�ðEÞ ¼
��fðEÞ
�aðEÞ

¼ fission neutrons produced

neutrons absorbed
; ð3:3Þ

where � is the number of neutrons produced per fission, and

�aðEÞ ¼ ��ðEÞ þ �fðEÞ: ð3:4Þ

To sustain a chain reaction, the average value of eta must be sub-
stantially more than one, for in a power reactor neutrons will be lost
to absorption in structural, coolant, and other materials, and some
will leak out of the system.

To examine the behavior of �ðEÞ we first consider a single fissile
isotope. We may then cancel the number densities from numerator
and denominator of Eq. (3.3) to obtain
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�ðEÞ ¼
��fðEÞ
�aðEÞ

: ð3:5Þ

From the plots of �ðEÞ shown in Fig. 3.1 for uranium-235 and pluto-
nium-239 we see that concentrating neutrons at either high or low
energies and avoiding the range between roughly 1.0 eV and 0.1 MeV
where the curves dip to their lowest values most easily achieves a
chain reaction. Except for naval propulsion systems designed for the
military, however, fuels consisting predominately of fissile material
are not employed in power reactors. Enrichment and fabrication costs
would render them uneconomical. More importantly, the fuel would
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FIGURE 3.1 �ðEÞ for fissile isotopes (courtesy of W. S. Yang, Argonne
National Laboratory). (a) Uranium-235, (b) Plutonium-249.
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constitute weapons grade uranium or plutonium that would com-
pound the problems of nuclear proliferation. Reactor fuels consist
primarily of uranium-238 with a smaller fraction of fissile material,
referred to as its enrichment. Depending on the design, civilian reactor
fuels normally consist of uranium with enrichments ranging from the
0.7% of natural uranium up to approximately 20% fissile material.

To determine �ðEÞ for a reactor fuel, we first define the
enrichment ~e as the atom ratio of fissile to fissionable (i.e., fertile
plus fissile) nuclei:

~e ¼
Nfi

Nfe þNfi
; ð3:6Þ

where fi and fe denote fissile and fertile. Equation (3.3) then reduces to

�ðEÞ ¼
~e�� fi

f ðEÞ þ ð1� ~eÞ�� fe
f ðEÞ

~e� fi
a ðEÞ þ ð1� ~eÞ� fe

a ðEÞ
: ð3:7Þ

Figure 3.2 provides plots of �ðEÞ for natural (0.7%) and 20%
enriched uranium. These curves illustrate the dramatic effect that
the capture cross section of uranium-238 has in deepening the valley
in �ðEÞ through the intermediate energy range. Conversely, above its
threshold value 1.0 MeV, the increasing fission cross section of ura-
nium-238 aids strongly in increasing the value of �ðEÞ. The curves
emphasize why power reactors are classified as fast or thermal
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FIGURE 3.2 �ðEÞ for natural and 20% enriched uranium (courtesy of
W. S. Yang, Argonne National Laboratory).
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according to the energy spectra over which neutrons are concen-
trated, and why no intermediate spectrum reactors have been built.

Reactor designs must concentrate neutrons either in the fast or
the thermal energy range and thus avoid the sharp valley that �ðEÞ
exhibits over intermediate energies. As Chapter 2 emphasizes, scat-
tering collisions cause neutrons to lose energy until they approach
equilibrium in the thermal neutron range. Thus for fast reactor cores,
designers eliminate materials other than the fuel as much as possible.
They avoid low atomic weight materials in particular, for elastic
scattering in such materials quickly reduces neutron energies to
levels to where resonance capture in uranium-238 predominates.
Even if all other materials could be eliminated, however, a fast
reactor fueled with natural uranium is not possible, for the large
inelastic scattering cross section of the 99.3% uranium-238 would
then cause the fission neutrons to fall too quickly into the intermedi-
ate energy range. Consequently, fast reactors require fuels enriched
to more than 10%.

For thermal reactors the situation is reversed. The reactor must
contain a substantial quantity of low atomic weight material,
referred to as a moderator. Its purpose is to slow down neutrons
past the valley in �ðEÞ with relatively few collisions to the thermal
energies where the fuel’s ratio of neutron production to absorption
again exceeds one by a substantial margin. With optimized ratios of
moderator to fuel, thermal reactors can be designed with much lower
enrichments than fast reactors; with some moderators—most nota-
bly graphite or heavy water—thermal reactors may be fueled with
natural uranium. To understand why this is so we must examine the
properties of moderators more closely.

3.3 Neutron Moderators

In thermal reactors moderator materials are required to reduce the
neutron energies from the fission to the thermal range with as few
collisions as possible, thus circumventing resonance capture of neu-
trons in uranium-238. To be an effective moderator a material must
have a low atomic weight. Only then is �—the slowing down decre-
ment defined by Eq. (2.54)—large enough to slow neutrons down to
thermal energies with relatively few collisions. A good moderator,
however, must possess additional properties. Its macroscopic scatter-
ing cross section must be sufficiently large. Otherwise, even though a
neutron colliding with it would lose substantial energy, in the com-
petition with other materials, too few moderator collisions would
take place to have a significant impact on the neutron spectrum.
Thus a second important parameter in determining a material’s
value as a moderator is the slowing down power, defined as ��s,
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where �s ¼ N�s is the macroscopic scattering cross section. Note
that the number density N must not be too small. Thus gases are
eliminated. Helium, for example, has sufficiently large values of �
and �s to be a good moderator but its number density is too small to
have a significant impact on the energy distribution of neutrons in a
reactor. Conversely, for the same reason gases such as helium may be
considered as coolants for fast reactors since they do not degrade the
neutron spectrum appreciably.

Table 3.1 lists values of the slowing down decrement and power
for the three most common moderators. The table also includes the
slowing down ratio: the ratio of the material’s slowing down power to
its thermal absorption cross section. If the thermal absorption cross
section �a Ethermalð Þ is large, a material cannot be used as a moderator;
even though it may be effective in slowing down neutrons to thermal
energy, it will then absorb too many of those same neutrons before
they can make collisions with the fuel and cause fission. Note that
heavy water has by far the largest slowing down ratio, followed by
graphite and then by ordinary water. Power reactors fueled by natural
uranium can be built using D2O as the moderator. Because graphite
has poorer moderating properties, the design of natural uranium
fueled power reactors moderated by graphite is a more difficult under-
taking. Reactors using a light water moderator and fueled with
natural uranium are not possible; some enrichment of the uranium
is required to compensate for the larger thermal absorption cross
section of the H2O.

Large thermal absorption cross sections eliminate other materials
as possible moderators. For example, boron-10 has reasonable values of
the slowing down decrement and power. Its thermal absorption cross
section, however, is nearly 4000 b. As a result boron cannot be used as
a moderator but is, in fact, one of the more common neutron
‘‘poisons,’’ which are used to control or shut down the chain reactions.

The foregoing discussion focuses on elastic scattering, since
inelastic scattering tends to be of much less importance in determin-
ing the energy distribution of neutrons in thermal reactors. The
lighter weight materials either have no inelastic scattering cross

TABLE 3.1
Slowing Down Properties of Common Moderators

Slowing Down
Decrement

Slowing Down
Power

Slowing Down
Ratio

Moderator � ��s ��s=�aðthermalÞ
H2O 0.93 1.28 58
D2O 0.51 0.18 21,000
C 0.158 0.056 200
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section, or if they do, they are zero below a threshold that is quite
high in energy. Fertile and fissile materials do have inelastic scatter-
ing above thresholds in the keV to MeV range. In thermal reactors
inelastic collisions only modestly augment the slowing down by
elastic scattering. The situation is quite different in fast reactors
where the absence of moderator material causes inelastic scattering
to become more important. Inelastic scattering of the fuel along with
elastic scattering with the coolant and structural materials are the
primary causes for unwanted energy spectrum degradation.

3.4 Neutron Energy Spectra

To recapitulate, the distribution of neutrons in energy is determined
largely by the competition between scattering and absorption reac-
tions. For neutrons with energies significantly above the thermal
range, a scattering collision results in degradation of the neutron
energy, whereas neutrons in thermal equilibrium have near equal
probabilities of gaining or losing energy when interacting with the
thermal motions of the nuclei that constitute the surrounding med-
ium. In a medium for which the average energy loss per collision and
the ratio of scattering to absorption cross section are both large, the
neutron distribution in energy will be close to thermal equilibrium
and is then referred to as a soft or thermal spectrum. Conversely in a
system with small ratios of neutron degradation to absorption, neu-
trons are absorbed before significant slowing down takes place. The
neutron distribution then lies closer to the fission spectrum and is
said to be hard or fast.

The neutron distribution may be expressed in terms of the den-
sity distribution

~n000ðEÞdE ¼ number of neutrons/cm3

with energies between E and Eþ dE;

�
ð3:8Þ

which means that

n000 ¼
Z 1

0

~n000ðEÞdE ¼ total number of neutrons/cm3
: ð3:9Þ

The more frequently used quantity, however, is the neutron flux
distribution defined by

’ðEÞ ¼ vðEÞ~n000ðEÞ; ð3:10Þ

where vðEÞ is the neutron speed corresponding to kinetic energy E.
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The flux, often called the scalar flux, has the following physical
interpretation: ’ðEÞdE is the total distance traveled during one sec-
ond by all neutrons with energies between E and dE located in 1 cm3.
Likewise, we may interpret the macroscopic cross section as

�xðEÞ ¼
Probability/cm of flight of a neutron
with energy E undergoing a reaction of type x:

�
ð3:11Þ

Thus multiplying a cross section by the flux, we have

�xðEÞ’ Eð ÞdE ¼ Probable number of collisions of type x=s=cm3

for neutrons with energies between E and dE:

�
ð3:12Þ

Finally, we integrate over all energy to obtain

Z 1
0

�xðEÞ’ðEÞdE ¼ Probable number of collisions
of type x=s=cm3 of all neutrons:

�
ð3:13Þ

This integral is referred to as a reaction rate, or if x = s, a, f as the
scattering, absorption, or fission rate.

A more quantitative understanding of neutron energy distribu-
tions results from writing down a balance equation in terms of the
neutron flux. Since �ðEÞ’ðEÞ is the collision rate—or number of
neutrons of energy E colliding/s/cm3—each such collision removes
a neutron from energy E either by absorption or by scattering to a
different energy. We may thus regard it as a loss term that must be
balanced by a gain of neutrons arriving at energy E. Such gains may
come from fission and from scattering. The number coming from
fission will be �ðEÞ, given by Eq. (2.31). We next recall that the
probability that a neutron that last scattered at energies between E0

and E0 þ dE0 will be scattered to an energy E as pðE0 ! EÞdE0. Since the
number of neutrons scattered from energy E0 is �sðE0Þ’ðE0Þ, the scat-
tering contribution comes from integrating pðE0 ! EÞ�sðE0Þ’ðE0ÞdE0

over E0. The balance equation is thus

�tðEÞ’ðEÞ ¼
Z

pðE0 ! EÞ�sðE0Þ’ðE0ÞdE0 þ �ðEÞs000f : ð3:14Þ

The specific form of pðE0 ! EÞ for elastic scattering by a single
nuclide is given by Eq. (2.47), whereas Eq. (2.53) defines the compo-
site probability for situations where the cross sections are sums over
more than one nuclide. For brevity we write the foregoing equation as
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�tðEÞ’ðEÞ ¼
Z

�sðE0 ! EÞ’ðE0ÞdE0 þ �ðEÞs000f , ð3:15Þ

where as in Eq. (2.50) we take �sðE0 ! EÞ ¼ pðE0 ! EÞ�sðE0Þ. The
balance equation is normalized by the fission term, which indicates
a rate of s000f fission neutrons produced/s/cm3.

Using Eq. (3.15) to examine idealized situations over three dif-
ferent energy ranges provides some insight into the nature of neutron
spectra, particularly of thermal reactors. First, we consider fast neu-
trons, whose energies are sufficient that �ðEÞ is significant. Normally
the lower limit to this range is about 0.1 MeV. We then examine
intermediate energy neutrons, which have energies below the range
where fission neutrons are produced but sufficiently high that up-
scatter—that is, energy gained in a collision as a result of the thermal
motion of the scattering nuclide—can be ignored. The lower cutoff
for intermediate neutrons is conventionally taken as 1.0 eV. The
intermediate energy range is often referred to as the resonance or
slowing down region of the energy spectra because of the importance
of these two phenomena. Third, we discuss slow or thermal neutrons
defined as those with energies less than 1.0 eV; at the lower energies
thermal motions of the surrounding nuclei play a predominant role
in determining the form of the spectrum. In each of the three energy
ranges general restrictions apply to Eq. (3.15). In the thermal and
intermediate ranges no fission neutrons are born and thus �ðEÞ= 0.
In the intermediate and fast ranges there is no up-scatter, and there-
fore �sðE0 ! EÞ ¼ 0 for E0 < E.

Fast Neutrons

Over the energy range where fission neutrons are born both terms on
the right of Eq. (3.15) contribute; near the top of that range the fission
spectrum �ðEÞ dominates, since on average even one scattering colli-
sion will remove a neutron to a lower energy. In that case we may
make the rough approximation,

’ðEÞ � �ðEÞs000f =�tðEÞ, ð3:16Þ

which only includes the uncollided neutrons: those emitted from
fission but yet to make a scattering collision. Even in the absence
of moderators or other lower atomic weight materials the spectrum
will be substantially degraded as a result of inelastic scattering colli-
sions with uranium or other heavy elements. The presence of even
small amounts of lighter weight materials, such as the metals used
within a reactor core for structural support, adds to the degradation of
the fast spectrum. Neutron moderators, of course greatly accelerate
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the slowing down of neutrons out of the fast range. In fast reactors,
where lightweight materials are avoided, most of the neutrons are
absorbed before scattering collisions slow them down below the low-
energy tail of the fission spectrum.

Neutron Slowing Down

We next examine the energy range that extends below where �ðEÞ is
significant but higher than the thermal energy range, where the
thermal motions of the nuclei must be taken into account.

The Slowing Down Density

A useful concept for treating neutrons in this energy range is the
slowing down density, which we define as

qðEÞ ¼ number of neutrons slowing down
past energy E=s=cm3:

�
ð3:17Þ

At energies greater than where up-scatter occurs, any neutron pro-
duced by fission that is not absorbed at a higher energy must slow
down past that energy. Thus

qðEÞ ¼ �
Z 1

E

�aðE0Þ’ðE0ÞdE0 þ
Z 1

E

�ðE0ÞdE0 s000f ; E> 1:0 eV: ð3:18Þ

In the intermediate range, below where fission neutron produc-
tion is significant, the normalization of �ðE0Þ given by Eq. (2.32)
simplifies Eq. (3.18) to

qðEÞ ¼ �
Z 1

E

�aðE0Þ’ðE0ÞdE0 þ s000f ; 1:0 eV< E < 0:1 MeV: ð3:19Þ

Taking the derivative, we have

d

dE
qðEÞ ¼ �aðEÞ’ðEÞ: ð3:20Þ

Thus qðEÞdecreases as the neutrons slow down in proportion to the
absorption cross section; if there is no absorption over some energy
interval then the slowing down density remains constant.

In the intermediate range the primary form of absorption comes
from the resonance capture cross sections discussed in Chapter 2.
However, between those resonances the absorption cross section is
small enough to be ignored. Thus between resonances we see from
Eq. (3.20) that the slowing down density is independent of energy.
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Moreover, since we are below the energies where fission neutrons are
produced, with no absorption, Eq. (3.14) simplifies to

�sðEÞ’ðEÞ ¼
Z

pðE0 ! EÞ�sðE0Þ’ðE0ÞdE0: ð3:21Þ

Thus we can obtain a particularly simple relationship between ’ðEÞ
and q, the constant slowing down density. We next assume that we
are below the threshold for inelastic scattering, and that only a
single scattering material—normally a moderator—is present. (We
may later modify the expression for combinations of materials.)
Equation (2.47) provides the kernel for elastic scattering. Substituting
it into Eq. (3.21) yields

�sðEÞ’ðEÞ ¼
Z E=�

E

1

ð1� �ÞE0�sðE0Þ’ðE0ÞdE0: ð3:22Þ

The solution may be shown to be

�sðEÞ’ðEÞ ¼ C=E ð3:23Þ

by simply inserting this expression into Eq. (3.22).
The normalization constant C is proportional to q, the number of

neutrons slowed down by scattering past energy E. Examining Fig. 3.3,
we observe that the number of neutrons that made their last scatter at
E0 (>E) to energies E00 (<E) will fall in the interval �E0 �E00 �E. More-
over, only neutrons with initial energies E’ between E and E=� are
capable of scattering to energies below E. Hence the number of neu-
trons slowing down past E per cm3 in one second is

q ¼
Z E=�

E

Z E

�E0

1

ð1� �ÞE0�sðE0Þ’ðE0ÞdE00
� �

dE0: ð3:24Þ

Substituting Eq. (3.23) for the flux, and performing the double inte-
gration, we obtain

q ¼ 1þ �

1� � ln�
h i

C: ð3:25Þ
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FIGURE 3.3 Energy loss from elastic scattering from energy E0 to E00.
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Noting that the bracketed term is identical to �, the slowing down
decrement defined by Eq. (2.56), we may combine Eqs. (3.23) and
(3.25) to represent the flux in terms of the slowing down density

’ðEÞ ¼ q

��sðEÞE
: ð3:26Þ

This expression may be extended to situations where more than
one scattering nuclide is present by adding their contributions to
Eqs. (3.22) and (3.24). Suppose both fuel and moderator are present.
Equation (3.26) still holds, where the scattering cross section becomes
the sum over fuel and moderator, and the slowing down decrement is
replaced by the weighted average defined by Eq. (2.61):

�� ¼ �
f�f

sðEÞ þ �m�m
s ðEÞ

�f
sðEÞ þ �m

s ðEÞ
: ð3:27Þ

Between resonances the fuel and moderator scattering cross sec-
tions are nearly independent of energy. The flux is then proportional
to 1/E—and referred to as a ‘‘one-over-E’’ flux. Since the moderator is
much lighter than the fuel, �f� �m, the fuel contribution to Eq. (3.26)
is much less than that of the moderator.

Energy Self-Shielding

In the presence of resonance absorber, the flux is no longer propor-
tional to 1=E. However, we may obtain a rough estimate of its energy
dependence by making some reasonable approximations. We assume
that only fuel and moderator are present, and that only elastic scat-
tering takes place. Equation (3.14) then reduces to

�tðEÞ’ðEÞ ¼
Z E=�f

E

1

ð1� �fÞE0
�f

sðE0Þ’ðE0ÞdE0

þ
Z E=�m

E

1

ð1� �mÞE0�
m
s ðE0Þ’ðE0ÞdE0;

ð3:28Þ

where for the energy range of resonance absorbers we have set
�ðEÞ ¼ 0. Recall from Chapter 2 that a resonance is characterized by
a width �. If the resonances are widely spaced, then the bulk of the
resonance absorption will take place within about �� of the reso-
nance energy. Moreover, outside this interval absorption can be
ignored and the flux approximated as /1=E.

Scattering into the energy interval where absorption is most
pronounced originates over a larger energy interval: between E and
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EþE=�f for the fuel, and between E and EþE=�m for the moderator.
In the narrow resonance approximation, which is valid for all but a
few resonances, we assume both of these intervals to be much larger
than the resonance width, as shown schematically in Fig. 3.4. In this
case the preponderance of the areas under the integrals in Eq. (3.28)
are occupied by the 1/E flux between resonances where absorption
can be ignored and the scattering cross sections are energy indepen-
dent. Thus we may insert Eq. (3.26) into the right side of Eq. (3.28)
without much loss of accuracy. We evaluate the integrals with
energy-independent constant cross section to obtain

’ðEÞ ¼ q

��tðEÞE
; ð3:29Þ

where q is the neutron slowing down density above the resonance.
Note that the only difference from Eq. (3.26) is that in the denomi-
nator the scattering has been replaced by the total cross section.

The total cross section, of course, includes both resonance
absorption and scattering cross sections. Thus it increases greatly,
causing the flux to decrease correspondingly, at energies where reso-
nance absorption takes place. Such flux depression—illustrated
in Fig. 3.4—is referred to as energy self-shielding. According to
Eqs. (3.19) and (3.20), as neutrons slow down through a resonance
the slowing down density is reduced by

Z
’ðEÞ�aðEÞdE �

Z
�aðEÞ
�tðEÞE

dE
q

�:
ð3:30Þ

Since self-shielding reduces the flux where the absorption cross
section is large, it reduces overall neutron losses to absorption, and
thus aids the propagation of the chain reaction. In the following chapter
we will see that by lumping the fuel spatial self-shielding of the reso-
nances serves further to reduce the absorption losses of neutrons. Other

E ′

E ϕ (E )

E r /αƒ

σa (E )

E r

FIGURE 3.4 Energy loss from elastic scattering from energy to E0=E00.
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approximations can be applied when the resonance width is wider, but
the qualitative effects of energy self-shielding remain the same.

Thermal Neutrons

At lower energies, in the thermal neutron range, we again use
Eq. (3.15) as our starting point. The fission term on the right vanishes.
The source of neutrons in this case comes from those scattering down
from higher energies. We may represent this as a scattering source.
We divide the integral in Eq. (3.15) according to whether E is less than
or greater than the cutoff energy for the thermal neutron range, typi-
cally taken as Eo¼ 1:0 eV. We then partition the equation as

�tðEÞ’ðEÞ ¼
Z Eo

0
�sðE0 ! EÞ’ðE0ÞdE0 þ sðEÞqo; E < Eo; ð3:31Þ

where

sðEÞqo ¼
Z 1

Eo

�sðE0 ! EÞ’ðE0ÞdE0; E < Eo; ð3:32Þ

is just the source of thermal neutrons that arises from neutrons making a
collision at energies E0 > Eo, but having an energy of E < Eo after that
collision. The source may be shown to be proportional to the slowing
down density at Eo, and if pure scattering and a 1/E flux is assumed at
energies E0 > Eo, a simple expression results for s(E), the energy distribu-
tion of the source neutrons. In the thermal range the scattering distribu-
tion is difficult to represent in a straightforward manner, for not only
thermal motion, but also binding of the target nuclei to molecules or
within a crystal lattice must be factored into the analysis.

We may gain some insight by considering the idealized case of a
purely scattering material. Then the solution of Eq. (3.31) would
become time dependent, for without absorption in an infinite me-
dium the neutron population would grow continuously with time
since each slowed down neutron would go on scattering forever. If
after some time the slowing down density were set equal to zero, an
equilibrium distribution would be achieved satisfying the equation

�sðEÞ’MðEÞ ¼
Z Eo

0
�sðE0 ! EÞ’MðE0ÞdE0: ð3:33Þ

One of the great triumphs of kinetic theory was the proof that for
this equation to be satisfied, the principle of detained balance must
be obeyed. Detailed balance states that
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�sðE! E0Þ’MðEÞ ¼ �sðE0 ! EÞ’MðE0Þ; ð3:34Þ

no matter what scattering law is applicable. Equally important,
the principle states that in these circumstances the flux that
satisfied this condition is the form found by multiplying the famed
Maxwell-Boltzmann distribution, given by Eq. (2.34), by the neutron
speed to obtain

’MðEÞ ¼
1

ðkTÞ2
E expð�E=kTÞ ð3:35Þ

following normalization to

Z 1
0
’MðEÞdE ¼ 1: ð3:36Þ

In reality some absorption is always present. Absorption shifts
the thermal neutron spectrum upward in energy from the Maxwell-
Boltzmann distribution, since complete equilibrium is never reached
before neutron absorption takes place. Figure 3.5 illustrates the
upward shift, called spectral hardening, which increases with the
size of the absorption cross section. Nevertheless, Eq. (3.35) provides
a rough approximation to a reactor’s thermal neutron distribution.
A somewhat better fit to hardened spectra, such as those in Fig. 3.5,
may be obtained by artificially increasing the temperature T by an
amount that is proportional to �a=��s.

kT E

Maxwellian
distribution
(Σa = 0)

Thermal spectrum
(Moderate value of Σa (E ))

Φ(E )
Thermal spectrum
(High value of Σa (E ))

FIGURE 3.5 Thermal spectra compared to a Maxwell-Boltzmann
distribution (adapted from A. F. Henry, Nuclear-Reactor Analysis, 1975,
by permission of the MIT Press).
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Fast and Thermal Reactor Spectra

Figure 3.6 shows typical neutron spectra plotted as E’ðEÞ for a
sodium-cooled fast reactor and for a water-cooled thermal reactor.
Several features are noteworthy. Fast reactor spectra are concentrated
in the keV and MeV range with nearly all of the neutrons absorbed
before slowing down to energies less than a keV. Fast reactor cores
contain intermediate weight elements, such as sodium coolant and
iron used for structural purposes. These intermediate atomic weight
elements have large resonances in their elastic scattering cross sec-
tions in the keV and MeV energy range. Thus the fast spectra are
quite jagged in appearance, resulting from the energy self-shielding
phenomenon, illustrated by Eqs. (3.16) and (3.29), in which the flux is
inversely proportional to the total cross section.

Thermal reactor spectra have a more modest peak in the MeV
range where fission neutrons are born. The spectra over higher ener-
gies are somewhat smoother as a result of the prominent role played
by the lightweight moderator materials; moderators have no reso-
nances at those energies, and therefore the cross sections in the
denominators of Eqs. (3.16) and (3.29) are smoother functions of
energy. Moving downward through the keV range, we see that the
spectrum is nearly flat. Here there is very little absorption, resulting
in a nearly 1/E [or constant E’ðEÞ] spectrum with the constant
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FIGURE 3.6 Neutron flux spectra from thermal (pressurized water) and
fast (sodium-cooled) reactors (courtesy of W. S. Yang, Argonne National
Laboratory).
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slowing down density as given by Eq. (3.26). The thermal reactor
spectra do decrease with decreasing energy going from 100 and
1.0 eV, accentuated by sharp dips in the flux. Although barely visible
in the figure, resonance absorption in uranium over this energy range
causes the slowing down density to decrease and the self-shielding
indicated in Eq. (3.29) to become more pronounced. Below 1.0 eV, the
characteristic thermal peak occurs. As a result of thermal neutron
absorption in the fuel and moderator, the peak in the thermal spec-
trum is at an energy somewhat higher than would be indicated by the
Maxwell-Boltzmann distribution given by Eq. (3.35). Finally, note
that if we had plotted ’ðEÞ instead of E’ðEÞ for the thermal reactor,
the thermal flux peak would be millions of times larger than the peak
of fission energy neutrons.

3.5 Energy-Averaged Reaction Rates

As the foregoing sections indicate, the ability to sustain a chain
reaction depends a great deal on the distribution of neutrons in
energy, which in turn is determined by the composition of nonfissile
materials in the core and their effectiveness in slowing down the
neutrons from fission toward thermal energies. To determine the
overall characteristics of a reactor core, we must average cross sec-
tions and other data over the energy spectrum of neutrons. We accom-
plish this through the use of Eq. (3.13), which is termed the reaction
rate for collisions of type x and has units of collisions/s/cm3.

Reaction rates are commonly expressed as products of energy-
averaged cross sections and the neutron flux:Z 1

0
�xðEÞ’ðEÞdE ¼ ��x	; ð3:37Þ

where the cross section is

��x ¼
Z 1

0
�xðEÞ’ðEÞdE

,Z 1
0
’ðEÞdE; ð3:38Þ

and the flux, integrated over energy, is

	 ¼
Z 1

0
’ðEÞdE: ð3:39Þ

For a known neutron flux distribution, microscopic cross sections may
also be averaged over energy. We simply make the replacement
�x ¼ N�x in Eqs. (3.37) and (3.38) to eliminate the atom density and
obtain
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Z 1
0
�xðEÞ’ðEÞdE ¼ ��x	 ð3:40Þ

and

��x ¼
Z 1

0
�xðEÞ’ðEÞdE

,Z 1
0
’ðEÞdE: ð3:41Þ

We may also express the flux as the product of the mean speed
and the density of the neutrons:

	 ¼ �vn000; ð3:42Þ

where Eq. (3.9) defines the neutron density n000. To accomplish this
insert the flux definition given by Eq. (3.10) into Eq. (3.39):

	 ¼
Z 1

0
vðEÞ~n000ðEÞdE ð3:43Þ

and note that to be consistent with Eq. (3.42) the mean speed must be
defined by

�v ¼
Z 1

0
vðEÞ~n000ðEÞdE

,Z 1
0

~n000ðEÞdE: ð3:44Þ

Frequently we will drop the bar indicating averaging from the left
sides of Eqs. (3.38) and (3.41). Thus hereafter we assume that a cross
section �x or �x appearing without the (E) attached has been averaged
over energy. If a cross section is independent of energy, we have
�xðEÞ ! �x, and then, of course, we may take it outside the integral
in Eqs. (3.38) and (3.41), and we have simply, ��x ¼ �x and ��x ¼ �x.

More refined treatments of a neutron population often require
cross section averaging over some limited range of neutron energies
rather than over the entire neutron energy spectrum. The discussions
of Section 3.4 indicate that the analysis of neutron spectra fall natu-
rally into thermal, intermediate, and fast energy ranges. Correspond-
ingly we may partition reaction rates asZ

�xðEÞ’ðEÞdE ¼
Z

T
�xðEÞ’ðEÞdEþ

Z
I
�xðEÞ’ðEÞdE

þ
Z

F

�xðEÞ’ðEÞdE; ð3:45Þ

where hereafter attaching T, I, and F signifies integration over the
ranges 0 � E � 1:0 eV, 1:0 eV � E � 0:1 MeV, and 0:1 MeV � E � 1,
respectively. Employing Eq. (3.40), we may write this sum in terms
of energy-averaged cross sections as
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��x	 ¼ ��xT	T þ ��xI	I þ ��xF	F: ð3:46Þ

Each of the terms on the right results from multiplying and dividing
the corresponding integral of Eq. (3.45) by

	� ¼
Z

�

’ðEÞdE; � ¼ T; I; F; ð3:47Þ

and defining the energy averaged cross sections as

��x� ¼
Z

�

�xðEÞ’ðEÞdE

�Z
�

’ðEÞdE; � ¼ T; I; F: ð3:48Þ

More advanced so-called multigroup methods divide the energy
spectrum into more than the three intervals shown here, and con-
siderable effort is expended in determining the flux spectra in each
group as accurately as possible. For our purposes, however, the divi-
sion into thermal, intermediate, and fast energy segments is ade-
quate. We perform cross section averaging by selecting appropriate
flux approximations for use in Eqs. (3.46) through (3.48). We begin
with the fast neutrons and work our way downward in energy.

Fast Cross Section Averages

Even though it includes only uncollided neutrons, Eq. (3.16) provides a
first approximation to the flux distribution for fast neutrons. The total
macroscopic cross section in the denominator, however, includes all of
the nuclides present—fuel, coolant, and so on. Thus it is likely to be a
strong and complex function of energy, particularly if significant concen-
trations of iron, sodium, or other elements that have scattering reso-
nances in the MeV range are present. In Fig. 3.6 these effects are
apparent in the jagged appearance of the fast flux for both thermal and
fast reactors. To preclude the cross sections tabulated for individual ele-
ments from being dependent on the other elements present, we must
further simplify Eq. (3.16) by taking �tðEÞ as energy independent. Then
normalizing to s000f =�t ¼ 1:0, we have’ðEÞ � �ðEÞ. Since only a very small
fraction of fission neutrons are produced with energies less than 0.1 MeV
we can extend the limits on the integrals in Eq. (3.48) from zero to infinity
without loss of generality. With this proviso, the normalization condition
of Eq. (2.32) sets the denominator equal to one, and Eq. (3.48) reduces to

��xF ¼
Z
�xðEÞ�ðEÞdE: ð3:49Þ

Table 3.2 lists fast cross sections averaged over the fission spec-
trum for several of the isotopes that appear most prominently in
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TABLE 3.2
Energy Averaged Microscopic Cross Sections (barns)

Thermal Spectrum Cross Sections Resonance Integrals Fast (Fission Spectrum) Cross Sections

Nuclide �f �a �s If Ia �f �a �s

1

1
H 0 0.295 47.7 0 0.149 0 3.92� 10�5 3.93

2

1
H 0 5.06� 10�4 5.37 0 2.28� 10�4 0 5.34� 10�6 2.55

10

5
B 0 3409 2.25 0 1722 0 0.491 2.12

12

6
C 0 3.00� 10�3 4.81 0 1.53� 10�3 0 1.23� 10�3 2.36

16

8
O 0 1.69� 10�4 4.01 0 8.53� 10�5 0 1.20� 10�2 2.76

23

11
Na 0 0.472 3.09 0 0.310 0 2.34� 10�4 3.13

56

26
Fe 0 2.29 11.3 0 1.32 0 9.22� 10�3 3.20

91

40
Zr 0 0.16 6.45 0 0.746 0 3.35� 10�3 5.89

135

54
Xe 0 2.64� 106 — 0 7.65� 103 0 7.43� 10�4 —

149
62 Sm 0 6.15� 104 — 0 3.49� 103 0 0.234 —



Table 3.2
(continued)

Thermal Spectrum Cross Sections Resonance Integrals Fast (Fission Spectrum) Cross Sections

Nuclide �f �a �s If Ia �f �a �s

157

64 Gd 0 1.92� 105 1422 0 762 0 0.201 6.51
232

90 Th 0 6.54 11.8 0 84.9 7.13� 10�2 0.155 7.08
233

92 U 464 506 14.2 752 886 1.84 1.89 5.37
235

92 U 505 591 15.0 272 404 1.22 1.29 6.33
238

92 U 1.05� 10�5 2.42 9.37 2� 10�3 278 0.304 0.361 7.42
239

94 Pu 698 973 8.62 289 474 1.81 1.86 7.42
240

94 Pu 6.13� 10�2 263 1.39 3.74 8452 1.36 1.42 6.38
241

94 Pu 946 1273 11.0 571 740 1.62 1.83 6.24
242

94 Pu 1.30� 10�2 16.6 8.30 0.94 1117 1.14 1.22 6.62

Source: R. J. Perry and C. J. Dean, The WIMS9 Nuclear Data Library, Winfrith Technology Center Report ANSWERS/WIMS/TR.24, Sept. 2004.



power reactor cores. Such cross sections, however, provide only a
smoothed approximation to what the cross sections would be if
averaged over the actual flux distribution.

Resonance Cross Section Averages

Often the terms intermediate and resonance are used interchangeably
in describing the energy range between 1.0 eV and 0.1 MeV because as
neutrons slow down from fast to thermal energy the large cross sec-
tions caused by the resonances in uranium, plutonium, and other
heavy elements account for the nearly all of the neutron absorption
in this energy range. Equation (3.29) provides a reasonable approxima-
tion to the flux distribution in this energy range. However, as in the
fast spectrum, the �tðEÞ term in the denominator is dependent on all
of the constituents present in the reactor and thus must be eliminated
in order to obtain cross sections that are independent of core composi-
tion. Ignoring the energy dependence of the total cross section, we
simplify the flux to ’ðEÞ � 1=E. Equation (3.48) then becomes

��xI ¼
Z

I

�xðEÞ
dE

E

�Z
I

dE

E
: ð3:50Þ

For capture and fission reactions intermediate range cross sec-
tions are frequently expressed as

��xI ¼ Ix

�Z
I

dE

E
; ð3:51Þ

where

Ix ¼
Z
�xðEÞ

dE

E
ð3:52Þ

defines the resonance integral. Since the predominate contributions to Ix

(x ¼ a; f) arise from resonance peaks—such as those shown in Figs. 2.6,
2.9, and 2.10—that lie well within the range 1:0 eV � E � 0:1 MeV, the
values of resonance integrals are relatively insensitive to the limits of
integration. The denominator of Eq. (3.51), however, depends strongly on
those limits. Evaluating it between 1.0 eV and 0.1 MeV, then, yields

��xI ¼ 0:0869Ix: ð3:53Þ

Table 3.2 includes the resonance integrals for common reactor
constituents.

As the thermal reactor spectrum in Fig. 3.6 indicates, the 1/E—
that is, the E’ðEÞ= constant—spectrum is a reasonable approximation
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through the slowing down region. However, the dips that appear represent
the resonance self-shielding that decreases the number of neutrons that
are lost to absorption. Since Eq. (3.52) does not include the effects of self-
shielding, numbers listed in Table 3.2 only provide an upper bound on
resonance absorption, which would only be obtained in the limit of an
infinitely dilute mixture of the resonance absorber in a purely scattering
material. In reactor cores self-shielding dramatically reduces the
amount of absorption. Advanced methods for calculating resonance
absorption accurately are beyond the scope of this text. However,
Chapter 4 includes empirical formulas that provide reasonable approx-
imations to resonance absorption with the effects of self-shielding
included.

Thermal Cross Section Averages

Although accurate determination of the thermal spectrum also
requires advanced computational methods, averages over simplified
spectra often serve as a reasonable first approximation in performing
rudimentary reactor calculations. We approximate the thermal flux
with the Maxwell-Boltzmann distribution, ’ðEÞ � ’MðEÞ, given by
Eq. (3.35). With the normalization proved by Eq. (3.36), Eq. (3.48)
thus reduces to

��xT ¼
Z
�xðEÞ’MðEÞdE: ð3:54Þ

Since ’MðEÞ is vanishingly small for energies greater than an
electron volt, the upper limit on this integral can be increased
from 1.0 eV to infinity without affecting its value. Thermal neu-
tron cross sections averaged over the Maxwell-Boltzmann distri-
bution at room temperature of 20 �C (i.e., 293 K) are tabulated for
common reactor materials in Table 3.2. Appendix E provides a
more comprehensive table of microscopic thermal cross sections
integrated over the Maxwell-Boltzmann flux distribution as in Eq.
(3.54), along with molecular weights and densities. The table
includes all naturally occurring elements and some molecules
relevant to reactor physics.

Frequently the cross sections are measured at 0.0253 eV, which
corresponds to a neutron speed of 2200 m/s. The convention is based
on what follows. The maximum—or most probable—value of ’MðEÞ
may easily be shown to be

E ¼ kT ¼ 8:62� 10�5T eV; ð3:55Þ
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where T is in degrees kelvin. We take the corresponding neutron
speed to be

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2E=m

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kT=m

p
¼ 128

ffiffiffiffi
T
p

m=s: ð3:56Þ

Cross section measurements made at To = 293.61 K yield
Eo ¼ 0:0253 eV and vo ¼ 2;200 m=s; 0.0253 eV and 2200 m/s are com-
monly referred to as the energy and speed of a thermal neutron. The
cross sections tabulated in Table 3.2 and Appendix E, however, are
the averages over the Maxwell-Boltzmann spectrum given by
Eq. (3.54), rather than the cross sections evaluated at Eo ¼ 0:0253 eV.

In the many cases where thermal scattering cross sections are
independent of energy, Eq. (3.54) reduces to ��sT ¼ �s. At thermal
energies, however, the binding of atoms to molecules or within
crystal lattices can significantly affect the thermal scattering cross
sections. To account for this, the cross sections for hydrogen, deuter-
ium, and carbon given in Table 3.2 and Appendix E are corrected to
include the effects of such binding. These corrections allow Eqs.
(2.14) and (2.15), for example, to be used without modification in
the determination of the thermal scattering cross section of water.

In contrast, many thermal absorption cross sections are propor-
tional to 1/v:

�aðEÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
Eo=E

p
�aðEoÞ: ð3:57Þ

To obtain the energy-averaged cross section in such cases we must
substitute this equation and Eq. (3.35) into Eq. (3.54):

��aT ¼
Z 1

0

ffiffiffiffiffiffiffiffiffiffiffi
Eo=E

p
�aðEoÞ

1

ðkTÞ2
E expð�E=kTÞdE: ð3:58Þ

Evaluating the integral, we obtain

��aT ¼
ffiffiffi


p

2

Eo

kT

� �1=2

�aðEoÞ ¼ 0:8862 To=Tð Þ1=2�aðEoÞ: ð3:59Þ

Thus the 1/v absorption cross section is dependent on the absolute
temperature, and even if T = T0 the averaged absorption cross sec-
tions are not the same as those measured at Eo. In Table 3.2 and
Appendix E, thermal absorption and capture cross sections are the
averages defined by ��aT of Eq. (3.54).

To correct these 1/v thermal cross sections for temperature, we
note from Eq. (3.59) that ��aTðTÞ ¼ To=Tð Þ1=2 ��aTðToÞ. In dealing with
macroscopic thermal cross sections correcting for temperature
becomes more complex if the material has a significant coefficient
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of thermal expansion. Since �x ¼ N�x, and the atom density is given
by N ¼ �N0=A, density decreases with increasing temperature will
also cause macroscopic cross sections to decease even if the micro-
scopic cross sections remain constant.

3.6 Infinite Medium Multiplication

We conclude this chapter by returning to the calculation of the
multiplication, k1, the ratio of the number of fission neutrons pro-
duced to the number of neutrons absorbed. The ratio is determined by
using the reaction rate definition, Eq. (3.13). Since the number of
fission neutrons produced is

R1
0 ��fðEÞ’ðEÞdE, where � is the number

of neutrons/fission, and the number of neutrons absorbed isR1
0 �aðEÞ’ðEÞdE, we have

k1 ¼
Z 1

0
��fðEÞ’ðEÞdE

,Z 1
0

�aðEÞ’ðEÞdE: ð3:60Þ

Using the definitions of the energy-averaged cross sections and flux
given in Eqs. (3.37) we may express k1 as a ratio of cross sections:

k1 ¼ ���f

	
��a; ð3:61Þ

where only fissionable materials contribute to the numerator, while
absorption cross sections of all of the reactor core’s constituents
contribute to the denominator.

Thus far we have assumed implicitly that the fuel, moderator,
coolant, and other core constituents are all exposed to the same
energy-dependent flux ’ðEÞ. Provided the volumes of core constituents
are finely mixed—for example, powders of uranium and graphite—this
assumption holds. However, in power reactors the diameters of fuel
elements, the spacing of coolant channels, and geometric configurations
of other constituents result in larger separations between materials. In
these circumstances the flux magnitudes to which the fuel, coolant,
and/or moderator are exposed often are not identical. Power reactor
cores consist of lattices of cells, each consisting of a fuel element, cool-
ant channel, and in some cases a separate moderator region. The expres-
sions derived above remain valid provided we interpret them as spatial
averages over the constituents of one such cell, with account taken for
differences in flux magnitudes. In the following chapter we first examine
the lattice structures of power reactors. We then take up the modeling of
fast and thermal reactor lattices in order to examine these differences in
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flux magnitudes and then to obtain expressions for k1 explicitly in
terms of the various core constituents.
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Problems

3.1. Verify Eqs. (3.23) and (3.25).

3.2. Show that in Eq. (3.31) the normalization condition
R Eo

0 sðEÞdE ¼ 1

must be obeyed. Hint: Note that
R Eo

0 pðE0 ! EÞdE ¼ 1 for E0 � Eo.

3.3. In Eq. (3.31) suppose that the neutron slowing down past Eo is due
entirely to elastic scattering from a single nuclide with A> 1, and
with no absorption for E > Eo. Show that sðEÞ then takes the form

sðEÞ ¼
1

ð1� �Þ�
1

Eo
� �

E

� �
; �Eo < E < Eo;

0; E < �Eo

8<
:

3.4. For thermal neutrons calculate �� as a function of uranium
enrichment and plot your results. Use the uranium data from
the following table:

� �f (barns) �a (barns)

Uranium-235 2.43 505 591
Plutonium-239 2.90 698 973
Uranium-238 — 0 2.42
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3.5. Suppose a new isotope is discovered with a ‘‘1/E’’ absorption
cross section given by �aðEÞ ¼ ðEo=EÞ�aðE0Þ. Determine the
energy-averaged cross section if the isotope is placed in the
thermal flux distribution given by Eq. (3.35).

3.6. In the wide resonance approximation (also called narrow
resonance infinite mass approximation because the fuel is
assumed to have an infinite mass), Af !1 and thus �f ! 1 in
the first integral on the right of Eq. (3.28) while the remaining
approximations are the same as in narrow resonance
approximation. Determine ’ðEÞ through the resonance. How
does it differ from Eq. (3.29)? In which case is there more energy
self-shielding?

3.7. Lethargy defined as u ¼ lnðEo=EÞ is often used in neutron slowing
down problems; lethargy increases as energy decreases. Note
the following transformations: ’ðEÞdE ¼ �’ðuÞdu, pðE! E0Þ
dE0 ¼ �pðu! u0Þdu0, and �xðEÞ ¼ �xðuÞ.

a. Show that pðE! E0Þ given by Eq. (2.47) becomes

pðu! u0Þ ¼
1

1� � expðu� u0Þ; u � u0 � uþ lnð1=�Þ;

0; otherwise

8><
>:

b. Express Eq. (3.22) in terms of u.

3.8. Making a change of variables from energy to speed, show that
Eq. (2.47) becomes

pðv ! v0Þ ¼
2v0

ð1� �Þv2
; v

ffiffiffiffi
�
p
� v0 � v;

0; otherwise

8><
>:

3.9. Suppose that the Maxwell-Boltzmann distribution, Eq. (2.34),
represents the neutron density in Eqs. (3.43) and (3.44):

a. Find the value of �v.
b. If we define �E � 1=2 m�v2, show that �E ¼ 1:273kT.
c. Why is your result different from the average energy of 3=2kT

given by Eq. (2.33)?
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3.10. A power reactor is cooled by heavy water (D2O) but a leak
causes a 1.0 atom % contamination of the coolant with light
water (H2O). Determine the resulting percentage increase or
decrease in the following characteristics of the coolant:

a. Slowing down decrement.
b. Slowing down power.
c. Slowing down ratio.

3.11. Using the data in Appendix E calculate the microscopic
absorption cross section of water, averaged over a thermal
neutron spectrum:

a. At room temperature.
b. At 300 oC, which is a typical operating temperature for a

water-cooled reactor.

3.12. Repeat problem 3.11 for heavy water.
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CHAPTER 4

The Power Reactor Core

4.1 Introduction

Two criteria play dominant roles in determining the composition of a
power reactor core: Criticality must be maintained over the range of
required power levels and over the life of the core as fuel is depleted.
The design must also allow the thermal energy produced from fission
to be transferred out of the core without overheating any of its con-
stituents. Many other considerations also come into play: the
mechanical support of the core structure, stability and control of
the chain reaction under widely varied circumstances, and so on.
But the neutron physics discussed in the preceding chapters and
heat transfer interact most strongly in determining the construction
of power reactor cores. This chapter first examines the core layouts of
the more common classes of power reactors, relating heat transport
and neutronic behavior. It then presents in more detail the impact of
the reactor lattice structures on the neutronic behavior and in parti-
cular on the determination of the multiplication.

4.2 Core Composition

Reactors have been designed with a wide variety of configurations.
These include cores consisting of molten materials in a container, in
which the liquid fuel itself is piped through circulation loops from
which the heat is removed, and pebble bed reactors where the fuel
consists of a bed of solid spheres through which coolant is circulated
to remove the heat. Most power reactors, however, are cylindrical in
shape with coolant flowing through channels extending the axial
length of the core. These channels are one constituent of a periodic
lattice consisting of cylindrical fuel elements, coolant channels, and
in some thermal reactors a separate moderator region.

Figure 4.1 illustrates the fuel–coolant–moderator lattice struc-
ture for four diverse classes of power reactors. In all cases, heat from
fission is produced within the fuel and conducted to the coolant
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channel surface. It then is convected into the coolant and trans-
ported axially along the coolant channel and out of the core. The
four diagrams that make up Fig. 4.1, however, are drawn on quite
different scales, since in all cases the fuel element diameters are of
the order of 1 cm. Thermal constraints on the heat flux crossing a
fuel element’s surface and on the temperature along its centerline
limit both its diameter and the power per unit length—called the
linear heat rate or q0—that it can produce. Since allowable linear
heat rates typically fall within the range between few and tens of
kW/m, a large power reactor designed to produce 1000 MW(t)
or more of heat must contain many thousands of cylindrical fuel
elements—often referred to as fuel pins.

Refueling a reactor containing thousands of fuel elements by
replacing them one by one would represent an inordinately time-
consuming and hence uneconomical task. Thus fuel elements are
grouped together to form fuel assemblies. The mechanical design of
fuel assemblies allows them be moved as a whole in and out of the
reactor during refueling procedures. Figure 4.2 illustrates three exam-
ples of fuel assemblies. The assemblies’ cross-sectional areas may be
square or hexagonal as shown in Figs. 4.2a and 4.2c. Fuel elements
may also be bundled into circular fuel assembles as shown in
Fig. 4.2b; in this case the bundles are inserted in tubes placed in
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FIGURE 4.1 Reactor lattice cross sections (not on the same scale).
(a) Water-cooled reactor, (b) fast reactor, (c) CANDU heavy water reactor,
(d) high temperature gas-cooled graphite reactor.
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square or hexagonal arrays within moderator regions as indicated, for
example, in Fig. 4.1c.

Figure 4.3 depicts lateral cross sections of a power reactor cores
made up of square and hexagonal fuel assemblies, respectively. The
shading in Fig. 4.3 indicates that typically not all of the fuel assem-
blies in a reactor core are identical. They may differ in fuel enrich-
ment in order to flatten the power across the core, or they may have
been placed in the core during different refueling operations. The
placement of control poisons may also cause assemblies to differ.

In addition to fuel, coolant, and (in thermal reactors) moderator,
the reactor must contain channels placed at carefully designated
intervals throughout such lattice configurations to allow the inser-
tion of control rods. These rods consist of strong neutron absorbers—
often referred to as neutron poisons—such as boron, cadmium, or
hafnium. Their insertion controls the reactor multiplication during
power operations, and they shut down the chain reaction when fully
inserted. Some classes of power reactors contain space for the control
rods as channels reserved for them within designated fuel assemblies;
the assemblies shown in Figs. 4.2a and 4.2c fall into this category. In
other systems the control rods are inserted between the fuel assem-
blies. For example, control rods with cruciform cross sections may be
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UO2 pellet
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End plug
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(a) (b) (c)

FIGURE 4.2 Reactor fuel assemblies. (a) Pressurized water reactor
(courtesy of Westinghouse Electric Company), (b) CANDU heavy water
reactor (courtesy of Atomic Energy of Canada, Ltd.), (c) high temperature
gas-cooled reactor (courtesy of General Atomics Company).
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placed at the intersections of square assemblies, or control rods may
be inserted into moderator regions between assemblies.

The fuel elements’ linear heat rate and the volume ratio of coolant
and/or moderator to fuel, designated as Vx=Vf , along with a number of
other factors determine �P000, the average power density, that is, the
average power produced per unit volume, achievable for each reactor
class. Since a reactor’s power is given by P ¼ �P000V, for a given power
the core volume V, it is inversely proportional to the average power
density. Core lattice structures must be optimized to facilitate heat
transfer, and thus maximize achievable power densities within the
heat removal capabilities of the coolant. But neutronic considerations
play an equally important role. For lattice structure and particularly
the ratios of fuel, coolant, and moderator largely determine the value
of k1 for a given fuel enrichment. On the other hand, PNL, the non-
leakage probability, approaches a value of one as the core volume
increases. Thus since k ¼ k1PNL, lattice structure and achievable
power density intertwine in determining the critical state of a power
reactor.

Table 4.1 compares typical parameters for some major classes of
power reactors. To gain a better understanding of how the displayed
values result from power reactor design and operational considerations
we next examine separately each broad class of the reactors in terms of
the neutronic properties of their fuel, moderator, and/or coolant.

Light Water Reactors

Pressurized water reactors (PWRs) and boiling water reactors (BWRs)
utilize ordinary water both as coolant and moderator. Both these
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FIGURE 4.3 Reactor cores consisting of square and hexagonal fuel
assemblies (courtesy of W. S. Yang, Argonne National Laboratory). (a) Square
fuel assemblies, (b) hexagonal fuel assemblies.
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TABLE 4.1
Representative Reactor Lattice Properties

PWR
Pressurized-
H2O Reactor

BWR Boiling-
H2O Reactor

PHWR
CANDU-D2O
Reactor

HTGR
C-Moderated
Reactor

SFR
Na-Cooled
Fast Reactor

GCFR
He-Cooled
Fast Reactor

�q0 (kW/m) average
linear heat rate

17.5 20.7 24.7 3.7 22.9 17.0

Vx=Vf volume
ratioa 1.95 2.78 17 135 1.25 1.93

�P000 (MW/m3) average
power density

102 56 7.7 6.6 217 115

V (m3) volume
3000 MW(t)
reactor

29.4 53.7 390 455 13.8 26.1

~e (weight %)
enrichment

4.2 4.2 0.7 15 19 19

a x = moderator for a thermal reactor and coolant for a fast reactor, f = fuel.
Source: Data courtesy of W. S. Yang, Argonne National Laboratory.



classes of light water reactors (LWRs) utilize square lattice cells,
similar to that shown in Fig. 4.1a. The fuel consists of uranium
dioxide pellets clad in zirconium for structural support and to prevent
fission product leakage into the coolant. Moderator to fuel volume
ratios are roughly 2:1, which is near optimal for maximizing k1 in
water-moderated systems. The optimal volume ratio derives from the
water’s neutron slowing down properties listed in Table 3.1. Water
has the largest slowing down power of any moderator as a result of
the small mass and substantial scattering cross section of hydrogen.
However, water also has the largest thermal absorption cross section
of any of the listed moderators, which manifests itself as the smallest
value of the slowing down ratio. Thus although water is excellent for
slowing down neutrons, if larger ratios of water to fuel volume are
employed in reactor lattices, the increased thermal absorption in the
moderator results in an unacceptable decrease in k1. Water’s combi-
nation of having the largest slowing down power but the smallest
slowing down ratio of any of the moderators leads to LWR designs
with substantially smaller moderator to fuel volume ratios than
found in heavy water or graphite-moderated reactors.

These smaller ratios—and the fact that the water serves both as
moderator and coolant—leads to PWRs and BWRs having the most
compact lattices of any of the thermal reactors. As Table 4.1 indicates,
the comparatively small moderator to fuel volume ratio leads to higher
power densities and smaller reactor volumes than for heavy water
reactors or graphite-moderated systems of the same power. Water’s
large thermal absorption cross section, however, precludes the possi-
bility of achieving criticality with natural uranium fuel in a LWR.
To overcome this obstacle water-moderated reactors must employ
slightly enriched fuel, typically in the range between 2% and 5%.

In PWRs, the core is contained in a vessel pressurized to 1520 bar
(~2200 psi) to prevent coolant boiling at operating temperatures in the
range of 316 �C (~600 �F). As Fig. 4.4a indicates, water exiting the core
circulates through heat exchangers, called steam generators, before
being pumped back to the core inlet. The secondary side of the steam
generator operates at a lower pressure such that feed water entering it
boils, thus supplying steam to the turbine. Coolant temperatures are
similar for BWRs. However, they operate at less elevated pressures of
690 bar (~1000 psi), allowing boiling to take place in the coolant
channels. As Fig. 4.4b indicates, in BWRs, the feed water enters
directly into the reactor vessel, and the steam generated within the
reactor passes directly to the turbine, eliminating the need for steam
generators.

Water-moderated reactors operate in batch mode fuel cycles: The
reactor is shut down at regular intervals, ranging from 1 to 2 years.
During shutdown, typically lasting a number of weeks, 20 to 30% of
the assemblies containing fuel from which the fissile material is
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most depleted are removed and replaced by fresh assemblies. In batch
mode operation the fuel must be sufficiently enriched to compensate
for the uranium burn up that takes place over the length of time that
the assembly remains in the reactor.

During core life neutron poisons control the reactor multiplica-
tion. In PWRs soluble boron in the coolant serves this purpose, and in
most thermal reactors burnable poisons placed in the fuel or else-
where also serve to compensate for fuel burn up. Control rods must
be present to rapidly shut down the chain reaction, but they may also
be used to compensate for fuel depletion. As the schematic diagrams
of Fig. 4.4 indicate, PWR control rods are inserted from the top,
whereas those of BWRs are inserted from the bottom. The PWR
control rods are employed in clusters that occupy channels within
the fuel assemblies as depicted in Fig. 4.2a. In BWRs the control rods
have cruciform-shaped cross sections and fit into channels between
the square fuel assemblies, with their centerlines positioned at inter-
sections between four assemblies.

Heavy Water Reactors

As Table 3.1 indicates, the larger mass of deuterium causes heavy
water’s slowing down power to be substantially smaller than that of
H2O. However, deuterium’s thermal absorption cross section is min-
uscule, and as a result D2O has the largest slowing down ratio of any
moderator. Thus in contrast to LWRs, reactors moderated by heavy
water require large volume ratios of moderator to fuel to provide

(a)

Pressurizer Steam
generator

Control
rods

Reactor
vessel

(b)

Control rods

Reactor
vessel

FIGURE 4.4 Light water cooled reactors (courtesy U.S. Nuclear Regulatory
Commission). (a) Pressurized water reactor, (b) boiling water reactor.
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adequate neutron slowing down. At the same time they can tolerate
larger moderator volumes because the thermal absorption cross sec-
tion of deuterium is so small.

Pressurized heavy water reactors (PHWRs) of the CANDU type
are by far the most common D2O-moderated power systems today.
A CANDU core consists of a large cylindrical tank, called a calandria,
placed on its side; an array of horizontal pressure tubes passes through
the calandria. Each pressure tube houses several fuel assembly seg-
ments, often called bundles, each containing 30 to 40 fuel pins as
pictured in Figs. 4.1c and 4.2b. The fuel pins are similar to those in
LWRs. They consist of UO2 pellets, clad in zirconium. Heavy water,
which also serves as coolant, is pumped through the tubes, circulated
through steam generators similar in design to those found in PWRs,
and returned to the core inlet. The substantial spacing between pres-
sure tubes within the D2O-filled calandria provides the reactor’s large
moderator to fuel volume ratio. The calandria is insulated from the
pressure tubes, allowing it to operate near atmospheric pressure and
room temperature. Thus only the tubes containing the fuel assemblies
need be maintained at high enough pressure to keep the smaller
volume of D2O coolant from boiling at operating temperatures.

The moderator properties of heavy water—most particularly its
small thermal absorption cross section—allow PHWRs to be fueled
with natural uranium. However, without enrichment the fuel can-
not sustain the levels of burn up required to operate the reactor for
a year or more between refueling. Instead, CANDU reactors
undergo continuous refueling while they are operating: A pair of
on-line refueling machines isolate one pressure tube at a time and
insert a fresh fuel bundle into one end of the core while removing a
depleted one from the other. This mode of operation requires less
control poison to maintain the reactor in a critical state than
would be required with batch refueling. The control rods, which
pass through the calandria, outside of the pressure tubes, serve
primarily for reactor shutdown.

Graphite-Moderated Reactors

Table 3.1 indicates that the heavier atomic mass of carbon causes
graphite’s slowing down power to be smaller than that of either light
or heavy water. Its thermal absorption cross section, however, is small
enough to give it a slowing down ratio intermediate between light
and heavy water. The net effect is that graphite reactor lattices designed
to maximize k1 have very large moderator to fuel volume ratios.
A number of early power reactor designs were carbon dioxide–cooled
graphite-moderated systems that utilized natural uranium fuel. Gra-
phite’s smaller values of the slowing down power and ratio made the
task more difficult than with D2O moderator. Consequently as partially
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enriched fuel became available it replaced natural uranium in subse-
quent designs. More recently, helium coolant combined with partially
enriched fuel has led to the design of graphite-moderated power reactors
capable of operating at very high temperatures.

Table 4.1 displays parameters for a high temperature gas-cooled
reactor (HTGR). The core contains only graphite and ceramic materi-
als, allowing the helium coolant to achieve higher coolant tempera-
tures than if metal cladding or structures were present. The lattice
structure is similar to that shown in Fig. 4.1d; heat generated in the
fuel passes through the graphite moderator before being carried away
by the gas coolant. The fuel consist of compacts of uranium carbide
particles compacted in graphite, thus further increasing the modera-
tor to fuel ratio. The fuel enrichment is quite high. Each fuel assem-
bly, as pictured in Fig. 4.2c, consists of a prismatic block of graphite
containing two arrays of holes, for fuel and coolant, respectively. The
control rods occupy other axial holes in the prismatic graphite block.
The helium coolant circulates through a steam generator or gas
turbine and back into the core. Refueling of HTGRs is accomplished
in batch mode, similar to that employed with water-cooled reactors.
The large volume of graphite moderator required causes the HTGR to
have the lowest power density and thus the largest volume of any of
the reactors listed in Table 4.1

RBMK Reactors

Thus far we have examined thermal reactors either in which the
coolant and moderator are the same or in which the coolant is a
gas. In the latter case the gas density is sufficiently small that the
volume which it occupies has relatively minor effects on the deter-
mination of k1. Other power reactors have been based on using
liquid coolants that differ from the moderator. For example, designs
similar to the CANDU systems may employ pressurized or boiling
light water coolant in conjunction with heavy water moderator. Less
conventional is the molten salt reactor in which the molten fuel also
serves as coolant by circulating through a core that consists of a fixed
graphite moderator structure. Other coolant–moderator combina-
tions have been employed, but for the most part only in prototypical
reactors. In contrast the Russian RBMK reactor design has been
widely used for power production throughout the former Soviet
Union.

The RBMK is a water-cooled, graphite-moderated reactor. The
requirement for large volumes of moderator translates into low
power densities and volumes as large as 1000 m3. The RBMK has
some similarities to CANDU reactor designs in that the core consist
of pressure tubes which contain fuel assemblies composed of bundles
of cylindrical fuel elements of uranium dioxide in zirconium
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cladding. The pressure tubes carry the water coolant through the
graphite moderator, which forms the bulk of the core volume. Like
the CANDU reactors, the RBMK refuels on-line using machines to
isolate one pressure tube at a time. The differences between RBMK
and CANDU designs, however, are great. The RBMK design’s pres-
sure tubes transverse the core vertically, and carry light water coolant
which boils as it passes through the tubes. The tubes as well as
control rods occupy holes in the large bocks of graphite moderator,
and finally the fuel is enriched to approximately 2%.

Fast Reactors

Fast reactor cores contain as little low atomic mass material as
possible in order to impede neutron slowing down by elastic scatter-
ing. Even then, fast reactors require enrichments of 10%, or more.
Hexagonal lattice cells similar to that pictured in Fig. 4.1b are
employed because smaller volume ratios of coolant to fuel can be
utilized than in square lattices. As Table 4.1 indicates, these tightly
packed lattices are instrumental in causing fast reactors to achieve
higher power densities, and hence smaller volumes, than are found in
thermal reactors.

Fast reactor fuel may be metal or a ceramic, encapsulated in
metal cladding. Liquid metals are the most widely used coolant
because their atomic weight is larger than other liquids, and they
have excellent heat transfer properties and can be employed in low-
pressure systems. Sodium-cooled fast reactors (SFRs) are the most
common designs. Because sodium reacts violently with water, how-
ever, SFRs require the placement of an intermediate heat exchanger
between the reactor core and the steam generator; should a steam
generator leak occur, the sodium that passes through the reactor
would not make contact with water. Some Russian fast reactors
have utilized molten lead coolant. Gas-cooled fast reactors (GCFRs)
offer an alternative to liquid metal–cooled systems since the gas’s
low density causes it to have no appreciable effect on the neutron
spectrum. However, high pressure and large rises in the coolant
temperatures are then required to achieve adequate heat transport.
Like most other systems, fast reactor refueling is carried out in batch
mode.

4.3 Fast Reactor Lattices

In the preceding chapter we examined neutron spectra assuming that
all the constituents of a reactor core were exposed to the same energy
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dependent flux ’ðEÞ. The chapter concluded using energy-averaged
cross sections to express the multiplication as

k1 ¼
Z

0

1
��fðEÞ’ðEÞdE

,Z
0

1
�aðEÞ’ðEÞdE; ð4:1Þ

which serves as the starting point for the more detailed analysis of
both fast and thermal reactors. Fast reactors differ from thermal reac-
tors in several respects. The fuel enrichments are higher than typically
found in thermal reactors, generally substantially exceeding 10%.
Core designers eliminate low atomic weight materials to the greatest
extent possible, since they have the adverse effect of degrading the
neutron energy spectrum. The result is a fast neutron spectrum such
as that shown in Fig. 3.6. Since cross sections in general decrease with
increasing neutron energy, the neutron spectrum averaged cross sec-
tions in a fast reactor are substantially smaller than those in a thermal
system. Accordingly, in fast reactors neither the fuel diameter nor the
coolant thickness between fuel pins substantially exceeds a mean free
path. Under such conditions the spatial distribution of the flux will be
quite flat across the lateral cross section of the lattice cell, allowing us
to approximate that fuel, coolant, and any structural material are all
exposed to the same flux distribution, ’ðEÞ. Thus for any reaction x,
we may use Eq. (2.18) to volume-weight the cross sections of fuel,
coolant and structural materials:

�xðEÞ ¼ ðVf=VÞ�f
xðEÞ þ ðVc=VÞ�c

xðEÞ þ ðVst=VÞ�st
x ðEÞ; ð4:2Þ

where the cell volume is the sum of contributions from these three
components: V ¼ Vf þ Vc þ Vst. Substituting Eq. (4.2) into Eq. (4.1)
yields

k1 ¼
Vf

Z 1
0

��f
fðEÞ’ðEÞdE

Vf

Z 1
0

�f
aðEÞ’ðEÞdEþ Vc

Z 1
0

�c
aðEÞ’ðEÞdEþ Vst

Z 1
0

�st
a ðEÞ’ðEÞdE

;

ð4:3Þ

where only the fuel contributes to the fission cross section in the
numerator.

We may express the multiplication in terms of energy-averaged
(also referred to as one-energy-group) cross sections as follows. First
integrate the flux over energy:

� ¼
Z

0

1
’ðEÞdE: ð4:4Þ
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Then defining the flux-averaged cross section as in Eq. (3.38), we have

��y
x¼
Z 1

0
�y

xðEÞ’ðEÞdE

,Z
0

1
’ðEÞdE; ð4:5Þ

where y indicates the material in which the reaction is taking
place. Combining these two equations then expresses the reaction
rate as the product of the energy-averaged cross section and the
flux:

Z
0

1
�y

xðEÞ’ðEÞdE ¼ ��y

x�: ð4:6Þ

The cell-averaged reaction rate then becomes

Z
0

1
�xðEÞ’ðEÞdE ¼

Vf

V
��f

x þ
Vc

V
��c

x þ
Vst

V
��st

x

� �
�; ð4:7Þ

and we may write Eq. (4.3) as

k1 ¼
Vf���f

f

Vf ��
f

a þ Vc ��c

a þ Vst ��
st

a

: ð4:8Þ

The fuel enrichment and the ratios of coolant and other materi-
als to fuel nuclei become the primary determinants of the lattice
multiplication. To examine enrichment we write the number
density of fuel atoms as a sum of the fissile (fi) and fertile (fe)
contributions:

Nf ¼ Nfi þNfe: ð4:9Þ

We define enrichment ~e as in Eq. (3.6) to be the ratio of fissile to total
fuel nuclei:

~e ¼ Nfi=Nf : ð4:10Þ

We next use Eq. (2.5) to specify macroscopic cross sections (for reac-
tion x in material y) in terms of their microscopic counterparts,

��y

x ¼ Ny ��y
x; ð4:11Þ

96 Fundamentals of Nuclear Reactor Physics



where the energy-averaged microscopic cross sections are

��y
x ¼

Z 1
0

�y
xðEÞ’ðEÞdE

�Z 1
0

’ðEÞdE: ð4:12Þ

Separating the fuel into fissile and fertile contributions reduces
Eq. (4.11) to

��f

x ¼ Nfi ��
fi
x þNfe ��fe

x : ð4:13Þ

Thus utilizing Eqs. (4.9) through (4.11) in this expression allows us to
obtain the microscopic fuel cross section as

��f
x ¼ ~e��fi

x þ ð1� ~eÞ��fe
x : ð4:14Þ

The foregoing definitions allow us to express k1 in terms the
enrichment and these microscopic cross sections. Thus Eq. (4.8)
becomes

k1 ¼
VfNf

h
~e�fi ��fi

f þ ð1� ~eÞ�fe ��fe
f

i
VfNf

h
~e��fi

a þ ð1� ~eÞ��fe
a

i
þ VcNc ��c

a þ VstNst ��st
a

; ð4:15Þ

or alternatively

k1 ¼
~e�fi ��fi

f þ ð1� ~eÞ�fe ��fe
f

~e��fi
a þ ð1� ~eÞ��fe

a þ ðVcNc=VfNfÞ��c
a þ ðVstNst=VfNfÞ��st

a

: ð4:16Þ

Because the ratio of ��f to �a is larger for fissile than for fertile
materials, fast reactor multiplication increases with enrichment. The
effects of the coolant and structural materials are subtler. As
Eq. (4.16) indicates, increasing the ratio of coolant to fuel atoms
(i.e., increasing VcNc=VfNf ) increases absorption in the coolant and
thus decreases k1; the presence of structural material has the same
effect. Equally important, since coolant and structural materials have
lower atomic weights than the fuel, neutron collisions with these
nuclei degrade the neutron energy. Thus the more coolant is present,
the more degraded the energy spectrum will become. The degraded
spectrum impacts Eq. (4.16) primarily though the energy-averaged
values of the fuel cross sections. For as Fig. 3.1 indicates, as the
energy of the neutrons decreases, so does the ratio of ��f to �a, thus
decreasing the multiplication.
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4.4 Thermal Reactor Lattices

Equation 4.1 serves as a starting point for the treatment of thermal as
well as fast reactor lattices. However, in the thermal and intermedi-
ate neutron energy ranges, which are central to an understanding of
thermal reactor physics, cross sections generally are larger than for
higher energy neutrons of primary interest in fast reactor physics. In
addition the dimensions of coolant and moderator regions typically
are larger than those of the coolant channels in fast reactors. The net
result of these two factors is that the diameters of fuel pins and the
lateral dimensions of moderator and/or coolant may measure several
mean free paths or more. In such circumstances the magnitudes of
the flux in fuel and moderator regions may differ significantly, with
the flux becoming depressed in the fuel region over energy ranges
where the fuel absorption cross section is large.

For clarity, we consider a simple two volume model, where Vf

and Vm are the fuel and moderator volumes, and hence V ¼ Vf þ Vm.
In doing this we have assumed that the moderator is also the coolant
and occupies the same volume, Vm. The model may be generalized to
treat separate regions of coolant and moderator, as well as to account
for smaller amounts of structural and control materials.

Our simplified model accounts for the difference in fluxes in fuel
and moderator by dividing the cellular reaction rates into fuel and
moderator contributions:

V�xðEÞ’ðEÞ ¼ Vf�
f
xðEÞ’fðEÞ þ Vm�m

x ðEÞ’mðEÞ; ð4:17Þ

where x denotes the reaction type, and ’fðEÞ, ’mðEÞ, and ’ðEÞ are
the spatial averages over Vf , Vm, and V, respectively. Substituting
Eq. (4.17) into Eq. (4.1) yields

k1 ¼
Vf

Z 1
0

��f
fðEÞ’fðEÞdE

Vf

Z 1
0

�f
aðEÞ’fðEÞdEþ Vm

Z 1
0

�m
a ðEÞ’mðEÞdE

; ð4:18Þ

where only a single term appears in the numerator since �m
f ðEÞ ¼ 0.

Further analysis is facilitated by dividing the energy spectrum
into the thermal (T), intermediate (I), and fast (F) ranges introduced in
Chapter 3. As before, we take 1.0 eV and 0.1 MeV as convenient
partition points between thermal, intermediate, and fast neutrons.
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Reaction rates then divide into these three ranges, with each having a
distinct pattern of fission and capture:

Z 1
0

�y
xðEÞ’yðEÞdE ¼

Z
T

�y
xðEÞ’yðEÞdE þ

Z
I

�y
xðEÞ’yðEÞdE

þ
Z

F
�y

xðEÞ’yðEÞdE:

ð4:19Þ

Fission takes place primarily in the thermal neutron range, with a
smaller amount added from fast fission in the fertile material. Thus
we delete the intermediate range from fission reactions and write

Z 1
0
��f

fðEÞ’fðEÞdE �
Z

T
��f

fðEÞ’fðEÞdEþ
Z

F
��f

fðEÞ’fðEÞdE: ð4:20Þ

Since moderator materials have significant absorption cross sections
only for thermal neutrons we make the further simplification

Z
0

1
�m

a ðEÞ’mðEÞdE �
Z

T
�m

a ðEÞ’mðEÞdE: ð4:21Þ

Finally, fuel absorbs both intermediate neutrons—through resonance
capture—and thermal neutrons, whereas fast neutron absorption is
minimal. Thus

Z 1
0

�f
aðEÞ’fðEÞdE �

Z
T

�f
aðEÞ’fðEÞdEþ

Z
I

�f
aðEÞ’fðEÞdE: ð4:22Þ

These simplifications reduce Eq. (4.18) to the more explicit form:

k1 ¼
Vf

Z
T
��f

fðEÞ’fðEÞdEþ
Z

F
��f

fðEÞ’fðEÞdE

� �

Vf

Z
T

�f
aðEÞ’fðEÞdEþ

Z
I

�f
aðEÞ’fðEÞdE

� �
þ Vm

Z
T

�m
a ðEÞ’mðEÞdE

:

ð4:23Þ

The Four Factor Formula

Although Eq. (4.23) brings out the importance of thermal neutrons (three
of the five integrations are over the thermal range), the central role of the
neutron slowing down in determining the lattice multiplication is
contained within it only implicitly. To make the physical processes
more explicit a simplified model—the four factor formula for k1—was
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developed early in the history of reactor physics. Based on physical
arguments and related to measurements that could be performed at the
time, the four factor formula remains valuable tool in understanding the
neutron cycle in thermal reactors, and particularly in relating neutron
behavior to the thermal hydraulic feedback discussed in Chapter 9. In
what follows we present the four factors first qualitatively and then
quantitatively. Then, in the final subsection, we employ the formula to
examine enrichment, moderator to fuel volume ratio, and other design
parameters in determining the multiplication of a pressurized water
reactor lattice.

Figure 4.5 illustrates schematically the behavior of neutrons in a
thermal reactor lattice consisting of fuel and moderator. The hori-
zontal axis denotes the radial distance from the center to the outside
of a lattice cell consisting of a cylindrical fuel element surrounded by
moderator; it is separated into fuel and moderator regions. The dia-
gram’s vertical axis demarks the neutron energy ranging from 0.01 eV
to 10 MeV, with the neutron energies divided into thermal (T), inter-
mediate (I), and fast (F) ranges.

Most of the fission neutrons are born as a result of the absorption
of thermal neutrons in the fuel, and they emerge as fast neutrons.
Assume that n such fast neutrons originate in the fuel as indicated in
Fig. 4.5. Some nominal fraction of these neutrons will cause
fast fission in the fertile material, resulting in a total number of
"n ("> 1) fast neutrons produced from fission, where " is the fast
fission factor. The "n fission neutrons migrate into the moderator
region as step 1 of the diagram indicates. They then undergo slowing
down, indicated as step 2, as a result of collisions with the light
atomic weight moderator nuclei. However only some fraction p sur-
vive to thermal energies, with the remaining neutrons lost to the
resonance capture in the fuel; p (<1) is referred to as the resonance
escape probability. Of the "n neutrons which undergo slowing down,
"pn arrive at thermal energies, while "ð1� pÞn are lost to capture in
the resonances. After arrival at thermal energy some of the neutrons

F n → (1) →
εpf ηT 

n

→ εn
↓

I
↑

(4) ε (1 – p)n ←
↑

↓
← (2)

↓

T
↑

 ←  ← (3) ←
↓

← εpn → εp (1 – f  )n

Fuel Moderator 

εpfn

FIGURE 4.5 Four factor formula for a thermal reactor neutron cycle.
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are absorbed by the moderator and are thereby lost. However in step 3 a
larger fraction f (<1), which is referred to as the thermal utilization,
enters the fuel and is absorbed. Thus the fuel absorbs "pfn while the
moderator absorbs "p ð1� fÞn neutrons. For each thermal neutron
absorbed in the fuel, �T (>1) fission neutrons result. Thus, as step 4
symbolizes, "pf�Tn fission neutrons appear from thermal fission with
MeV energies, generated from the n such fission neutrons of the previous
generation. Thus according to the definition of Eqs. (3.1) and (3.2):

k1 ¼ "pf�T : ð4:24Þ

Table 4.2 displays representative values of the four factors con-
tributing to k1 for the major classes of thermal reactors. The values of
k1, which are substantially greater than one, represent normal operat-
ing conditions. But understand that they are calculated for fresh fuel in
the absence of all control poisons. In an operating reactor, of course,
fuel depletion, which reduces �T , the presence of control rods or other
control poisons, which reduce f, when taken together with PNL, the
nonleakage probability, must yield k ¼ k1 PNL ¼ 1. To better under-
stand the importance of the neutron moderators we examine each of
the four factors more quantitatively in terms of the neutron flux and
cross sections in the thermal (T), intermediate (I), and fast (F) energy
ranges.

Fast Fission Factor

The fast fission factor is the ratio of total fission neutrons produced to
the thermal fission neutrons. Since the neutrons produced by fission
of intermediate energy neutrons can be neglected, we have

TABLE 4.2
Representative Four Factor and k1 Values for Thermal Reactors

PWR Pressurized-
H2O Reactor

BWR Boiling-
H2O Reactor

PHWR
CANDU-D2O
Reactor

HTGR
C-Moderated
Reactor

" 1.27 1.28 1.08 1.20

p 0.63 0.63 0.84 0.62

f 0.94 0.94 0.97 0.98

�
T

1.89 1.89 1.31 2.02

k1
a 1.41 1.40 1.12 1.47

a Fresh fuel without neutron poisons.
Source: Data courtesy of W. S. Yang, Argonne National Laboratory.
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; ð4:25Þ

or equivalently,

" ¼ 1þ

Z
F
��f

fðEÞ’fðEÞdEZ
T

��f
fðEÞ’fðEÞdE

; ð4:26Þ

where the ratio of integrals on the right varies significantly with the
moderator and fuel enrichment employed, ranging between 0.02
and 0.30.

Resonance Escape Probability

All of the fast neutrons scattered downward in energy are absorbed
either in the intermediate energy range by the fuel’s resonance capture
cross sections or in the thermal energy range by fuel or moderator.
Because neutrons captured by the fuel resonances are lost from the
slowing down process, the fraction that survives to thermal energies is
the resonance escape probability:

p ¼
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�f
aðEÞ’fðEÞdEþ Vm
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a ðEÞ’mðEÞdE

:

ð4:27Þ

Adding and subtracting Vf

R
I �f

aðEÞ’fðEÞdE to the numerator, we may
rewrite the escape probability as

p ¼ 1�
Vf

Z
I

�f
aðEÞ’fðEÞdE

Vf

Z
T

�f
aðEÞ’fðEÞdEþ
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�f
aðEÞ’fðEÞdE

� �
þ Vm

Z
T

�m
a ðEÞ’mðEÞdE

:

ð4:28Þ

The total absorption, which is the denominator, must equal the total
number of neutrons slowing down, or Vq, where q is the slowing down
density—introduced in Chapter 3—averaged over the cell. Next, divide
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the cell-averaged slowing down density into contributions qf and qm

from fuel and moderator regions:

q ¼
Vf

V
qf þ

Vm

V
qm: ð4:29Þ

Because the fuel nuclei have much larger atomic weights than those
of the moderator, slowing down in the fuel can be neglected to first
approximation. We then have

Vq � Vmqm: ð4:30Þ

Replacing the denominator in Eq. (4.28) by Vmqm then yields

p ¼ 1�
Vf

Vmqm

Z
I

�fe
a ðEÞ’fðEÞdE; ð4:31Þ

where we have also replaced �f
aðEÞ with �fe

a ðEÞ since the dominant
resonance capture takes place in the fertile material.

In the intermediate energy range moderators may be approximated
as purely scattering materials. In these circumstances Eq. (3.26)
relates the flux and slowing down density; if the scattering cross
section �m

s of the moderator is energy independent then the flux is
1/E, and Eq. (3.26) reduces to

qm ¼ �m�m
s E’mðEÞ; ð4:32Þ

where �m is the moderator slowing down decrement defined in
Chapter 2. Inserting this expression into Eq. (4.31) then yields

p ¼ 1�
Vf

Vm�m�m
s E’mðEÞ

Z
I

�fe
a ðE0Þ’fðE0ÞdE0: ð4:33Þ

Because qm and �m�m
s are constants, Eq. (4.32) indicates that E’mðEÞ

also must be independent of energy. Hence we may move it inside
the integral. Then, writing �fe

a ðEÞ ¼ Nfe�
fe
a ðEÞ, we obtain the custom-

ary form of the resonance escape probability:

p ¼ 1�
VfNfe

Vm�m �m
s

I; ð4:34Þ

where the resonance integral is defined by

I ¼
Z

I

�fe
a ðEÞ’fðEÞ
E’mðEÞ

dE: ð4:35Þ
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Most resonances are sufficiently widely spaced that a 1/E flux
distribution is reestablished at energies between them, but with a
slowing down density decreased in proportion to the fraction of neu-
trons absorbed. This being the case we may apply the two preceding
equations to the ith resonance,

pi ¼ 1�
VfNfe

Vm�m �m
s

Ii; ð4:36Þ

and

Ii ¼
Z

I

�fe
aiðEÞ’fðEÞ
E’mðEÞ dE: ð4:37Þ

and write the resonance escape probability as the product of the pi. If
T is the total number of resonances, then

p ¼ p1p2p3 � � � pi � � �pT�1pT : ð4:38Þ

Generally, the escape probability for a single resonance is sufficiently
close to one that Eq. (4.36) is a reasonable two-term approximation to
the exponential function. Thus we take

pi ¼ exp �
VfNfe

Vm�m �m
s

Ii

� �
; ð4:39Þ

and inserting this result into Eq. (4.38) gives

p ¼ exp �
VfNfe

Vm�m �m
s

I

� �
; ð4:40Þ

where the resonance integral is the sum of contributions from the
individual resonances:

I ¼
PT
i¼1

Ii: ð4:41Þ

Figure 3.4 illustrated that self-shielding in energy reduces the
neutron capture in the resonances of the fertile material. In fact, the
separation of fuel from moderator increases this desirable effect with
space–energy self-shielding which depresses the ratio ’fðEÞ=’mðEÞ in
Eq. (4.37) at energies were the resonance peaks appear in the absorp-
tion cross section �fe

a ðEÞ. Figure 4.6 illustrates spatial self-shielding
as well as the effect of temperature on it. A resonance cross section
and the Doppler broadening that takes place as the temperature
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increases from T1 to T2 is illustrated in Fig. 4.6a. We see in Fig. 4.6b
the depression in ’fðEÞ, the flux in the fuel, relative to that of ’mðEÞ,
the flux in the moderator. As indicated, increasing the temperature
decreases the self-shielding at the resonance peak, and this in turn
increases the absorption as the temperature increases.

Only the increase in the resonance escape probability caused by
the separations of fuel from moderator allowed reactors fueled with
natural uranium and graphite moderators to be built. Without the
spatial self-shielding provided by the separation of fuel and modera-
tor, values of k1� 1 are possible with natural uranium fuel only if
heavy water is the moderator. Even with spatial self-shielding,
slightly enriched uranium is required to achieve criticality in a
light water–moderated system.

More advanced texts include detailed analysis of space–energy
self-shielding. However, experimental investigations have led to
empirical equations for the resonance integrals of uranium-238 fuel
rods given in Table 4.3. The resonance integrals are in barns, the
density � in g/cm3, and D is the rod diameter in cm. These equations
are valid for isolated rods with 0.2 cm<D< 3.5 cm; if the rods are
located in a tightly packed lattice the self-shielding increases some-
what through what is called a Dancoff correction. In either case, the

TABLE 4.3
Resonance Integrals for Fuel Rods

I ¼ 2:95þ 25:8
ffiffiffiffiffiffiffiffiffiffiffiffi
4=�D

p
for U metal

I ¼ 4:45þ 26:6
ffiffiffiffiffiffiffiffiffiffiffiffi
4=�D

p
for UO2

Source: Nordheim, L. W., ‘‘The Doppler Coefficient,’’ The Technology of Nuclear Reactor
Safety, T. J. Thompson and J. G. Beckerley, eds., Vol. 1, MIT Press, Cambridge, MA, 1966.
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FIGURE 4.6 Effect of Doppler broadening on self-shielding for T2 > T1.
(a) Resonance absorption cross section, (b) neutron flux in fuel and
moderator.
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spatial self-shielding is evident, since as the fuel diameter increases,
the resonance integral—and therefore the absorption—decreases.

Thermal Utilization and hT

The thermal utilization, f, is the fraction of thermal neutrons
absorbed in the fuel. Since all the thermal neutrons must be absorbed
in either fuel or moderator, we have

f ¼
Vf

Z
T

�f
aðEÞ’fðEÞdE

Vf

Z
T

�f
aðEÞ’fðEÞdEþ Vm

Z
T

�m
a ðEÞ’mðEÞdE

: ð4:42Þ

Finally, the number of fission neutrons produced per thermal neutron
absorbed in the fuel is

�T ¼

Z
T
��f

fðEÞ’fðEÞdE

Z
T

�f
aðEÞ’fðEÞdE

: ð4:43Þ

The expressions for f and �T simplify considerably by defining
cross sections averaged only over the thermal neutron spectrum. Let

�’fT ¼
Z

T
’fðEÞdE ð4:44Þ

and

�’mT ¼
Z

T

’mðEÞdE ð4:45Þ

be the thermal fluxes, space-averaged, respectively, over the fuel and
moderator regions. The thermal cross sections for fuel and moderator
then become

��f
xT ¼ �’�1

fT

Z
T

�f
xðEÞ’fðEÞdE ð4:46Þ

and

��m
xT ¼ �’�1

mT

Z
T

�m
x ðEÞ’mðEÞdE: ð4:47Þ
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With these thermal cross section definitions f and �T simplify to

f ¼ 1

1þ & Vm ��m

aT

.
Vf ��

f

aT

� 	 ð4:48Þ

and

�T ¼
���f

fT

��f

aT

; ð4:49Þ

where the thermal disadvantage factor is defined as the ratio of
thermal neutron flux in the moderator to that in the fuel:

& ¼ �’mT



�’fT : ð4:50Þ

The disadvantage is that the more neutrons that are captured in the
moderator because of the larger flux there, the fewer will be available
to create fission in the fuel.

k¥ Reconsidered

The question remains, How does the four factor formula relate to the
value of k1 given by Eq. (4.23)? For an answer, insert Eqs. (4.25),
(4.27), (4.42), and (4.43) for ", p, f, and �T into k1 ¼ "pf�T . Canceling
terms, we see that the result is identical to Eq. (4.23):

Thus Eq. (4.23) is consistent with the four factor formula.
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Pressurized Water Reactor Example

Two of the primary determinants of the thermal reactor core multi-
plication are the fuel enrichment and the volume ratio of modera-
tor to fuel. The multiplication increases monotonically with
enrichment but exhibits a maximum when plotted with respect
to the moderator to fuel ratio. Under- and overmoderated lattices
refer to those in which the moderator to fuel ratios are less than or
greater than the optimal value. We illustrate the effects of enrich-
ment, moderator to fuel ratio, and other design parameters on
multiplication using UO2 pressurized water reactor lattices as
examples.

We begin by expressing the four factors in terms of the enrich-
ment and the moderator to fuel atom ratio. Equations (4.9) and (4.10)
define the enrichment ~e in terms of the number fissile (fi) and fertile
(fe) atom densities. Thus analogous to Eq. (4.14) for fast reactors, for
thermal reactors we have

�� f
aT ¼ ~e�� fi

aT þ ð1� ~eÞ�� fe
aT : ð4:52Þ

Now, however, the energy average is taken over only the thermal
range as indicated by the subscript T. With this nomenclature, we
may express �T in terms of the enrichment and �fi of the fissile
material as

�T ¼ � fi
T

.
1þ ð1� ~eÞ�� fe

aT=~e�� fi
aT

h i
: ð4:53Þ

The resonance escape probability is a function of both the
enrichment and the ratio of moderator to fuel nuclei, VmNm=VfNf .
Because Nfe ¼ ð1� ~eÞNf , we may rewrite Eq. (4.40) as

p ¼ exp � ð1� ~eÞ
ðVmNm=VfNfÞ

I

� �m
s

� �
; ð4:54Þ

where �m
s ¼ Nm�

m
s . Expressed in terms of the moderator to fuel atom

ratio the thermal utilization given by Eq. (4.48) becomes

f ¼ 1

1þ &ðVmNm=VfNfÞð��m
aT=��f

aTÞ
; ð4:55Þ

where we have again expressed macroscopic cross section in terms
of nuclide densities and microscopic cross sections: ��m

aT ¼ Nm ��m
aT
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and ��f
aT ¼ Nf �� f

aT . Finally the fast fission factor, given by Eq. (4.26),
appears as

" ¼ 1þ ð1�
~eÞ

~e

�fe �� fe
fF

�fi ��fi
fT

ð4:56Þ

when written in terms of microscopic cross sections.
Two phenomena compete as VmNm=VfNf , the ratio of moderator

to fuel, is increased. Equation (4.54) indicates that the resonance escape
probability increases. This happens as a result of the greater ability of
the moderator to slow down neutrons past the capture resonances. In
contrast, Eq. (4.55) shows that a larger value of VmNm=VfNf results in
more thermal neutron capture in the moderator, thus decreasing the
thermal utilization. As a result of these opposing phenomena, there
exists an optimum moderator to fuel ratio, which for a given enrich-
ment, fuel element size, and soluble absorber concentration yields the
maximum value of k1. Figure 4.7 illustrates these effects.

The figure also illuminates a number of other effects. Increasing
the concentration of boron poison in the moderator reduces the
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FIGURE 4.7 k1 for pressurized water lattices vs moderator to fuel volume
ratios with different rod radii, boron concentrations, and enrichments
(adapted from Theorie der Kernreaktoren, 1982, by D. Emendorfer and
K. H. Hocker, by permission of VGB, Essen).
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multiplication, and the effect becomes larger—asone would expect—as
the moderator to fuel volume ratio increases. Likewise, increasing the
fuel rod radius increases the multiplication, but by a smaller amount.
This comes about from the increase in spatial self-shielding of the
capture resonances: Increased self-shielding reduces the resonance
integral given inTable 4.3,whichsubsequently increases the resonance
escape probability displayed in Eq. (4.40). Finally, enrichment has a
marked effect in increasing k1, which is apparent from observing the
curves for 2.5% (dashed) and 3.0% (solid) enrichment with the other
parameters held constant.

In liquid-moderated systems the core invariably is designed to be
undermoderated—to have less moderator than the optimum—under
operating conditions. This is to ensure stability. Because a liquid
expands more rapidly than the solid fuel as the core temperature
increases, the ratio of moderator to fuel atoms will decrease with
temperature. This will move the operating points on the curves in
Fig. 4.7 to the left. Thus the value of k1 will decrease with increasing
temperature in an undermoderated core, creating the negative feed-
back required for a stable system. Conversely an overmoderated core
would create a positive temperature feedback, and result in an
unstable system, unless a negative feedback mechanism, such as
the Doppler broadening discussed in Chapter 3, overrides the positive
effect. As we will elaborate in Chapter 9, however, too much negative
feedback can create other challenges. Reactor designers must balance
the composite effects of moderator density, fuel temperature, and
other phenomena to ensure system stability under all operation
conditions.

The situation may be more complex in solid-moderated reac-
tors, such as those employing graphite, because it is the relative
values of the expansion coefficients of two solids that then come
into play. Moreover, although the atom density of gas coolant may
be too small to have a measurable impact, the relative expansion of
the coolant channel diameter may become a significant factor. If a
liquid coolant is used in combination with graphite, such as in the
RBMK reactors, then the interactions are more complex yet, for the
interacting temperature effects on fuel, coolant, and moderator
must be considered separately, and in combination.
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Problems

4.1. A reactor is to be built with fuel rods of 1.2 cm in diameter and a
liquid moderator with a 2:1 volume ratio of moderator to fuel.
What will the distance between nearest fuel centerlines be

a. For a square lattice?
b. For a hexagonal lattice?

4.2. In a fast reactor designers often want to minimize the coolant to
fuel volume ratio to minimize the amount of neutron slowing
down. From a geometric point of view what is the theoretical
limit on the smallest ratio of coolant to fuel volume that can be
obtained

a. With a square lattice?
b. With a hexagonal lattice?

4.3. A sodium-cooled fast reactor is fueled with PuO2, mixed with
depleted UO2. The structural material is iron. Averaged over the
spectrum of fast neutrons, the microscopic cross sections and
densities are as follows:

�f b �a b �t b � g/cm3

PuO2 1.95 2.40 8.6 11.0

UO2 0.05 0.404 8.2 11.0
Na – 0.0018 3.7 0.97
Fe – 0.0087 3.6 7.87
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The fuel is 15% PuO2 and 85% UO2 by volume. The volumetric
composition of the core is 30% fuel, 50% coolant, and 20%
structural material. Calculate k1 assuming that the values of �
for plutonium and uranium in the fast spectrum are 2.98 and
2.47, respectively, and that the cross sections of oxygen can be
neglected. What fraction of the mass of the core does the fuel
account for?

4.4. Suppose the nonleakage probability for a sodium-cooled fast
reactor specified in problem 4.3 is 0.90. Using the data from
problem 4.3, adjust the volume fractions of PuO2 and UO2 in
the fuel so that k = 1.0. What is the % PuO2 in the fuel by
volume?

4.5. Verify Eq. (4.18).

4.6. A pressurized water reactor has 3% enriched UO2 fuel pins
that are 1.0 cm in diameter and have a density of 11.0 g/cm3.
The moderator to fuel volume ratio is 2:1. Calculate �T , p, f,
and k1 at room temperature under the assumptions that
" ¼ 1:24, the thermal disadvantage factor & ¼ 1:16, and the
Dancoff correction increases the fuel diameter for the
resonance integral calculation by 10%. (Use fuel data from
Problem [3.4].)

4.7. Suppose the fuel rods from problem 4.6 are to be used in a D2O-
moderated reactor.

a. What volume ratio of moderator to fuel is required to give the
same value of p as for the H2O lattice in problem 4.6?
(Assume no Dancoff correction.)

b. What volume ratio of moderator to fuel is required to give the
same value of f as for the H2O lattice in problem 4.6? (Assume
& is unchanged.)

4.8. A reactor lattice consists of uranium rods in a heavy water
moderator. The heavy water is replaced by light water.

a. Would the resonance escape probability increase or decrease?
Why?

b. Would the thermal utilization increase or decrease? Why?
c. What would you expect the net effect on k1 to be? Why?

4.9. Suppose the volume ratio of coolant to fuel is increased in a
pressurized water reactor:

a. Will the fast fission factor increase, decrease, or remain
unchanged? Why?

b. Will the resonance escape probability increase, decrease, or
remain unchanged? Why?
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c. Will the thermal utilization increase, decrease, or remain
unchanged? Why?

d. Will the value of �T increase, decrease, or remain unchanged?
Why?

4.10. Using the data from problem 4.6, vary the coolant to fuel volume
ratio between 0.5 and 2.5 and plot the following vs Vm=Vf :

a. The resonance escape probability.
b. The thermal utilization.
c. k1.
d. Determine the moderator to fuel volume ratio that yields

the largest k1.
e. What is the largest value of k1?

You may assume that changes in the fast fission factor and the
thermal disadvantage factor are negligible.

4.11. A reactor designer decides to replace uranium with UO2 fuel in
a water-cooled reactor, keeping the enrichment, fuel diameter,
and water to fuel volume ratios the same.

a. Will p increase, decrease, or remain unchanged? Why?
b. Will f increase, decrease, or remain unchanged? Why?
c. Will �T increase, decrease, or remain unchanged? Why?

4.12. The fuel for a thermal reactor has the following composition by
atom ratio: 2% uranium-235, 1% plutonium-239, and 97%
uranium-238. Calculate the value of �T to be used for this fuel
in the four factor formula. (Use the data given for problem 3.4.)
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CHAPTER 5

Reactor Kinetics

5.1 Introduction

This chapter takes up a detailed examination of the time-depen-
dent behavior of neutron chain reactions. In order to emphasize the
time variable we make two simplifications that remove the need to
treat concomitantly the neutron energy and spatial variables. First,
we assume that the techniques of Chapters 3 and 4 have been
applied to average both the neutron distribution and associated
cross sections over energy. Second, we delay the explicit treatment
of spatial effects until the following chapters, assuming for now
that neutron leakage from the system is either negligible or can be
treated by the nonescape probability approximation introduced
earlier.

We begin by introducing a series of neutron balance equations
and their time-dependent behavior. First we examine a system in
which no fissionable materials are present; such a system is desig-
nated as nonmultiplying. Subsequently, we include fissionable iso-
topes, and examine the behavior of the resulting multiplying
system. In both cases we assume that neutron leakage from the
systems can be ignored. We then incorporate the effects of leakage,
in order to examine the phenomena of criticality in systems of
finite size.

The most noteworthy simplification in these equations is the
assumption that all neutrons are produced instantaneously at the
time of fission. In reality a small fraction of fission neutrons are
delayed because they are emitted as a result of the decay of certain
fission products. These delayed neutrons have profound effects on
the behavior of chain reactions. The remainder of the chapter deals
with the reactor kinetics that results from the combined effects of
fission neutrons, both those produced promptly and those that are
delayed.
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5.2 Neutron Balance Equations

To obtain neutron balance equations we utilize the following
definitions:

nðtÞ= total number of neutrons at time t,
�v = average neutron speed,

�x = energy-averaged cross section for reaction type x.

Here nðtÞ refers to all of the neutrons in the system, regardless of their
location or kinetic energy. Likewise �v and �x are the results obtained
from averaging over all neutron energies, and in the case of �x we also
assume that in a power reactor it has been spatially averaged over the
lattice cell.

Infinite Medium Nonmultiplying Systems

We first determine the time rate of change of the number of neutrons,
nðtÞ, in a nonmultiplying system, that is, a system containing no
fissionable material. In addition, we assume that the system’s dimen-
sions are so large that the small fraction of neutrons that leak from its
surface can be neglected. The neutron balance equation is then

d

dt
nðtÞ ¼ # of source neutrons produced/s

� # of neutrons absorbed/s: ð5:1Þ

We replace the first term on the right by the source SðtÞ, defined as
the number of neutrons introduced per second. Recall that the
macroscopic absorption cross section �a is the probability that a
neutron will be absorbed per cm of travel. Thus �v�a is the probability
per second that a neutron will be absorbed, and �a �vnðtÞ is the num-
ber of neutrons absorbed per second. Equation (5.1) becomes

d

dt
nðtÞ ¼ SðtÞ � �a �vnðtÞ: ð5:2Þ

To determine the average neutron lifetime between birth and
absorption we assume that at t = 0 the system contains nð0Þ neu-
trons, but no further neutrons are produced. Thus SðtÞ ¼ 0 in Eq. (5.2):

d

dt
nðtÞ ¼ ��a �vnðtÞ: ð5:3Þ

Analogous in form to the radioactive decay equation in Chapter 1,
Eq. (5.3) has the solution
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nðtÞ ¼ nð0Þ expð�t=l1Þ; ð5:4Þ

where we have defined

l1 ¼ 1=�v�a: ð5:5Þ

Because l1 has the units of time, we designate it as the neutron
lifetime. The subscript indicates that we are referring to an infinite
medium; the lifetime is not shortened as a result of the neutrons
leaking from the system. More formal justification for designating l1
as the neutron lifetime derives from the definition of �t, the mean
neutron lifetime:

�t �

Z 1
0

tnðtÞdtZ 1
0

nðtÞdt

¼ 1=�v�a ¼ l1: ð5:6Þ

Using this definition for neutron lifetime we may write Eq. (5.2) as

d

dt
nðtÞ ¼ So �

1

l1
nðtÞ; ð5:7Þ

where we have assumed the source to be independent of time:
SðtÞ ! So. Next consider the situation where no neutrons are present
until the source is inserted at t = 0. Solving Eq. (5.7) with the initial
condition nð0Þ ¼ 0 yields

nðtÞ ¼ l1So½1� expð�t=l1Þ�: ð5:8Þ

Thus the neutron population first increases but then stabilizes at
nð1Þ ¼ l1So.

The foregoing equations illustrate that the speed at which neu-
tron populations build or decay depends strongly on the neutron
lifetime. Accordingly, the processes take place very rapidly in non-
multiplying systems, because neutron lifetimes in them range from
10�8 to 10�4 s. The longer lifetimes take place in systems in which
the neutrons reach thermal energies before being absorbed, for then
the speed in Eq. (5.5) is dominated by the slow neutrons. Systems in
which most of the neutrons are absorbed at higher energies, before
slowing down can take place, have much shorter lifetimes.

Infinite Medium Multiplying Systems

Next consider a multiplying system, that is, one in which fissionable
material is present. We again neglect leakage effects by assuming that
the system’s dimensions are infinitely large. For now we also assume
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that all neutrons from fission are emitted instantaneously, thus
ignoring the small but important fraction of fission neutrons that
undergo delayed emission. With these assumptions the neutron bal-
ance equation becomes

d

dt
nðtÞ ¼ # of source neutrons produced/s

þ # of fission neutrons produced/s

� # of neutrons absorbed /s:

ð5:9Þ

The source and absorption terms have the same form as before.
To obtain the fission term, first note that the number of fission
reactions per second is �f �vnðtÞ. Then with � denoting the average
number of neutrons per fission, the number of fission neutrons
produced per second is ��f �vnðtÞ. Hence the balance equation
becomes

d

dt
nðtÞ ¼ SðtÞ þ ��f �vnðtÞ � �a �vnðtÞ: ð5:10Þ

With the infinite medium multiplication defined by Eq. (3.61) as

k1 ¼ ��f

�
�a ð5:11Þ

and l1 defined by Eq. (5.5), we may rewrite Eq. (5.10) as

d

dt
nðtÞ ¼ SðtÞ þ ðk1 � 1Þ

l1
nðtÞ: ð5:12Þ

The concepts of criticality and multiplication introduced in
earlier chapters are closely related. Suppose we consider a system in
which there are no sources of neutrons other than from fission.
Accordingly, we set S = 0 in Eq. (5.12) and obtain

d

dt
nðtÞ ¼ ðk1 � 1Þ

l1
nðtÞ: ð5:13Þ

A system is defined to be critical if there can exist a time-independent
population of neutrons in the absence of external sources. Thus for a
system to be critical the derivative on the left of this expression must
vanish. Consequently, for the system to be critical the multiplication
k1 must be equal to one. The system is said to be sub- or supercritical,
respectively, if in the absence of external sources, the neutron
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population decreases or increases with time. Equation (5.13) indicates
that an infinite system is subcritical, critical, or supercritical accord-
ing to whether k1<1, k1 = 1, or k1 > 1.

Finite Multiplying Systems

We next reformulate the neutron balance equation for the more
realistic situation in which the reactor dimensions are finite, and
hence neutron leakage from the system must be taken into account.
We begin by rewriting Eq. (5.9) with a loss term appended to account
for neutron leakage:

d

dt
nðtÞ ¼ # of source neutrons produced/s

þ # of fission neutrons produced/s

� # of neutrons absorbed/s

� # neutrons leaking from system/s.

ð5:14Þ

Only the leakage term differs in form from those found in Eq. (5.10).
We write it as ��a �vnðtÞ, which assumes that the number of neutrons
leaking from the system is proportional to the number of neutrons
absorbed per second, with proportionality constant G. With the leak-
age expressed as ��a �vnðtÞ, Eq. (5.14) becomes

d

dt
nðtÞ ¼ SðtÞ þ ��f �vnðtÞ � �a �vnðtÞ � ��a �vnðtÞ: ð5:15Þ

We may cast this equation in a more physically meaningful
form by expressing G in terms of leakage and nonleakage probabi-
lities. We say that neutrons are ‘‘born’’ either as external source
neutrons, S, or from fission. They then undergo a number of scatter-
ing collisions and ultimately ‘‘die’’ from one of two fates: they are
absorbed or they leak from the system. The probability that they
will leak from the system is

PL ¼
��a �vn

�a �vnþ ��a �vn
¼ �

1þ �
: ð5:16Þ

Thus the nonleakage probability is 1� PL or

PNL ¼
1

1þ �
: ð5:17Þ

Thus since we expect the nonleakage probability to grow and
approach one as the reactor becomes very large, G decreases with
increased reactor size.
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The nonleakage probability definition assists in writing Eq. (5.15)
in a more compact form. We first multiply it by the nonleakage
probability and use Eq. (5.17) to eliminate G from the equation:

PNL
d

dt
nðtÞ ¼ PNLSðtÞ þ PNLð��fÞ�vnðtÞ � �a �vnðtÞ: ð5:18Þ

Equations (5.11) and (5.5) allow the last two terms to be combined
and written in terms of k1 and l1:

PNL
d

dt
nðtÞ ¼ PNLSðtÞ þ ðPNLk1 � 1Þ

l1
nðtÞ: ð5:19Þ

Finally, we divide this expression by PNL and define the finite
medium multiplication and neutron lifetime as

k ¼ PNLk1 ð5:20Þ

and

l ¼ PNLl1: ð5:21Þ

Equation (5.19) then reduces to

d

dt
nðtÞ ¼ SðtÞ þ ðk� 1Þ

l
nðtÞ; ð5:22Þ

which is identical to Eq. (5.12) if the infinite medium subscripts are
removed. Both the multiplication and neutron lifetime are smaller
for the finite than for the infinite system, because of the neutrons lost
to leakage.

5.3 Multiplying Systems Behavior

Although Eq. (5.22) does not incorporate the effects of delayed
neutrons, it provides us with a simplified—but qualitatively
correct—description of multiplying systems. The definition of criti-
cality once again comes from the form of the equation in which the
external source term, SðtÞ, is set equal to zero:

d

dt
nðtÞ ¼ ðk� 1Þ

l
nðtÞ: ð5:23Þ

If there are neutrons in the system at t = 0, that is, if nð0Þ > 0, then in
the absence of an external source,
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nðtÞ ¼ nð0Þ exp
ðk� 1Þ

l
t

� �
: ð5:24Þ

The system is said to be critical if there is a time-independent
chain reaction in the absence of sources. Clearly, the system is
critical when k, the multiplication, is equal to one. Analogous to
the infinite medium, we now have

k
>1 supercritical
¼1 critical
<1 subcritical:

8<
: ð5:25Þ

Figure 5.1a shows the behavior of multiplying systems in the absence
of sources.

Considering the case where a time-independent source is present
in the system, we must solve Eq. (5.22) with SðtÞ ! So. Applying the
integrating factor technique explained in Appendix A, with an initial
condition nð0Þ ¼ 0, we obtain

nðtÞ ¼ lSo

ðk� 1Þ exp
ðk� 1Þ

l
t

� �
� 1

� �
: ð5:26Þ

Figure 5.1b indicates the behavior of multiplying systems with a
time-independent source present. For a supercritical system, k > 1,
the neutron population rises at an increasing rate, becoming expo-
nential at long times. The behavior of the subcritical system, k < 1,
becomes more transparent if we first manipulate the minus signs to
rewrite Eq. (5.26) in the form

0 0.5 1
0

1

2

3

(a) (b)

t

n(
t )

 /n
(0

)

n(
t )

 /S
o

0 0.5 1
0

1

2

3

t

k > 1 k = 1
k > 1

k < 1

k < 1

k = 1

FIGURE 5.1 Neutron populations in subcritical, critical, and supercritical
systems. (a) n(0) = 1, no source present, (b) n(0) = 0, source present.
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nðtÞ ¼ lSo

ð1� kÞ 1� exp
�ð1� kÞ

l
t

� �� �
: ð5:27Þ

Thus for k < 1 (the subcritical case) the number of neutrons increases
at first, but then as the exponential term decays away, the population
stabilizes at long times to a time-independent solution of

nð1Þ ¼ lSo

ð1� kÞ : ð5:28Þ

The behavior of Eq. (5.26) or Eq. (5.27) is more subtle for the case
of a critical system, for which k = 1, because then both the term in
brackets and the denominator equal zero. However, if we take the
limit as k! 1 we can expand the exponential as a power series
expðxÞ ¼ 1þ x þ 1=2 x2 þ � � � in Eq. (5.26) to obtain

nðtÞ ¼ lSo

ðk� 1Þ 1þ ðk� 1Þ
l

tþ 1

2

ðk� 1Þ2

l2
t2 þ � � � � 1

( )
: ð5:29Þ

Canceling terms, and taking the limit k! 1 yields

nðtÞ ¼ S0t: ð5:30Þ

Thus the neutron population in a critical system will increase line-
arly with time in the presence of a time-independent source.

The results of the foregoing considerations are summarized in the
Fig. 5.1. There are only two situations in which a time-independent
population of neutrons can be established: (1) a critical system in the
absence of an external source (k = 1 and S = 0) and (2) a subcritical
system in which there is a source of neutrons present (k< 1 and S> 0).
Note that the definition of criticality depends only on the multiplica-
tion k, and not on the source. The behavior of the system, however,
depends very strongly on whether a source is present.

Observe that even for very small deviations of the multiplication
from one, large time rates of change take place in the neutron popula-
tion. These are caused by the small value of the neutron lifetime,
typically ranging from 10�8 to 10�4 s, which appears in the denomi-
nator of the exponentials. With such small neutron lifetimes, con-
trolling a nuclear reactor would be very difficult if all the neutrons
were born instantaneously with fission. Fortunately, the presence of
delayed neutrons—which have been neglected until now—greatly
decreases the rates of change in the neutron populations to more
manageable levels, provided certain restrictions are met.
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5.4 Delayed Neutron Kinetics

More than 99% of fission neutrons are produced instantaneously at
the time of fission. The remaining fraction, �, results from the decay
of the neutron-emitting fission products. These neutron precursors
are typically lumped into six groups with half-lives ranging from a
fraction of a second to nearly a minute. Table 5.1 displays the six
group half-lives and delayed fractions for the three most common
fissile isotopes. Note that � is just the sum of the delayed fractions for
each group:

� ¼
P6
i¼1

�i: ð5:31Þ

If we denote the half-life for the ith group by ti1=2 , then the average
half-life of the delayed neutrons is

t1=2¼
1

�

X6

i¼1

�iti1=2 : ð5:32Þ

Moreover, since half-lives and decay constants are related by

t
i1=2¼ 0:693=�i;

ð5:33Þ

the average decay constant can be defined by

1

�
¼ 1

�

X6

i¼1

�i
1

�i
: ð5:34Þ

TABLE 5.1
Delayed Neutron Properties

Approximate
Half-life (sec)

Delayed Neutron Fraction

U233 U235 Pu239

56 0.00023 0.00021 0.00007
23 0.00078 0.00142 0.00063
6.2 0.00064 0.00128 0.00044
2.3 0.00074 0.00257 0.00069
0.61 0.00014 0.00075 0.00018
0.23 0.00008 0.00027 0.00009

Total delayed fraction 0.00261 0.00650 0.00210
Total neutrons/fission 2.50 2.43 2.90
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In the preceding equations the quantity l designates the prompt
neutron lifetime, which is the average lifetime of those neutrons
produced instantaneously at the time of fission. If we define the
average delayed neutron lifetime, ld, as the time interval between
fission and the time at which the delayed neutrons are absorbed or
leak from the system, then it has a value of

ld ¼ lþ t1=2=0:693 ¼ lþ 1=�: ð5:35Þ

Hence including the lifetimes of both prompt and delayed neutrons,
we obtain the average neutron lifetime as

�l ¼ ð1� �Þlþ �ld ¼ lþ �=�: ð5:36Þ

Although delayed neutrons are a small fraction of the total, they
dominate the average neutron lifetime, because �=�� l. The delayed
neutrons have profound effects on the behavior of chain reactions.
But the effects are not adequately described by simply replacing l
with �l in the foregoing equations. Proper treatment requires a set of
differential equations to account for the time-dependent behavior of
both prompt and delayed neutrons.

Kinetics Equations

To derive a neutron balance equation in which the effects of delayed
neutrons are included, we divide the fission terms in Eq. (5.15) into
prompt and delayed contributions. If � is the delayed neutron fraction,
the rate at which prompt neutrons are produced is ð1� �Þ��f �vnðtÞ.
Delayed neutrons, on the other hand, are produced by the decay of
fission products. If we define CiðtÞ as the number of radioactive pre-
cursors producing neutrons with a half-life ti1=2 , then the rate of delayed
neutron production is �iCiðtÞ. With the fission term divided into the
prompt and delayed contributions, Eq. (5.15) becomes

d

dt
nðtÞ ¼ SðtÞ þ ð1� �Þ��f �vnðtÞ þ

X
i

�iCiðtÞ � �a �vnðtÞ � ��vnðtÞ:

ð5:37Þ

We require six additional equations to determine the precursor
concentration for each delayed group. Each has the form of a balance
equation:

d

dt
CiðtÞ ¼ # precursors produced=s�# precursors decaying=s:

ð5:38Þ
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The number of precursors of type i produced per second is �i��f �vnðtÞ,
whereas the decay rate is �iCiðtÞ. Hence

d

dt
CiðtÞ ¼ �i��f �vnðtÞ � �iCiðtÞ; i ¼ 1; 2; � � �; 6: ð5:39Þ

Taken together, Eqs. (5.37) and (5.39) constitute the neutron kinetics
equations. Expressed in terms of the multiplication and prompt neu-
tron lifetime, defined by Eqs. (5.5), (5.11), (5.20), and (5.21), these
equations become

d

dt
nðtÞ ¼ SðtÞ þ 1

l
½ð1� �Þk� 1�nðtÞ þ

X
i

�iCiðtÞ ð5:40Þ

and

d

dt
CiðtÞ ¼ �i

k

l
nðtÞ � �iCiðtÞ; i ¼ 1; 2; � � �; 6: ð5:41Þ

We may ask, under what conditions can these equations have a
steady state solution; that is, a solution for which n and Ci are time-
independent, causing the derivatives on the left vanish? For a time-
independent source, So, we have

0 ¼ So þ
1

l
½ð1� �Þk� 1�nþ

X
i

�iCi ð5:42Þ

and

0 ¼ �i
k

l
n� �iCi; i ¼ 1;2; � � �;6: ð5:43Þ

Solving for Ci, inserting the result into Eq. (5.42), and making use of
Eq. (5.31) yields

0 ¼ S0 þ
ðk� 1Þ

l
n: ð5:44Þ

Thus for the situation where a source is present n ¼ lS0=ð1� kÞ,
which gives a positive result only when k < 1, that is, the system is
subcritical. In the absence of a source, Eq. (5.44) is satisfied with a
time-independent neutron population, n, only if k = 1, that is, the
system is critical. Moreover, if k = 1, then any value of n satisfies the
equation. These are the same conditions for steady state solutions as
shown in Fig. 5.1, and given by Eqs. (5.24) and (5.28). Thus the
presence of delayed neutrons has no effect on the requirements for
achieving steady state neutron distributions.
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Reactivity Formulation

The time-dependent behavior of a reactor is very sensitive to small
deviations of the multiplication about one. This behavior is highlighted
by writing the kinetics equations in terms of the reactivity, defined as

� ¼ k� 1

k
: ð5:45Þ

Hence,

�
> 0 supercritical
¼ 0 critical
< 0 subcritical:

8<
:

Designating the prompt generation time as

� ¼ l=k ð5:46Þ

and using the definitions of � and �, we may simplify the kinetics
equations—that is, Eqs. (5.40) and (5.41)—to

d

dt
nðtÞ ¼ SðtÞ þ ð�� �Þ

�
nðtÞ þ

X
i

�iCiðtÞ ð5:47Þ

and

d

dt
CiðtÞ ¼

�i

�
nðtÞ � �iCiðtÞ; i ¼ 1;2; . . . ;6: ð5:48Þ

In the many cases where the reactivity is not large, and thus, k � 1,
we can approximate � � l without appreciably affecting solutions to
the equations.

The steady state condition given by Eq. (5.44) may also be
expressed in terms of � and � by setting the derivatives in Eqs. (5.47)
and (5.48) equal to zero: The precursor solution is Ci ¼ ð�i=�i�Þn. Thus
for a subcritical system with SðtÞ ¼ So, Eq. (5.47) yields n ¼ �So= �j j,
whereas for a critical system, � ¼ 0, any positive value of n is a solu-
tion of Eq. (5.47), provided SðtÞ ¼ 0. Finally, we note that in most
systems �i�=�i 	 1, and therefore under steady state conditions
Ci � n. Thus the number of neutron-emitting fission products in a
reactor is much larger than the number of neutrons.

5.5 Step Reactivity Changes

We next consider what happens when a step change in reactivity
is applied to an initially critical reactor that has been operating at
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steady state. The two curves in Fig. 5.2 show solutions to Eqs. (5.47)
and (5.48) for positive and negative reactivity insertions. At first
glance the curves appear similar to those in Fig. 5.1a. However, on
further inspection we observe that the curves in Fig. 5.2 are more
nuanced; this results from both prompt and delayed neutrons being
taken into account. First—in less than a second—a prompt jump
occurs in the neutron population. The jump is abrupt because it is
controlled by the prompt neutron lifetime, here taken as
� ¼ 50 � 10�6 s, which is typical for a water-cooled reactor. There
then follows the exponential growth or decay that appears similar
for Fig. 5.1a. The exponential behavior displayed in Fig. 5.2 occurs
quite slowly because the half-lives from the neutron-emitting fission
products are the primary determinant the neutron population’s
growth or decay following the prompt jump.

The asymptotic behavior may be represented as nðtÞ / expðt=TÞ,
where T is defined as the reactor period. The period is positive or
negative depending on whether the reactor is super- or subcritical; it
is the length of time required for the reactor power to increase or
decrease by a factor of e and is arguably the most important quantity
derivable from the kinetics equations.

Reactor Period

We determine the reactor period by returning to the kinetics equa-
tions and setting the source equal to zero. We then look for a solution
of the seven equations set in the form nðtÞ ¼ A expð!tÞ and
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FIGURE 5.2 Neutron populations following reactivity insertions of –0.10�.
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CiðtÞ ¼ Bi expð!tÞ, where A, Bi, and ! are constants. Inserting these
expressions into Eqs. (5.47) and (5.48) yields

!A ¼ ð�� �Þ
�

Aþ
X

i

�iBi ð5:49Þ

and

!Bi ¼
�i

�
A� �iBi: ð5:50Þ

Solving the second equation for Bi in terms of A and inserting the
result into the first, we obtain—after canceling out the A’s—the
following:

! ¼ ð�� �Þ
�

þ 1

�

X
i

�i�i

!þ �i
: ð5:51Þ

Next, we consolidate the terms on the right by making use of
Eq. (5.31):

! ¼ �

�
� 1

�

X
i

�i

!þ �i
!: ð5:52Þ

Finally, solving for � yields

� ¼ �þ
X

i

�i

!þ �i

 !
!: ð5:53Þ

This is known as the inhour equation, since the units of ! are
commonly taken as inverse hours.

The solution of Eq. (5.53) may be examined by graphing the right-
hand side versus ! as Fig. 5.3 illustrates. By drawing a horizontal line
for a specific value of �, we observe that there are seven solutions,
say, !1 > !2 � � � > !7, regardless of whether the reactivity is positive
or negative. Accordingly, the neutron population takes the form

nðtÞ ¼
P7
i¼1

Ai expð!itÞ: ð5:54Þ

Figure 5.3 indicates that for positive reactivity only !1 is positive.
The remaining terms rapidly die away, yielding an asymptotic solu-
tion in the form

nðtÞ ’ A1 expðt=TÞ; ð5:55Þ
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where T ¼ 1=!1 is the reactor period. Figure 5.3 also shows that a
negative reactivity leads to a negative period: All of the !i are nega-
tive, but T ¼ 1=!1 will die away more slowly than the others. Thus
Eq. (5.55) is valid for negative as well as positive reactivities.

The plots in Fig. 5.2 are for reactivities of � ¼ 
0:1�, using para-
meters for uranium-235 and � ¼ 50 � 10�6 s. The prompt jump mag-
nitude at the beginning of the curves is approximately A1 � nð0Þj j.

To determine the reactivity required to produce a given period—
or vice versa—a plot of � vs T must be constructed using the delayed
neutron data for a particular fissionable isotope or isotopes, and for a
given prompt neutron lifetime. Figure 5.4 employs uranium-235 data
in such a plot. Note that the very rapid decrease in the period takes
place as � exceeds �. The condition � ¼ � defines prompt critical, for
at that point the chain reaction is sustainable without delayed neu-
trons as indicated by the change in sign from negative to positive of
the second term in Eq. (5.47).

As prompt criticality is exceeded, the distinction between the
prompt jump and the reactor period vanishes, for now the prompt
neutron lifetime rather than the delayed neutron half-lives largely
determines the rate of exponential increase. Indeed, as prompt criti-
cal is approached, the period becomes so short that controlling the
reactor by mechanical means such as the movement of control rods
becomes exceeding difficult if not impossible. So important is it to
avoid approaching prompt critical that reactivity is often measured in
dollars, $ ¼ �=�, or in cents.

For negative reactivities there is an asymptotic limit to how fast
the neutron population can be decreased. Note from Fig. 5.3 that the
smallest negative period possible—that is, the fastest a reactor’s power
can be decreased after the initial prompt drop—is determined by the

–β

V –λ 6 –λ 5 –λ 4 –λ 3 –λ 2 –λ 1

ω
0

f (ω)

FIGURE 5.3 Solution of the in-hour equation (adapted from A. F. Henry,
Nuclear-Reactor Analysis, 1975, by permission of the MIT Press).
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longest half-life of delayed neutrons or T ¼ 1=�1 ¼ 0:693t1=2 maxj ,
which is approximately 56 s for a uranium-fueled reactor.

Figure 5.3 indicates that when the reactivity is small, so is the
largest value of omega, !1. Suppose for a small reactivity we take
!1 	 �i for all �i. We may then eliminate omega from the denomi-
nator of Eq. (5.53), yielding

� ¼ �þ
X

i

�i

�i

 !
!1: ð5:56Þ

Using Eq. (5.34) to eliminate the summation, and solving for omega,
we obtain !1 ¼ �=ð�þ �=�Þ. Generally, �	 �=�, yielding

T � �=ð��Þ: ð5:57Þ

Thus for small reactivities—positive or negative—the reactor per-
iod is governed almost completely by the delayed neutron proper-
ties � and �. This may seem surprising since delayed neutrons
are such a small fraction of the fission neutrons produced. But
when this small fraction is multiplied by the average half-life,
�=� ¼ 0:693�t1=2

, a time substantially longer than the prompt neu-
tron lifetime results.
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FIGURE 5.4 Reactivity vs reactor period for various prompt neutron
generation times.
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Above prompt critical the period is very small, and thus !1 is
very large. In this situation, we may take !1 � �i for all �i in
Eq. (5.53), reducing it to � ¼ �!1 þ �, or equivalently !1 ¼ ð�� �Þ=�.
Thus the reactor period is very short for � > �, for it is proportional to
the prompt neutron generation time and independent of the delayed
neutron half-lives:

T � �=ð�� �Þ: ð5:58Þ

Prompt Jump Approximation

The prompt jump that occurs following small step changes in reac-
tivity may be utilized in making experimental determinations of
reactor parameters using the rod drop and source jerk techniques.
This jump is observed in Fig. 5.5, where we have magnified the initial
part of the flux transients appearing in Fig. 5.2. Note that although
the neutron population jumps rapidly at first, it then undergoes
change much more slowly. The precursor concentration behaves
much more sluggishly than the neutron population, changing hardly
at all over the time it takes for the neutrons to undergo the initial
jump up or down. This behavior stems from the long precursor half-
lives compared to the prompt generation time; the precursor behavior
governed by Eq. (5.48) is sluggish even when responding to a rapid
change in neutron population since the decay constant multiplying
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FIGURE 5.5 Prompt jump in neutron populations following reactivity
insertions of – 0.10�.
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Ci is small. In contrast, the neutron population at first responds very
rapidly as a result of the small value of prompt neutron generation
time � in the denominator of Eq. (5.47). After a short time has
elapsed, however, the neutron response is slowed as a result of the
more slowly changing value of the last term in Eq. (5.48). We can
make use of this behavior to estimate the magnitudes of the prompt
jump in the two following situations.

Rod Drop

Suppose we have a source-free critical reactor operating at steady
state. According to Eq. (5.48) the precursor concentrations are related
to the neutron population by

Cio ¼ ð�i=�i�Þno: ð5:59Þ

Immediately following the rod insertion the precursor concentration
Cio will remain essentially unchanged for as long as �it	 1. Thus the
source-free form of Eq. (5.47) becomes

d

dt
nðtÞ ¼ � ð �j j þ �Þ

�
nðtÞ þ �

�
no; t	 1=�i; ð5:60Þ

where we have employed Eq. (5.31) and taken � ¼ � �j j to indicate a
negative reactivity. We use the integrating factor technique detailed
in Appendix A to obtain a solution. With an integrating factor of
exp½ð �j j þ �Þ=�� and an initial condition of nð0Þ ¼ no, we obtain after
some simplification

nðtÞ ¼ �

ð �j j þ �Þno þ
�j j

ð �j j þ �Þnoe�
1
�ð �j jþ�Þt: ð5:61Þ

Following decay of the second term, which is very rapid, we have for
times substantially greater than the prompt generation time, but less
than the half-lives of the delayed neutrons (i.e., �=ð �j j þ �Þ 	 t	 1=�i),
a neutron population of approximately

n1 ¼
�

ð �j j þ �Þno: ð5:62Þ

Thus the reactivity drop in dollars can be measured by taking the
ratio of the neutrons immediately before to immediately after the
control rod insertion:

�j j=� ¼ no

n1
� 1: ð5:63Þ
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Source Jerk

The source jerk is performed on a subcritical reactor, � ¼ � �j j, con-
taining a neutron source So. Because the system is in a steady state,
Eq. (5.43) holds, and the initial condition for the experiment is
Cio ¼ ð�i=�i�Þno. Following sudden removal (i.e., jerking) of the
source, the neutron population undergoes a sharp negative jump.
We can again model the transient using Eq. (5.47) with the source
term set equal to zero, and CiðtÞ replaced with Cio for times t	 1=�i.
Equation (5.60) once again results, with a solution given by Eq. (5.61),
and Eqs. (5.62) and (5.63) remain valid in describing the relationship
between reactivity, delayed neutron fraction, and the decrease in
neutron population. Thus we see that either inserting a negative
reactivity � ¼ � �j j into a critical reactor (the rod drop experiment)
or removing the source from a subcritical system with reactivity
� ¼ � �j j (the source jerk experiment) results in a measurable drop in
the neutron population from no to n1.

Rod Oscillator

A third experimental procedure may be analyzed in terms of Eqs. (5.47)
and (5.48). However, in the rod oscillator experiment the equations
may not be solved so simply. Laplace transforms or related techniques
must be used to solve the equations in the presence of a sinusoidal
reactivity of the form �ðtÞ ¼ �o sinð!tÞ. Here we simply state the
result: If no is the initial neutron population, then after transients
have died out the neutron population will oscillate as

nðtÞ ¼ no 1þAð!Þ sinð!tÞ þ !�o=�½ �; ð5:64Þ

where Að!Þ is a function of the frequency. If sinð!tÞ is averaged over
time the sinusoidal term vanishes leaving �n ¼ noð1þ !�o=�Þ. Thus
plotting �n=no versus frequency determines �o=�, the ratio of reactiv-
ity to prompt neutron generation time.

5.6 Prologue to Reactor Dynamics

Thus far our treatment of the time-dependent behavior of chain reac-
tions has not accounted for thermal feedback effects. For this reason
such treatments are frequently referred to as zero-power kinetics. If the
energy created by fission, however, is large enough to cause the tem-
perature of the system to rise, the material densities will then change.
Because macroscopic cross sections are proportional to densities they
too will change. Aside from the material density changes, additional
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feedback effects will result from the resonance cross sections, which
broaden and flatten with increasing temperature as a result of the
Doppler broadening discussed in Chapter 4. In thermal reactors the
spectrum will also harden as a result of the temperature dependence of
the Maxwell-Boltzmann distribution. Taken together these feedback
effects will alter the parameters in the kinetics equations. By far the
largest impact is on the reactivity. Consequently, reactor design must
assure that under all operating conditions the feedback is negative for
increases in temperature.

Negative feedback impacts the curves in Fig 5.2, for example, in
the following way. When the neutron population becomes large
enough for a temperature rise to occur, the curve will flatten if
negative feedback is present, and then stabilize and possibly
decrease with time. In Fig. 5.6 we have redrawn the positive reac-
tivity curve of Fig 5.2 on a logarithmic scale, along with a curve for
the same reactivity insertion but for which the effects of negative
temperature feedback are included. Note that both curves initially
follow the same period as indicated by the straight-line behavior on
the logarithmic plot. But as the power becomes larger the curve
with feedback becomes concave downward and stabilizes at a con-
stant power. At this point the negative feedback has completely
compensated for the initial reactivity insertion. In Chapter 9 we
shall take up reactivity feedback in detail and examine its interac-
tion with reactor kinetics to determine the transient behavior of
power reactors.
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FIGURE 5.6 Effect of negative temperature feedback on neutron population
following a reactivity insertion of þ 0.10�.
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Problems

5.1. a. What is l1 of 0.0253 eV thermal neutrons in graphite
(�a ¼ 0:273 � 10�3 cm�1)?

b. What is l1 of 1 MeV fast neutrons in iron (�a ¼
0:738 � 10�3 cm�1)?
(Note that a 0.0253 eV neutron has a speed of 2200 m/s.)

5.2. A power reactor is fueled with slightly enriched uranium. At the
end of core life 30% of the power comes from the fissioning of
the built up plutonium-239. Calculate the effective value of � at
the beginning and at the end of core life; determine the percent
increase or decrease.

5.3. At t = 0 there are no neutrons in a reactor. A neutron source is
inserted into the reactor at t = 0 but then withdrawn at t = 1 min.
Sketch the neutron population for 0 � t � 2 min:

a. For a subcritical reactor.
b. For a critical reactor.

5.4. Suppose that a fissile material is discovered for which all of the
neutrons are prompt. The neutron population is then governed
by Eq. (5.22). Furthermore suppose that a reactor fueled with this
material has a prompt neutron lifetime of 0.002 s.
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a. If the reactor is initially critical, and there is no source
present, what period should the reactor be put on if it is to
triple its power in 10 s?

b. What is the reactivity � needed in part a?

5.5. Show that Eqs. (5.47) and (5.48) result from inserting the
definitions of � and � into Eqs. (5.40) and (5.41).

5.6. A thermal reactor fueled with uranium operates at 1.0 W. The
operator is to increase the power to 1.0 kW over a 2 hour span of
time.

a. What reactor period should she put the reactor on?
b. How many cents of reactivity must be present to achieve the

period in part a?

5.7. A thermal reactor fueled with uranium operates at 1.0 W. The
operators put in on a 15-minute period. How long will the
reactor take to reach a power of 1.0 MW?

5.8. Show that Eq. (5.53) follows from Eq. (5.51).

5.9. Find the periods for reactors fueled by uranium-235,
plutonium-239, and uranium-233 if

a. One cent of reactivity is added to the critical systems.
b. One cent of reactivity is withdrawn from the critical

systems.

5.10. The one delayed group approximation results from lumping all
six precursors into one, CðtÞ ¼

P6
i¼1 CiðtÞ, and replacing the �i

by the average value defined by Eq. (5.34). Equations (5.47) and
(5.48) then reduce to the one delayed group equations:

d

dt
nðtÞ ¼ SðtÞ þ ð�� �Þ

�
nðtÞ þ �CðtÞ

and

d

dt
CðtÞ ¼ �

�
nðtÞ � �CðtÞ:

With these equations, consider a critical reactor that is initially
operating with a neutron population of nð0Þ and for which
SðtÞ ¼ 0. At t = 0 a step reactivity change � is made. Using the
assumptions that

1

��
� � �j j � 1 and

�

��
� 1
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a. Show that

nðtÞ ¼ nð0Þ �

�� � exp
�� �

�
t

� �
þ �

� � � exp
��

� � � t

� �� �
:

b. Show that for long times the solution is independent of �
when � > � and independent of � when 0 < � < �.

c. Taking � ¼ 0:007, � ¼ 5 � 10�5 s, and � ¼ 0:08 s�1, make a
graph of the reactivity in dollars vs the reactor period for
reactivities between �2 dollars and þ2 dollars. Indicate the
region or regions on the graph where you expect the results
from part a to be poor.

5.11. Using the kinetics equations with one delayed group from
problem 5.10,

a. Find the reactor period when � ¼ �, simplifying your answer
by assuming ��=� 	 1.

b. Calculate the reactor period for � ¼ 0:007, � ¼ 5 � 10�5 s,
and � ¼ 0:08 s�1.

5.12. By differentiating the kinetics equations with one group of
delayed neutrons (given in problem 5.10) and then letting �! 0,

a. Show that CðtÞ can be eliminated to obtain

d

dt
nðtÞ ¼ �

� � � �þ 1

�

d�

dt

� �
nðtÞ;

which is referred to as the zero lifetime or prompt jump
approximation.

b. For a step change in reactivity of �j j 	 �, find the zero
lifetime approximation to the reactor period.

5.13. A critical reactor operates at a power level of 80 W. Dropping a
control rod into the core causes the flux to undergo a sudden
decrease to 60 W. How many dollars is the control rod worth?

5.14. Estimate the period of the reactor from the curve without
feedback in Fig. 5.6. Suppose you wanted to put the reactor on
a period of one minute. What reactivity would you insert?

5.15. Solve the kinetics equations numerically with one group of
delayed neutrons, given in problem 5.10, using the data
� ¼ 0:007, � ¼ 5 � 10�5 s, and � ¼ 0:08 s�1,

a. For a step insertion of þ0.25 dollars between 0 and 5 s.
b. For a step insertion of �0.25 dollars between 0 and 5 s.
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Assume that the reactor is initially in the critical state, and
plot nðtÞ=nð0Þ for each case.

5.16. Repeat problem 5.15 with six groups of delayed neutrons,
employing the data for uranium-235 given in Table 5.1 and a
prompt generation time of 50� 10�6 s.

5.17. Consider a subcritical reactor described by the pair of kinetics
equations in problem 5.10, and with � ¼ 0:007, � ¼ 5 � 10�5 s,
and � ¼ 0:08 s�1. The subcritical system is in steady state
equilibrium with reactivity � ¼ �10 cents and a time-
independent source So. Then, at t = 0 the source is removed.
Determine nðtÞ for t � 0 and plot your result, normalized to So.

5.18. Solve Eqs. (5.47) and (5.48) using the uranium-235 data from
Table 5.1 and a prompt generation time of 50� 10�6 s for the
following three ramp insertions.

a. �ðtÞ ¼ 0:25�t.
b. �ðtÞ ¼ 0:5�t.
c. �ðtÞ ¼ 1:0�t.

Normalizing your results to nð0Þ ¼ 1, make linear plots and for
each case determine: (1) at what time does the neutron popula-
tion reach nðtÞ=nð0Þ ¼ 1000 and (2) what is the value of
nðtÞ=nð0Þ at the point in time when the system reaches prompt
critical?

5.19. Suppose that a critical reactor is operating at a steady state level
with a neutron population of no. You are to add reactivity such
that the neutron population will increase linearly with time:
nðtÞ ¼ nð0Þð1þ #tÞwhere # is a constant. Using the one delayed
group kinetics equations from problem 5.10,

a. Determine the time-dependent reactivity �ðtÞ that you
should add to the reactor to achieve the linear increase.

b. Sketch �ðtÞ from part a.
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CHAPTER 6

Spatial Diffusion
of Neutrons

6.1 Introduction

Chapter 5 dealt with time-dependent behavior of nuclear reactors, and
in earlier chapters we examined the importance of the energy spectrum
of neutrons in determining the multiplication and other reactor
properties. Thus far, we have not dealt with the spatial distributions
of neutrons, other than the treatment in Chapter 4 of their distributions
between fuel, coolant, and/or moderator within lattice cells. We have
characterized the effects of the global distribution of neutrons simply by
a nonleakage probability, which as stated earlier increases toward a
value of one as the reactor core becomes larger. In this chapter and the
next we examine the spatial migration of neutrons, not only to obtain
an explicit expression for the nonleakage probability, but also to under-
stand the relationships between reactor size, shape, and criticality, and
to determine the spatial flux distributions within power reactors.

In treating the spatial distributions of neutrons we will consider
a monoenergetic or one energy group model. That means that the
neutrons’ flux and cross sections have already been averaged over
energy. Likewise, when dealing with reactor lattices we assume that
the flux and cross sections have been spatially averaged over the
lattice cell. Thus we are dealing only with the global variations of
the neutron distribution, and not the spatial fluctuations with the
periodicity of the lattice cell pitch.

The neutron diffusion equation provides the most straightforward
approach to determining spatial distributions of neutrons. In this chap-
ter we first derive the diffusion equation and its associated boundary
conditions. We then apply diffusion theory to problems in nonmultiply-
ing media, limiting our attention in this chapter to problems in highly
idealized one-dimensional geometries—first plane and then spherical
geometry—for they offer the clearest introduction to the solution
techniques. We then proceed to examine the behavior in spherical
systems that contain fissionable material but which are subcritical.
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We conclude the chapter with an approach to criticality by increasing
either the value of k1 or the size of the reactor, obtaining a criticality
equation at the chapter’s end. We thus set the stage for Chapter 7 where
we take up the important issues related to the spatial distributions of
flux and power in the finite cylindrical cores of power reactors.

6.2 The Neutron Diffusion Equation

To derive the neutron diffusion equation, we first set forth the neu-
tron balance condition for an incremental volume. We then employ
Fick’s law to arrive at the diffusion equation.

Spatial Neutron Balance

To begin, consider the neutron balance within an infinitesimal
volume element dV ¼ dxdydz centered at the point r

* ¼ ðx; y; zÞ as
shown in Fig. 6.1. Under steady state conditions neutron conserva-
tion requires that

neutrons leaking
out of dxdydz=s

� �
þ neutrons absorbed

in dxdydz=s

� �

¼ source neutrons
emitted in dxdydz=s

� �
þ fission neutrons

produced in dxdydz=s

� �
:

ð6:1Þ

The leakage is the sum of the net number of neutrons passing out
through the six surfaces of the cubical volume. To express the leakage

z

dy

dx

dz

(x, y, z )

x

yo

r
→

FIGURE 6.1 Control volume for neutron balance equation.
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quantitatively, we define the three components of the neutron current.
Let Jxðx;y; zÞ be the net number of neutrons/cm2/s passing though the
y–z plane in the positive x direction at ðx; y; zÞ. Similarly, let Jyðx; y; zÞ
and Jzðx; y; zÞ be the net numbers of neutrons/cm2/s passing though the
x–z and x–y planes, respectively. For the cubical volume, the net
number of neutrons passing out of the cube through the front, right,
and top faces is then Jxðx þ 1=2dx;y; zÞdydz, Jyðx; y þ 1=2dy; zÞdxdz, and
Jzðx; y; zþ 1=2dzÞdxdy. Likewise, the net number of neutrons passing
out of the back, left, and bottom faces is �Jxðx � 1=2dx; y; zÞdydz,
�Jyðx; y � 1=2dy; zÞdxdz, and �Jzðx; y; z� 1=2dzÞdxdy. Thus the net
leakage per second from the cube is

neutrons leaking
out of dxdydz=s

� �
¼ Jxðx þ 1=2dx;y; zÞ � Jxðx � 1=2dx; y; zÞ½ �dydz

þ ½Jyðx;y þ 1=2dy; zÞ � Jyðx; y � 1=2dy; zÞ�dxdz

þ Jzðx; y; zþ 1=2dzÞ � Jzðx;y; z� 1=2dzÞ½ �dxdy:

ð6:2Þ

Since by definition the partial derivative is

lim
dx!0

Jxðx þ 1=2dx; y; zÞ � Jxðx � 1=2dx;y; zÞ½ �=dx � @

@x
Jxðx;y; zÞ; ð6:3Þ

and similarly in the y and z directions, we multiply and divide the
three terms on the right of Eq. (6.2) by dx, dy, and dz, respectively,
and then take the limits to obtain

neutrons leaking
out of dxdydz=s

� �
¼ @

@x
Jxðx;y; zÞ þ

@

@y
Jyðx; y; zÞ

�

þ @

@z
Jzðx; y; zÞ

�
dxdydz:

ð6:4Þ

The remaining terms are

neutrons absorbed
in dxdydz=s

� �
¼ �aðx;y; zÞ�ðx;y; zÞdxdydz; ð6:5Þ

source neutrons
emitted in dxdydz=s

� �
¼ s000ðx;y; zÞdxdydz; ð6:6Þ

and

fission neutrons
produced in dxdydz=s

� �
¼ ��fðx;y; zÞ�ðx;y; zÞdxdydz: ð6:7Þ
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Inserting Eqs. (6.4) through (6.7) into Eq. (6.1) and eliminating dxdydz
then yields

@

@x
Jxðr

*Þ þ @

@y
Jyðr

*Þ þ @

@z
Jzðr

*Þ þ �aðr
*Þ�ðr*Þ ¼ s000ðr*Þ þ ��fðr

*Þ�ðr*Þ: ð6:8Þ

For compactness, we may write the current in vector form,

J
*

ðr*Þ ¼ îJxðr
*Þ þ ĵJyðr

*Þ þ k̂Jzðr
*Þ; ð6:9Þ

and use the definition of the gradient, r
*

¼ î @
@x
þ ĵ @

@y
þ k̂ @

@z
, to write

Eq. (6.8) as

r
*

� J
*

ðr*Þ þ �aðr
*Þ�ðr*Þ ¼ s000ðr*Þ þ ��fðr

*Þ�ðr*Þ: ð6:10Þ

Diffusion Approximation

Equation (6.10) is a statement of neutron balance. In most of the
circumstances that we will consider, we may reasonably apply
Fick’s law—or more precisely, Fick’s approximation—to relate the
current to the flux:

J
*

ðr*Þ ¼ �Dðr*Þr
*

�ðr*Þ; ð6:11Þ

where D is referred to as the diffusion coefficient. Inserting Eq. (6.11)
into Eq. (6.10) then yields the neutron diffusion equation:

�r
*

�Dðr*Þr
*

�ðr*Þ þ �aðr
*Þ�ðr*Þ ¼ s000ðr*Þ þ ��fðr

*Þ�ðr*Þ: ð6:12Þ

More advanced neutron transport techniques are employed in Appen-
dix C to evaluate the diffusion coefficient as

D ¼ 1=3�tr; ð6:13Þ

where the transport cross section is defined as �tr ¼ �t � ���s,
where �� is the average scattering angle. For isotropic scattering
in the laboratory system, ��= 0 and thus the transport cross sec-
tion reduces to the total cross section, �t. Averaging the diffusion
coefficient for mixtures of materials is accomplished by first using
the techniques of Chapter 2 or 4 to average �tr and then applying
Eq. (6.13).

In what follows, we first solve the diffusion equation for non-
multiplying media in simple one-dimensional geometries, and stipu-
late the boundary conditions that apply to it under a variety of
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circumstances. Before treating multiplying media, we return to
examine the circumstances under which the diffusion approximation
is valid and the meaning of the diffusion length, which following its
introduction makes ubiquitous appearances in the solutions of diffu-
sion problems.

6.3 Nonmultiplying Systems—Plane Geometry

We consider first the case of a uniform medium with no fissionable
material, that is, a nonmultiplying medium. Thus �f ¼ 0, and D and
�a are constants, allowing Eq. (6.12) to be reduced to

�r2�ðr*Þ þ 1

L2
�ðr*Þ ¼ 1

D
s000ðr*Þ; ð6:14Þ

where r2 � @2

@x2 þ @2

@y2 þ @2

@z2 ; and the diffusion length is defined by

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D=�a

p
; ð6:15Þ

which has units of length.

Source Free Example

To illustrate the significance of the diffusion length we consider a simple
problem in plane geometry, that is, where the flux varies so slowly in y
and z that it can be ignored, allowing us to eliminate the y and z deriva-
tives fromr2. We also set the source to zero, simplifying Eq. (6.14) to

d2

dx2
�ðxÞ � 1

L2
�ðxÞ ¼ 0: ð6:16Þ

We look for a solution of the form

�ðxÞ ¼ C expð�xÞ ð6:17Þ

by substituting this expression into Eq. (6.16). The result is

C �2 � 1
�

L2
� 	

expð�xÞ ¼ 0: ð6:18Þ

The left-hand side is equal to zero for all x if C ¼ 0, but that is
unacceptable because it would cause the entire solution to vanish.
Instead, we take

� ¼ �1=L: ð6:19Þ
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Thus there are two possible solutions, and the flux takes the form

�ðxÞ ¼ C1 exp x=Lð Þ þC2 exp �x=Lð Þ: ð6:20Þ

To determine the coefficients C1 and C2 we must apply boundary
conditions. Suppose that we want to solve for the problem domain
that is a semi-infinite medium occupying the space 0 � x � 1.
Further assume that neutrons are supplied from the left with
sufficient intensity to provide a known flux �o at x = 0, that is,
�ð0Þ ¼ �o. If no neutrons are entering from the right, then all of the
neutrons entering from the left will eventually be absorbed as they
diffuse to the right, requiring that �ð1Þ¼ 0. We thus have the two
needed boundary conditions. Inserting them into Eq. (6.20), we have

�o ¼ C1 exp 0=Lð Þ þC2 exp �0=Lð Þ; ð6:21Þ

and

0 ¼ C1 exp 1=Lð Þ þC2 exp �1=Lð Þ: ð6:22Þ

Because expð1Þ¼1 and expð�1Þ¼ 0 the second equation is satis-
fied only if C1¼ 0. Then because expð0Þ¼ 1 we obtain C2¼�o, and
the solution is

�ðxÞ ¼ �o exp �x=Lð Þ: ð6:23Þ

Uniform Source Example

We next examine the case where there is a uniform source
s000ðr*Þ ! s000o . In plane geometry, Eq. (6.14) reduces to

� d2

dx2
�ðxÞ þ 1

L2
�ðxÞ ¼ 1

D
s000o : ð6:24Þ

Solutions to problems containing source terms are divided into gen-
eral and particular solutions:

�ðxÞ ¼ �gðxÞ þ �pðxÞ; ð6:25Þ

where �g, the general solution (sometimes also called the homoge-
neous solution), satisfies Eq. (6.24) with the source set to zero. Thus
it is identical in form to the solution of Eq. (6.16), given by Eq. (6.20).
The particular solution, �p, must satisfy Eq. (6.24) with the source
present. For a uniform source the particular solution is a constant,
since its derivative is zero. Thus the particular solution for Eq. (6.25) is
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�pðxÞ ¼
L2

D
s000o ¼

1

�a
s000o : ð6:26Þ

Substituting this expression along with Eq. (6.20) into Eq. (6.25)
yields a solution of Eq. (6.24):

�ðxÞ ¼ C1 exp x=Lð Þ þC2 exp �x=Lð Þ þ 1

�a
s0000 : ð6:27Þ

Once again we need two boundary conditions to specify the con-
stants C1 and C2. Suppose the uniform source is distributed through-
out a slab extending between �a � x � a and that we specify the two
boundary conditions as the flux vanishing at the slab surfaces:
�ð�aÞ ¼ 0. The conditions on C1 and C2 then follow from Eq. (6.27):

0 ¼ C1 exp a=Lð Þ þC2 exp �a=Lð Þ þ 1

�a
s0000 ; ð6:28Þ

and

0 ¼ C1 exp �a=Lð Þ þC2 exp a=Lð Þ þ 1

�a
s0000 : ð6:29Þ

These equations are easily solved to show that C1 ¼ C2 ¼
0�ðea=L þ e�a=lÞ�1s000o =�a. Thus the solution is

�ðxÞ ¼ 1� coshðx=LÞ
coshða=LÞ

� �
s000o
�a
; ð6:30Þ

where we have used the hyperbolic cosine defined in Appendix A.
The uniform source results in the simplest form of a particular

solution—a constant. Problems involving space-dependent source
distributions can present more of a challenge in finding the particular
solution. One such situation is included as problem 6.12.

6.4 Boundary Conditions

The problems introduced above indicate some general procedures
used to solve the diffusion equation, which is a second order differ-
ential equation. In one-dimensional problems solutions contain two
arbitrary constants. Two boundary conditions are needed to deter-
mine these coefficients. The conditions that we have used thus far
are on the flux itself. Often other conditions more accurately repre-
sent the physical situation at hand. In deriving such conditions, a
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particularly useful concept is that of partial currents. Recall that the
current JxðxÞ is the net number of neutrons/cm2/s crossing a plane
perpendicular to the x axis in the positive x direction. We may
divide it into the partial currents, Jþx ðxÞ and J�x ðxÞ, of the neutrons
traveling in the positive and negative x directions, respectively.
Thus we have

JxðxÞ ¼ Jþx ðxÞ � J�x ðxÞ: ð6:31Þ

As detailed in Appendix C, neutron transport theory may be
employed to show that in the diffusion approximation

J�x ðxÞ ¼
1

4
�ðxÞ � 1

2
JxðxÞ; ð6:32Þ

or employing Eq. (6.11) to eliminate the current,

J�x ðxÞ ¼
1

4
�ðxÞ 	 1

2
D

d

dx
�ðxÞ: ð6:33Þ

Vacuum Boundaries

Suppose we have a surface across which no neutrons are entering.
This would be the case if a vacuum containing no neutron sources
extended to infinity. We refer to this as a vacuum boundary. If the
boundary is on the left, say, at xl, the condition is Jþx ðxlÞ¼ 0. If it
is on the right, say, at xr, the condition is J�x ðxrÞ¼ 0. Using the
definition of the partial current, we may write the condition on
the right as

0 ¼ 1

4
�ðxrÞ �

1

2
D

d

dx
�ðxÞ











xr

; ð6:34Þ

where since the derivative is negative on the right, for clarity we have
taken minus its absolute value. Recalling that for isotropic scattering
D¼ 1=ð3�tÞ and that the mean free path is defined as �¼ 1=�t, we
may rewrite the vacuum boundary condition as

�ðxrÞ
�

d

dx
�ðxÞ











xr

¼ 2

3
�: ð6:35Þ

Figure 6.2 provides a visual interpretation of the condition. If the
flux is extrapolated linearly according to Eq. (6.35) it will go to zero at
a distance of 2=3� outside the boundary; thus we refer to 2=3� as the
extrapolation distance.
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Frequently, when vacuum boundaries are encountered, simply
adjusting the dimensions and using a zero flux boundary condition is
more straightforward. Thus for a problem with left and right vacuum
boundaries at xl and xr, we would take �ðxl � 2=3�Þ ¼ 0 and
�ðxr þ 2=3�Þ ¼ 0, respectively. For brevity, we shall frequently denote
such an extrapolated boundary simply by adding a tilde to the spatial
dimension. Thus �ð~xrÞ ¼ 0 and �ð~xlÞ ¼ 0. In situations where the
problem dimensions are large when measured in �, a common prac-
tice consists of ignoring the small correction for the extrapolation
distance and simply taking �ðxrÞ 
 0 and �ðxlÞ 
 0.

Reflected Boundaries

If the net current Jx is known at a boundary, it also may be used as a
condition. Current conditions appear most frequently as a result of pro-
blem symmetry. Suppose, as in the uniform source problem described
above, the solution is symmetric about x = 0, such that the net number of
neutrons crossing the plane at x = 0 vanishes. Then we may solve the
problem only for x> 0 using the boundary condition on the left as

Jxð0Þ ¼ �D
d

dx
�ðxÞ






x¼0

¼ 0; ð6:36Þ

or simply

d

dx
�ðxÞ






x¼0

¼ 0:

Surface Sources and Albedos

Partial currents are particularly useful in specifying boundary condi-
tions in situations where surfaces are bombarded by neutrons. To
illustrate, consider a source free solution, such as Eq. (6.23). For this

2
3

λ
x

xrxr
∼

FIGURE 6.2 Neutron flux extrapolation distance at a vacuum boundary.
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solution to hold, neutrons must be being supplied from the left. We
can relate the boundary flux �o to a surface source of s00 neutrons/
cm2/s by noting that the number of neutrons entering from the left
is just

Jþx ð0Þ ¼ s00: ð6:37Þ

Thus combining Eqs. (6.23) and (6.33) to obtain the partial current,

Jþx ðxÞ ¼
1

4
þ D

2L

� �
�o exp �x=Lð Þ; ð6:38Þ

we can use Eq. (6.37) to eliminate �o and write Eq. (6.38) directly in
terms of the surface source s00:

�ðxÞ ¼ 1

4
þ D

2L

� ��1

s00 expð�x=LÞ: ð6:39Þ

Of the surface source neutrons entering the diffusing medium,
some fraction will make scattering collisions and then come back
out. The ratio of exiting to entering neutrons is termed the albedo.
We express it in terms of the partial currents as

� ¼ J�x ð0Þ
Jþx ð0Þ

: ð6:40Þ

The albedo for a semi-infinite medium results from inserting
Eq. (6.33) into this expression and then using Eq. (6.23) to evaluate
the partial currents at x = 0. The result is

� ¼ 1� 2D=Lð Þ= 1þ 2D=Lð Þ: ð6:41Þ

Thus for the semi-infinite medium, �s00 neutrons/cm2/s will be
reemitted from the surface, while the remaining neutrons, that is,
ð1� �Þs00 neutrons/cm2/s, will be absorbed within the medium.
Equation (6.40) is applicable at any surface with J�x ð0Þ interpreted as
the outgoing and Jþx ð0Þ as the incoming partial current.

Interface Conditions

If more than one region is present, say, with different cross sections,
the diffusion equation solution will contain two arbitrary constants
for each region. Thus two conditions are required at each interface.
They are that both the flux and the net current must be continuous.
Thus for an interface at xo we have
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�ðxo�Þ ¼ �ðxoþÞ ð6:42Þ

and

Dðxo�Þ
d

dx
�ðxÞjxo�

¼ DðxoþÞ
d

dx
�ðxÞjxoþ

; ð6:43Þ

where xoþ and xo� indicate evaluation immediately to the right and
left of xo. An exception to Eq. (6.43) occurs if there is a localized
source present. If an infinitely thin surface source emits s00pl neutrons/
cm2/s along the interface, the neutron balance at the interface is
Jðxo�Þ þ s00pl ¼ JðxoþÞ or more explicitly

�Dðxo�Þ
d

dx
�ðxÞjxo�

þ s00pl ¼ �DðxoþÞ
d

dx
�ðxÞjxoþ

: ð6:44Þ

Boundary Conditions in Other Geometries

The foregoing boundary conditions are applicable in cylindrical and
spherical as well as Cartesian geometries: x is simply replaced by the
direction normal to the surface. In spherical or cylindrical geometries,
however, boundary conditions at the origin or centerline must be treated
somewhat differently. For a point source emitting sp neutrons/s at the
center of a sphere, sp ¼ lim

r!0
½4�r2JrðrÞ�, and for a line source emitting s0l

neutrons/cm/s along the centerline of a cylinder, s0l ¼ lim
r!0
½2�rJrðrÞ�. If no

such sources are present then these two conditions are equivalent simply
to requiring that the flux be finite at r = 0. We illustrate the condition at
the origin for spherical geometry in the following section, but defer the
treatment of cylindrical geometry, which requires the introduction of
Bessel functions, to the following chapter.

6.5 Nonmultiplying Systems—Spherical Geometry

We consider two spherical geometry problems. In the first a point
source of neutrons is located in an infinite medium. The second is a
two region problem with a distributed source. Both demonstrate
boundary conditions at the origin, and the second also extends tech-
niques introduced thus far to neutron diffusion problems to include
the treatment of interface as well as boundary conditions.

We begin by replacing r2 in Eq. (6.14) by its one-dimensional
spherical form found in Appendix A:

�1

r2

d

dr
r2 d

dr
�ðrÞ þ 1

L2
�ðrÞ ¼ 1

D
s000ðrÞ: ð6:45Þ
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Point Source Example

Assume that a source of neutrons of strength sp is concentrated at the
origin of an infinite medium extending from r = 0 to r =1. We apply
Eq. (6.45) for r > 0 with s000ðrÞ= 0:

1

r2

d

dr
r2 d

dr
�ðrÞ � 1

L2
�ðrÞ ¼ 0: ð6:46Þ

If we make the substitution

�ðrÞ ¼ 1

r
 ðrÞ; ð6:47Þ

however, the equation simplifies to

d2

dr2
 ðrÞ � 1

L2
 ðrÞ ¼ 0; ð6:48Þ

which has the same form as Eq. (6.16) with x replaced by r. Thus we
look for a solution of the form:

 ðrÞ ¼ C expð�rÞ; ð6:49Þ

and use the identical procedure as in Eqs. (6.16) through (6.20) to obtain

 ðrÞ ¼ C1 exp r=Lð Þ þC2 exp � r=Lð Þ: ð6:50Þ

Thus from Eq. (6.47),

�ðrÞ ¼ C1

r
exp r=Lð Þ þC2

r
exp � r=Lð Þ: ð6:51Þ

Next we employ the boundary conditions to determine C1 and
C2. Infinitely far from the source at r =1 the flux must go to zero:
�ð1Þ ¼ 0: Thus C1 = 0, for otherwise we would have �ð1Þ ! 1: The
boundary condition at the origin is a bit more subtle. In the limit as
r! 0 the current

JrðrÞ ¼ �D
d

dr
�ðrÞ ð6:52Þ

emerging from a small sphere, with surface area ¼ 4�r2, must just be
equal to the source strength. Hence

sp ¼ lim
r!0

4�r2JrðrÞ: ð6:53Þ

Combining Eqs. (6.51) through (6.53), we find the flux distribution
from a point source to be
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�ðrÞ ¼ sp

4�Dr
exp �r=Lð Þ: ð6:54Þ

Clearly all of the neutrons produced by the point source must be
absorbed in the infinite medium. Taking an incremental volume as
dV ¼ 4�r2dr, we may show that

Z
all space

�a�ðrÞdV ¼ sp: ð6:55Þ

Two Region Example

The second problem we consider has two regions and a distributed
source. It illustrates the treatment of the boundary condition at the
origin as well as interface conditions. Suppose a sphere of radius
R with material properties D and �a contains a uniform source s000o .
The sphere is surrounded by a second source free medium with
properties D

_

and �
_

a that extends to r =1. Our objective is to deter-
mine the neutron flux.

For this problem, we obtain the following two differential equa-
tions from Eq. (6.45):

� 1

r2

d

dr
r2 d

dr
�ðrÞ þ 1

L2
�ðrÞ ¼ 1

D
s000o ; 0 � r < R; ð6:56Þ

and

� 1

r2

d

dr
r2 d

dr
�ðrÞ þ 1

L
_2
�ðrÞ ¼ 0; R < r � 1: ð6:57Þ

Within the sphere we must superimpose general and particular solu-
tions for Eq. (6.56):

�ðrÞ ¼ �gðrÞ þ �pðrÞ; 0 � r < R: ð6:58Þ

For a uniform source the particular solution is a constant. Thus

�p ¼
L2

D
s000o ¼

s000o
�a

: ð6:59Þ

The general solution satisfies Eq. (6.46), and following the same
transformation of variables we obtain Eq. (6.51) for �gðrÞ. Thus insert-
ing �g and �p into Eq. (6.58) we have

�ðrÞ ¼ C1

r
exp r=Lð Þ þC2

r
exp � r=Lð Þ þ s000o

�a
; 0 � r < R: ð6:60Þ
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Equations (6.46) and (6.57) are identical in form. Thus the solution to
Eq. (6.57) has the same form as Eq. (6.51):

�ðrÞ ¼ C01
r

expð r=L
_

Þ þC02
r

expð� r=L
_

Þ; R < r � 1; ð6:61Þ

where L
_

¼
ffiffiffiffiffiffiffiffiffiffiffiffi
D
_

=�
_

a

q
.

The four arbitrary constants in Eqs. (6.60) and (6.61) are determined
from the configuration’s four boundary and interface conditions:

#1: 0 < �ð0Þ <1; #3: �ðR�Þ ¼ �ðRþÞ;

#2: �ð1Þ ¼ 0; #4: D
d

dr
�ðrÞjR� ¼ D

_ d

dr
�ðrÞjRþ :

ð6:62Þ

Applying boundary condition 1 by taking the limit of Eq. (6.60) as
r! 0, we see that the flux will remain finite only if C2 ¼ �C1. Then
using the definition of the hyperbolic sine defined in Appendix A,
Eq. (6.60) reduces to

�ðrÞ ¼ 2C1

r
sinh r=Lð Þ þ s000o

�a
; 0 � r < R: ð6:63Þ

We next apply condition 2 to Eq. (6.61). Since the first term becomes
infinite, but the second vanishes as r!1, the condition is met if C01 ¼ 0:

�ðrÞ ¼ C02
r

expð� r=L
_

Þ; R < r � 1: ð6:64Þ

Finally we apply interface conditions 3 and 4 to obtain the remaining
arbitrary coefficients:

2C1

R
sinh R=Lð Þ þ s000o

�a
¼ C02

R
expð�R=L

_

Þ: ð6:65Þ

and

2DC1
1

RL
coshðR=LÞ � 1

R2
sinh R=Lð Þ

� �
¼�D

_

C02
1

RL
_
þ 1

R2

 !
expð�R=L

_

Þ:

ð6:66Þ

Solving this pair of equations for C1 and C02 and inserting the results
into Eqs. (6.63) and (6.64) results in the solution:

�ðrÞ ¼ 1�C
R

r

sinh r=Lð Þ
sinh R=Lð Þ

� �
s000o
�a

; 0 � r < R; ð6:67Þ
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and

�ðrÞ ¼ ð1�CÞ s
000
o

�a

R

r
exp �ðr� RÞ=L

_
h i

; R < r � 1; ð6:68Þ

where

C ¼ 1þD

D
_

ðR=LÞ coth ðR=LÞ � 1

ðR=L
_

Þ þ 1

" #�1

: ð6:69Þ

6.6 Diffusion Approximation Validity

The question naturally arises as to the circumstances under which the
diffusion equation, Eq. (6.12) provides a reasonable approximation.
Figure 6.3 shows polar plots of the directions of neutron travel for
three points in space. In each, the length of the arrows indicates the
number of neutrons traveling in that direction. The plot of Fig. 6.3a
indicates a beam of neutrons all traveling within a very narrow cone of
directions. This is the situation we stipulated for the uncollided flux in
Chapter 2 in order to define the cross section. The use of Eq. (6.12) in
such situations would be inappropriate, leading to gross errors in the
prediction of the spatial distribution of neutrons.

Diffusion theory is valid for the situations shown in Figs. 6.3b
and 6.3c. In Fig. 6.3b neutrons travel in all directions. More are
traveling to the right than to the left, but the distribution is not
highly peaked. Use of the diffusion approximation in this situation
is appropriate, for it will reasonably represent the flux, which
decreases as we move from left to right, because the net diffusion of
neutrons is in that direction.

Figure 6.3c represents an isotropic distribution of neutrons, such
as would occur if there were no spatial variation in the neutron flux
at all. In this case the use of the diffusion equation remains valid, but

(a) (b) (c)

FIGURE 6.3 Polar distributions of neutrons. (a) Neutron beam,
(b) neutrons diffusing to the right, (c) isotropic neutron distribution.
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if the spatial variation vanishes, we would have r
*

�ðr*Þ ¼ 0, and the
leakage term would disappear from Eq. (6.12).

Generally, diffusion theory is valid if the neutron distribution is
changing gradually in space. It tends to lead to significant errors for spatial
distributions of neutrons near boundaries and at interfaces between
materials with sharply different properties. In reactor lattices consisting
of fuel, coolant, moderators, and/or other materials, we use diffusion
theory to examine the global distribution of neutrons only after taking
appropriate averages over the lattice cells, as discussed in Chapter 4.

Diffusion Length

We can gain a physical interpretation of the diffusion length by
examining the mean square distance that a neutron diffuses between
birth and absorption. To do this we assume that the neutron is born
at r = 0 and then calculate the mean square distance weighted by the
absorption rate �a�:

r2 ¼

Z
r2�a�ðrÞdVZ
�a�ðrÞdV

: ð6:70Þ

Inserting Eq. (6.54) for the flux diffusing from a point source, and
noting that dV ¼ 4�r2dr, we have

r2 ¼

Z 1
0

r2�a
sp

4�Dr
exp �r=Lð Þ4�r2drZ 1

0
�

a

sp

4�Dr
exp �r=Lð Þ4�r2dr

¼

Z 1
0

r3 expð�r=LÞdrZ 1
0

r expð�r=LÞdr

: ð6:71Þ

Evaluating the integrals then yields

r2 ¼ 6L2; ð6:72Þ

or correspondingly

L ¼ 1ffiffiffi
6
p

ffiffiffiffi
r2

p
¼ 0:408

ffiffiffiffi
r2

p
: ð6:73Þ

Thus the diffusion length is proportional to the root mean square
(i.e., rms) distance diffused by a neutron between birth and absorp-
tion. During its life the neutron undergoes a number of scattering
collisions, which change its direction of travel. Recall from Chapter 2
that � ¼ 1=�, the mean free path, is the average distance between
such collisions. These quantities are easily related. Suppose we
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assume isotropic scattering. Then in Eq. (6.13) the diffusion coeffi-
cient is just D ¼ 1=ð3�tÞ ¼ �=3. Next, we define the ratio of scatter-
ing to total cross section as

c ¼ �s=�t: ð6:74Þ

Because �t ¼ �s þ �a, it follows that the absorption cross section
may be expressed as �a ¼ ð1� cÞ�t¼ð1� cÞ=�. Finally, substituting
these expressions for D and �a into the definition of the diffusion
length given by Eq. (6.15) we obtain

L ¼ �
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1� cÞ
p

: ð6:75Þ

Thus, for example, a material for which c = 0.99 would yield L 
 6�.
The relationship between mean free path and diffusion length is

shown heuristically in Fig. 6.4. The dashed lines between scattering
collisions average to a value of �, while the length of the solid line
is L. In general if c is less than about 0.7, the diffusion approximation
predicated on Fick’s approximation, given by Eq. (6.11), loses validity,
and more advanced methods of neutron transport must be used.

Uncollided Flux Revisited

Further insight to the range of validity of the diffusion equation may
be gained by comparing the uncollided flux from a point source to the
total (i.e., uncollidedþ collided) flux attributable to the source. Recall
from Eq. (2.9) that the uncollided flux from a point source is

�uðrÞ ¼
sp

4�r2
exp �r=�ð Þ: ð6:76Þ

Comparing this expression to Eq. (6.54) reveals the following. Regard-
less of cross section the uncollided flux drops off as 1/r2 while the

Neutron
origin

Neutron
absorptionL

FIGURE 6.4 Diffusion length L between neutron birth and absorption.

Spatial Diffusion of Neutrons 155

Font: TrumpMediaeval Size:11/12.5pt Margins:Top:4pc6 Gutter:7pc4 T.Area:29pc�47pc6 1 Color Lines: 46 Fresh Recto



total flux—uncollided plus collided—drops off only as 1/r. Likewise,
the mean free path appears in the exponential of the uncollided flux
while the diffusion length—which is larger—appears in the exponen-
tial of the total flux. Thus the total flux will decay more slowly with
distance.

A second point for comparison between uncollided and diffusing
neutrons is the rms distances to first collision and to absorption,
respectively. To obtain the rms distance traveled by uncollided neu-
trons we again consider a point source at the origin, but now we
employ the first collision rate, �t�u, instead of the absorption rate:

r2
u ¼

Z
r2�t�uðrÞdVZ
�t�uðrÞdV

: ð6:77Þ

Taking the uncollided flux from Eq. (6.76) and inserting it into defini-
tion for r2

u yields

r2
u ¼

Z 1
0

r2�t
Sp

4�r2
exp �r=�ð Þ4�r2drZ 1

0
�t

Sp

4�r2
exp �r=�ð Þ4�r2dr

¼

Z 1
0

r2 expð�r=�ÞdrZ 1
0

expð�r=�Þdr

; ð6:78Þ

or evaluating the integrals:

r2
u ¼ 2�2: ð6:79Þ

Or correspondingly, � ¼ ð1= ffiffi2p Þ ffiffiffiffiffi
r2
u

q
¼ 0:707

ffiffiffiffiffi
r2
u

q
, meaning that the

mean free path is proportional to the rms distance traveled by a
neutron before making its first collision. The ratio of the two mean
square distances is

r2

r2
u

¼ 3L2

�2
¼ 1

1� c
: ð6:80Þ

As the distance from the source increases, the importance of the
uncollided source rapidly diminishes provided that c, the ratio of
scattering to total cross section, is sufficiently close to one. If it is
not, then on average the neutrons will not make enough scattering
collisions before absorption for the diffusion equation to be valid.

Examining angular distributions of neutrons further illuminates
the distinction between uncollided and diffusing neutrons. The

156 Fundamentals of Nuclear Reactor Physics

Font: TrumpMediaeval Size:11/12.5pt Margins:Top:4pc6 Gutter:7pc4 T.Area:29pc�47pc6 1 Color Lines: 46 Fresh Recto



uncollided neutrons at a point some distance r from a point source all
travel in a single direction, radially outward as shown schematically
in Fig. 6.3a, while the diffusing neutrons will be dispersed in angle,
more like Fig. 6.3b. For the diffusion equation to give reasonable
accuracy, only a small fraction of the neutron population at a point
can remain uncollided. Again, this condition typically exists only in
situations where c � �s=�t is greater than about 0.7.

6.7 Multiplying Systems

We are now prepared to consider neutron diffusion in multiplying
systems: those containing fissionable material. We frame the prob-
lems in spherical geometry, so that as we examine subcritical sys-
tems as they approach criticality the spatial effects are somewhat
more realistic than in plane geometry. We defer treatment of the
finite cylindrical form that power reactors invariably take to the
following chapter; although spherical geometry can be treated using
an ordinary differential equation, a partial differential equation must
be solved for the finite cylinder.

Subcritical Assemblies

In a multiplying system, ��f > 0 because fissionable material is pres-
ent. If we limit our attention to a uniform system, with a uniform
source s000o , then the cross sections are space-independent constants.
Dividing Eq. (6.12) by the diffusion coefficient D then yields

�r2�ðr*Þ þ 1

L2
�ðr*Þ ¼ 1

D
s000o þ

1

L2
k1�ðr

*Þ; ð6:81Þ

where we again employ k1 ¼ ��f

�
�a and L2 ¼ D=�a. Replacing r2

by its one-dimensional form in spherical geometry reduces the diffu-
sion equation to

� 1

r2

d

dr
r2 d

dr
�ðrÞ þ 1

L2
ð1� k1Þ�ðrÞ ¼

s000o
D
: ð6:82Þ

We look for a solution once more that is a superposition of general
and particular solutions,

�ðrÞ ¼ �gðrÞ þ �pðrÞ: ð6:83Þ

For a uniform source we hypothesize a constant for the particular
solution. The derivative term thus vanishes from Eq. (6.82), and we
obtain
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�p ¼
s000o

ð1� k1Þ�a
: ð6:84Þ

The general solution must satisfy

1

r2

d

dr
r2 d

dr
�gðrÞ �

1

L2
ð1� k1Þ�gðrÞ ¼ 0: ð6:85Þ

With the same substitution as in Eq. (6.47),

�gðrÞ ¼
1

r
 ðrÞ; ð6:86Þ

the equation simplifies to

d2

dr2
 ðrÞ � 1

L2
ð1� k1Þ ðrÞ ¼ 0: ð6:87Þ

The form of the solution depends on whether k1 < 1 or k1 > 1. We
first consider k1 < 1, and look for a solution of the form used earlier:

 ðrÞ ¼ C expð�rÞ: ð6:88Þ

Because

d2

dr2
 ðrÞ ¼ C�2 expð�rÞ; ð6:89Þ

Eq. (6.87) is satisfied if �2 ¼ 1

L2
ð1� k1Þ, or equivalently

� ¼ � 1

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k1

p
: ð6:90Þ

Thus there are two solutions, each of which may be multiplied by an
arbitrary constant:

 ðrÞ ¼ C1 expðL�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k1

p
rÞ þC2 expð�L�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k1

p
rÞ: ð6:91Þ

Inserting this expression into Eq. (6.86), and combining the result
with Eqs. (6.83) and (6.84), we obtain for the flux

�ðrÞ ¼ C1

r
expðL�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k1

p
rÞ þC2

r
expð�L�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k1

p
rÞ þ s000o
ð1� k1Þ�a

:

ð6:92Þ
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We next apply the boundary conditions to determine C1 and
C2. We can achieve condition that �ð0Þ must be finite only by
requiring the two exponential terms to cancel exactly when r = 0.
Thus we take C2 ¼ �C1. Then with the definition sinhðxÞ ¼
1
2 ex � e�xð Þ, we have

�ðrÞ ¼ 2C1

r
sinhðL�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k1

p
rÞ þ s000o
ð1� k1Þ�a

: ð6:93Þ

With ~R taken to be the extrapolated radius of the sphere, the other
boundary condition is �ð ~RÞ ¼ 0, and from the above equation,

0 ¼ 2C1

~R
sinhðL�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k1

p
~RÞ þ s000o

ð1� k1Þ�a
: ð6:94Þ

Solving for C1 and inserting the result into Eq. (6.93) yields

�ðrÞ ¼ s000o
ð1� k1Þ�a

1�
~R

r

sinhðL�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k1

p
rÞ

sinhðL�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k1

p
~RÞ

" #
: ð6:95Þ

For k1 < 1, the system must be subcritical, even if there were no
neutrons leaking from the sphere. We next consider the system for
k1 > 1, where criticality becomes possible. Once again we must have
a general and a particular solution as in Eq. (6.83); Eq. (6.84) remains
the particular solution, and Eqs. (6.85) through (6.87) remain appli-
cable to the general solution. However, the general solution takes a
different form. This is most easily seen by noting that for k1 > 1 the
second term of Eq. (6.87) is now positive:

d2

dr2
 ðrÞ þ 1

L2
ðk1 � 1Þ ðrÞ ¼ 0: ð6:96Þ

For this differential equation we hypothesize a solution of the form

 ðrÞ ¼ C1 sinðBrÞ þC2 cosðBrÞ: ð6:97Þ

Because

d2

dr2
 ðrÞ ¼ �C1B2 sinðBrÞ �C2B2 cosðBrÞ; ð6:98Þ

Eq. (6.96) is satisfied, provided we take

B ¼ L�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 � 1

p
: ð6:99Þ
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Hence,

 ðrÞ ¼ C1 sinðL�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 � 1

p
rÞ þC2 cosðL�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 � 1

p
rÞ: ð6:100Þ

Analogous to the k1 < 1 case, we insert this expression into Eq. (6.86)
and combine the result with Eqs. (6.83) and (6.84) to obtain the flux
distribution:

�ðrÞ ¼ C1

r
sinðL�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 � 1

p
rÞ þC2

r
cosðL�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 � 1

p
rÞ � s000o
ðk1 � 1Þ�a

:

ð6:101Þ

We determine the constants by applying the same boundary
conditions as in the k1 < 1 case: The condition at the origin is that
�ð0Þ must be finite. The first term is finite since lim

r!0
r�1 sinðBrÞ ¼ B.

Because cosð0Þ ¼ 1, however, the second term becomes infinite
unless we set C2 ¼ 0. Consequently,

�ðrÞ ¼ C1

r
sinðL�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 � 1

p
rÞ � s000o
ðk1 � 1Þ�a

: ð6:102Þ

We determine C1 by requiring this equation to meet the boundary
condition �ð ~RÞ ¼ 0, yielding

�ðrÞ ¼ s000o
ðk1 � 1Þ�a

~R

r

sin L�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 � 1

p
r

� 

sin L�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 � 1

p
~R

� 
� 1

2
4

3
5: ð6:103Þ

Figure 6.5 shows the spatial distribution of�ðrÞ for increasing values
of k1, first using Eq. (6.95) for k1 < 1 and then Eq. (6.103) for k1 > 1.

The Critical Reactor

Figure 6.5 indicates that the flux level increases with the value of k1.
With increasing k1, the argument of the sine in the denominator of
Eq. (6.103) becomes larger, until

L�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 � 1

p
~R ¼ �; ð6:104Þ

at which point the flux level becomes infinite, since sinð�Þ ¼ 0. At
this point the sphere has become critical. As we saw in the preceding
chapter subcritical reactors have time-independent solutions in the
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presence of a source, but critical reactors do not. Thus we should
expect the solution given by Eq. (6.103) to become singular for a
critical system.

Recall that for a finite reactor the criticality condition on the
multiplication is just k ¼ PNL k1 ¼ 1, where PNL is the nonleakage
probability. Squaring Eq. (6.104) and rearranging terms, we may write

1 ¼ k1

1þ �L= ~R
� 	2

: ð6:105Þ

Thus for the critical sphere, the nonleakage probability is

PNL ¼
1

1þ �L= ~R
� 	2

; ð6:106Þ

or, using the notation introduced in Chapter 5, � ¼ �L= ~R
� 	2

.
As expected the nonleakage probability increases with ~R=L,
the extrapolated radius of the reactor measured in diffusion lengths.

Just as a subcritical reactor has a time-independent solution if
and only if there is a source present, a critical reactor has a solution
only if no source is present. For the sphere, this is equivalent to
specifying that the general solution, Eq. (6.85), must be satisfied; it
must also meet the same conditions: finite �ð0Þ and �ð ~RÞ ¼ 0; it must
also guarantee that �ðrÞ > 0 for 0 � r < ~R. In fact, if we just set s000o ¼ 0
in Eq. (6.102), we obtain

�ðrÞ ¼ C1

r
sinðL�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 � 1

p
rÞ: ð6:107Þ
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FIGURE 6.5 Flux distributions in subcritical spheres.
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The condition �ð ~RÞ ¼ 0, along with the requirement that �ðrÞ > 0,
then yields Eq. (6.104), the criticality condition. Note that the solu-
tion is not unique; that is, C1 may take on any nonnegative value. In
Chapter 7 we will show that C1 is proportional to the power at which
the reactor operates.

In earlier texts, the term Bm ¼ L�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k1 � 1

p
that first appeared

(without the subscript) in Eq. (6.99) is referred to as the material
buckling; it depends only on material properties. Likewise, for a
sphere, Bg ¼ �

�
~R is referred to as the geometric buckling; it depends

only on the sphere’s size. With this terminology the criticality con-
dition of Eq. (6.105) may also be stated as the material and geometric
buckling being equal: Bg ¼ Bm. The term buckling derived from the
notion that the flux had more concave downward or ‘‘buckled’’ cur-
vature in a small reactor than in a large one. Thus if a reactor is
smaller than the critical size for a given material, Bg > Bm, and the
reactor is subcritical. If it is larger than the critical size, Bg < Bm, and
the reactor is supercritical. For reactors of shapes other than spheres
the geometrical buckling takes the form Bg ¼ C=R, where the coeffi-
cient C is determined by the shape of the reactor and R is a character-
istic dimension. Generally, the multiplication of a uniform reactor of
any shape and size is given by k ¼ k1PNL, with the nonleakage prob-
ability written as

PNL ¼
1

1þ L2B2
; ð6:108Þ

where the subscript is dropped from B, the geometric buckling. The
following chapter includes the derivation of the geometric buckling
for the cylindrical form of a power reactor core.
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Problems

6.1. Consider in plane geometry a slab of nonfissionable material
with properties D and L and a thickness of a. Assume
s00 neutrons/cm2/s enter the slab from the left. What fraction
of the neutrons will

a. Penetrate the slab?
b. Be reflected back from the left-hand surface?
c. Be absorbed in the slab?

6.2. Consider an infinite slab of nonfissionable material occupying
the region �a � x � a. It contains a uniform source s000o and has
properties D1 and �a1. A second nonfissionable material, with
D2 and �a2, contains no source and occupies the remaining
regions �1 � x � �a and a � x � 1. Find the flux distribution
for 0 � x � 1.

6.3. Determine the fraction of neutrons that penetrate a 1-m-thick
slab of graphite for which D = 0.84 cm and �a = 2.1� 10�4 cm�1.
Evaluate the albedo of the slab.

6.4. In plane geometry, thermal neutrons enter a nonmultiplying
slab of infinite thickness from the left. The properties of the
composite slab are D1 and �a1 for 0 � x � a and D2 and �a2 for
a � x � 1.

a. Show that with �i � Di=Li the albedo may be expressed as

� ¼
ð1� 2�1Þ þ

�2 ��1

�2 þ�1
ð1þ 2�1Þ expð�2a=L1Þ

ð1þ 2�1Þ þ
�2 ��1

�2 þ�1
ð1� 2�1Þ expð�2a=L1Þ

.

b. Evaluate the albedo for a = 10 cm when material 1 is graphite
and material 2 is water.

c. Repeat part b when materials 1 and 2 are switched.

6.5. Note that if 2D=L > 1, Eq. (6.41) yields a negative albedo!
Explain in terms of cross sections why diffusion theory is not
valid under these circumstances.

6.6. Neutrons impinge uniformly over the surface of a sphere made
of graphite that has a diameter of 1.0 m. For the graphite
D = 0.84 cm and �a = 2.1� 10�4 cm�1.
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a. Determine the albedo of the graphite sphere.
b. Determine the fraction of the impinging neutrons that are

absorbed in the sphere.

6.7. Verify Eq. (6.55).

6.8. In the text the spherical geometry condition 0 < �ð0Þ <1 is
employed to reduce Eq. (6.60) to Eq. (6.63). Show that the
condition lim

r!0
4� r2JrðrÞ ¼ 0 produces the same result.

6.9. The point source of strength sp is located at the center of a
sphere of a nonmultiplying medium with properties D and �a,
and an extrapolated radius ~R, in an infinite vacuum.

a. Find the flux distribution in the sphere.
b. Determine the fraction of neutrons that escape from the

sphere without being absorbed if ~R ¼ L.

6.10. A thin spherical shell of radius R emits s00pl neutrons/cm2/s
in an infinite nonmultiplying medium with properties D
and �a.

a. Determine the flux �ðrÞ for 0 � r � 1.
b. Determine the flux ratio �ð0Þ=�ðRÞ.

6.11.*Show that the ratio of uncollided to total flux from a point
source in an infinite medium is

�uðrÞ
�ðrÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=3ð1� cÞ

p 1

ðr=LÞ exp �� r=Lð Þ½ �

where� ¼ 3ð1� cÞ½ ��1=2�1. Then plot the curve for 1=2 < r=L < 3
using thermal neutron cross sections for the following:

a. Water.
b. Heavy water.
c. Graphite.
d. A one-to-one volume mixture of natural uranium and

water.

6.12. A semi-infinite multiplying medium having the properties
D, �a, and k1 < 1 occupies the space 0 � x � 1, while
�1 � x < 0 is a vacuum. A source embedded in the medium
emits neutrons at a rate of S000o expð��xÞ neutrons/cm3 s�1.
Neglecting the extrapolation distance, show that the distribution
of neutrons is

�ðxÞ¼½�2�ð1�k1Þ=L2
��1S000o

D
expð�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k1

p
x=LÞ�expð��xÞ

h i
,

0�x�1.
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6.13. Verify Eqs. (6.67) through (6.69).

6.14. Show that Eqs. (6.95) and (6.103) agree in the limit of
k1 ! 1.

6.15. Suppose that the material in problem 6.9 is fissionable with
k1 < 1. Find the flux distribution in the sphere.

6.16. Suppose the material in problem 6.9 is fissionable with k1 > 1:

a. Find the flux distribution in the sphere.
b. Show that the criticality condition is the same as Eq. (6.105).

6.17. Equations (6.95) and (6.103) give the flux distributions for
a subcritical sphere with a uniform source for k1 < 1 and
k1 > 1, respectively. Find the equivalent expression for
k1 ¼ 1.

6.18. Using Eqs. (6.95) and (6.103),

a. Find expressions for the flux �ð0Þ at the center of the
subcritical sphere.

b. Using your results from part a make a plot of �ð0Þ for
0 � k1 < 1:154 with ~R=L ¼ 8.

c. Using your results from part a make a plot of �ð0Þ for

0 < ~R=L < 8, with k1 ¼ 1:154.
d. Compare the two curves and discuss their significance.

(Normalize plots to S000o =�a)
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CHAPTER 7

Neutron Distributions
in Reactors

7.1 Introduction

Chapter 6 concluded with the approach to criticality of a spherical
system, chosen for the mathematical simplicity of its one-dimensional
geometry. This chapter deals with the spatial distributions of neutrons
within the finite cylindrical volumes that correspond to the cores of
power reactors. We begin by reformulating the diffusion equation in an
eigenvalue form that yields both the multiplication and the flux dis-
tribution from a time-independent solution. We then find the critical-
ity equation and flux distribution for a bare uniform reactor and relate
it to the reactor power. Uniform, remember, means only that the
lattice cells are identical, for in our approximate treatment we assume
that the cross sections are averaged over energy—allowing an energy-
independent treatment—and over the cross-sectional area of the lattice
cell. The next section provides a more detailed treatment of the
neutron nonleakage probability and the effects that neutron slowing
down and diffusion have on it. Following completion of our treatment
of the bare cylindrical reactor, we examine reactors that include reflec-
tor regions to improve the neutron economy. We conclude the chapter
with an examination of the effects control poisons—first of a single
control rod and then of a bank of control rods—on reactor multiplica-
tion and flux distribution.

7.2 The Time-Independent Diffusion Equation

With the source set to zero, the steady state diffusion equation, given
by Eq. (6.12), for the flux distribution within a fissionable system
becomes

~r �D~r�þ ��f�� �a� ¼ 0; ð7:1Þ
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where for brevity we have deleted the (~r ) that denotes spatial depen-
dence. This equation has a positive flux solution within a reactor
only if it is exactly critical. Otherwise, the neutron population will
vary with time, and the kinetics equations of Chapter 5 are needed to
describe the system’s behavior. Often, however, the problem at hand
involves searching for the critical state by varying the reactor’s ge-
ometry (its radius or height, for example) or its material composition
(for example, its fuel enrichment or its fuel to moderator ratio). We do
such searches iteratively by hypothesizing a reactor of a particular
size, shape, and composition and determining how far from critical
the system is and what the spatial distribution of neutrons within it
will be. This we accomplish without carrying out detailed time-
dependent calculations through the following artifice.

Suppose that we could vary the average number of neutrons per
fission, �, by a ratio �o=�. Equation (7.1) then becomes

~r �D~r�þ ð�o=�Þ��f�� �a� ¼ 0: ð7:2Þ

Now suppose that �o is the number of neutrons per fission that we
would require to make the reactor configuration exactly critical (i.e.,
it would yield a multiplication of k ¼ 1), while � is the number of
neutrons actually produced per fission. Since k is always proportional
to the number of neutrons per fission, we have �o=� ¼ 1=k, and we
may write Eq. (7.2) as

~r �D~r�þ 1

k
��f�� �a� ¼ 0: ð7:3Þ

If the number of neutrons per fission, �o, needed to make the reactor
exactly critical is larger than the actual value, �, then the reactor is
subcritical, and k is less than one. Conversely, the reactor is super-
critical if �o is smaller than �, and k is greater than one.

By solving Eq. (7.3) for k, the foregoing technique converts the
problem from trying to find a combination of cross sections and
dimensions for which a solution of Eq. (7.1) exists to specifying a
set of cross sections and dimensions and determining how far from
critical the configuration is. Equation (7.3) has the form of an eigen-
value problem, where k is the eigenvalue and � is the eigenfunction.
In general there will be many—in some cases an infinite number—of
eigenvalues and eigenfunctions that solve Eq. (7.3) and meet the
appropriate boundary conditions. We are only interested, however,
in the physically meaningful solution for which the flux is positive
everywhere within the reactor volume. This solution may be shown
to correspond to the largest eigenvalue, which is the multiplication;
we refer to the corresponding eigenfunction �, which is positive
everywhere within the reactor, as the fundamental mode solution.
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7.3 Uniform Reactors

We begin by analyzing a reactor that is uniform throughout. Accord-
ingly, none of the cross sections vary in space. Thus D is a constant,
and using our earlier definitions for k1 ¼ ��f=�a and L2 ¼ D=�a we
may write Eq. (7.3) as

r2�þ k1=k� 1

L2
� ¼ 0; ð7:4Þ

or equivalently

�r
2�

�
¼ k1=k� 1

L2
: ð7:5Þ

Since the right side of this equation is independent of the spatial
variables, so must the left be the same; both sides of the equation
must be equal to the same constant for it to be satisfied. Specifying
that constant as r2�=� ¼ �B2, we obtain for the multiplication

k ¼ k1
1þ L2B2

: ð7:6Þ

To determine B, referred to as the geometric buckling or simply as
the buckling, we must solve

r2�þ B2� ¼ 0; ð7:7Þ

which is a Helmholtz equation. The solution, moreover, must meet
the condition 0 < � <1within the reactor, and well as satisfying the
boundary conditions at its surfaces.

We have already encountered such a problem. Recall that we
concluded Chapter 6 by going from subcritical to critical for an
idealized spherical reactor. We obtained an expression, Eq. (6.105),
which is identical in form to Eq. (7.6), but with k set equal to one and
with the buckling for the sphere given by B ¼ �=R. And, the nonleak-
age probability of Eq. (6.106) takes the form

PNL ¼
1

1þ L2B2
: ð7:8Þ

Equations (7.6) through (7.8) are valid for uniform reactors of all
shapes. In what follows, we analyze a cylindrical reactor of finite
length to determine the multiplication and flux distribution in
terms of reactor’s dimensions and material properties.
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Finite Cylindrical Core

For a uniform cylindrical reactor with an extrapolated radius ~R and
extrapolated height ~H, as shown in Fig. 7.1, Eq. (7.7) is a partial
differential equation. It may be expressed in terms of the radial and
axial coordinates r and z. With the r–z geometry form of the r2

operator given in Appendix A, we have

1

r

@

@r
r

d

dr
�þ @2

@z2
�þ B2� ¼ 0; ð7:9Þ

subject to the conditions

0 < �ðr; zÞ <1; 0 � r � ~R; � ~H=2 � z � ~H=2: ð7:10Þ

We look for a solution by separating variables, that is, by separ-
ating �ðr; zÞ into a product of functions of r and of z:

�ðr; zÞ ¼  ðrÞ�ðzÞ: ð7:11Þ

Inserting this expression into Eq. (7.9) and dividing by  �, we obtain

1

 r

d

dr
r

d

dr
 þ 1

�

d2

dz2
�þ B2 ¼ 0: ð7:12Þ

R

O

z

r
H

~

~

FIGURE 7.1 Cylindrical reactor core.
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Because the first term depends only on r, and the second only on z, both
terms must be constants for the equation to have a solution. Suppose we
take the constants to be�B2

r and�B2
z. The solution then takes the form

B2
r þ B2

z ¼ B2; ð7:13Þ

where B2
r and B2

z must satisfy the differential equations

1

r

d

dr
r

d

dr
 þ B2

r ¼ 0; 0 � r � ~R; ð7:14Þ

and

d2

dz2
�þ B2

z� ¼ 0; � ~H=2 � z � ~H=2: ð7:15Þ

Thus we have reduced Eq. (7.9), a partial differential equation, to two
ordinary differential equations in r and z, respectively. Substituting

� zð Þ ¼ C1 sinðBzzÞ þC2 cosðBzzÞ; � ~H=2 � z � ~H=2; ð7:16Þ

into Eq. (7.15), we may show that it is a solution, where C1 and C2 are
arbitrary constants to be determined from the boundary conditions.
The boundary conditions at the ends of the cylinder are �ð� ~H=2Þ ¼ 0.
Because the equation and its boundary conditions are symmetric in z
about its mid plane, the solution must be symmetric: �ðzÞ ¼ �ð�zÞ.
Thus it follows that C1 ¼ 0, because sinðBzzÞ ¼ � sinð�BzzÞ.
Satisfying the axial boundary conditions then translates to the
requirement cosð�Bz

~H=2Þ ¼ 0. This condition is met provided
Bz

~H=2 ¼ �=2; 3�=2; 5�=2; � � � . Only for the �=2 root, however, will �
and hence the flux be positive everywhere in the core. We therefore
take

Bz ¼ �= ~H: ð7:17Þ

For the radial direction, the solution of Eq. (7.14) takes the form
of the less familiar Bessel functions, which are plotted in Fig. 7.2 and
discussed further in Appendix B:

 ðrÞ ¼ C01J0ðBrrÞ þC02Y0ðBrrÞ; 0 � r � ~R; ð7:18Þ

where C01 and C02 are arbitrary constants. We again have two arbitrary
constants to determine. Noting from Fig. 7.2 that Y0ð0Þ ! �1, we take
C02 ¼ 0; otherwise, the flux would become infinite along the centerline
of the reactor. From the graph of J0ðxÞ, we see that in order for the flux
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to vanish at the extrapolated radius ~R, but remain positive for all
smaller values of r, we must have Br

~R ¼ 2:405, or correspondingly

Br ¼ 2:405= ~R: ð7:19Þ

We next combine the foregoing results to obtain the buckling
and flux distribution for a cylindrical reactor. For the buckling we
insert Eqs. (7.17) and (7.19) into Eq. (7.13):

B2 ¼ ð2:405
�

~RÞ2 þ ð�
�

~HÞ2: ð7:20Þ

The flux distribution results from inserting Eqs. (7.16) and (7.18) into
Eq. (7.11), subject to the restrictions C1 ¼ 0 and C02 ¼ 0:

�ðr; zÞ ¼ CJ0ð2:405r= ~RÞ cosð�z= ~HÞ; ð7:21Þ

where C ¼ C01C2.

Reactor Power

One arbitrary constant, C, remains. It is proportional to the power
of the reactor. The amount of recoverable energy per fission varies
slightly between fissionable isotopes. A reasonable average is

2

1

0

–1

0 1 2
x

3 4

To + ∞ To + ∞

To – ∞

K 0 
(x )

Y 0 
(x )
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J 0 
(x )

0.894

2.405

FIGURE 7.2 Ordinary and modified Bessel functions of order zero.
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� ¼ 3:1� 10�11 J/fission (i.e., watt-s/fission). Then because �f� is the
number of fissions/cm3/s the reactor power is just ��f� integrated
over the volume of the reactor:

P ¼ �
Z

�f�dV; ð7:22Þ

which in cylindrical geometry reduces to

P ¼ �2�

Z ~R

0

Z ~H=2

� ~H=2
�f�dzrdr: ð7:23Þ

Inserting Eq. (7.21) then yields

P ¼ ��f2�C

Z ~R

0
J0ð2:405r= ~RÞrdr

Z ~H=2

� ~H=2
cosð�z= ~HÞdz: ð7:24Þ

We may separate this expression into more convenient radial and
axial contributions by multiplying numerator and denominator by
the volume V ¼ �R2H:

P ¼ ��fVC
2
~R2

Z ~R

0
J0ð2:405r= ~RÞrdr

" #
1
~H

Z ~H=2

� ~H=2
cosð�z= ~HÞdz

" #
: ð7:25Þ

Changing variables � ¼ 2:405r= ~R and using the Bessel function
identities found in Appendix B allows us to eliminate the radial
integral:

2
~R2

Z ~R

0
J0ð2:405r= ~RÞrdr ¼ 2

2:4052

Z 2:405

0
J0ð�Þ�d� ¼

2

2:405
J1ð2:405Þ

ð7:26Þ

and, likewise, substituting & ¼ �z=H yields

1
~H

Z ~H=2

� ~H=2
cosð�z= ~HÞdz ¼ 1

�

Z �=2

��=2
cosð&Þd& ¼ 2

�
ð7:27Þ

for the axial component. Noting that J1ð2:405Þ ¼ 0:519, we combine
the three preceding equations to obtain
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P ¼ ��fVC
2J1ð2:405Þ

2:405

2

�
¼ 0:275��fVC; ð7:28Þ

or

C ¼ 3:63
P

��fV
: ð7:29Þ

Finally, inserting C into Eq. (7.21) expresses the flux distribution in
terms of the reactor power:

�ðr; zÞ ¼ 3:63
P

��fV
J0ð2:405r=RÞ cosð�z=HÞ: ð7:30Þ

7.4 Neutron Leakage

In general, the cross sections and diffusion coefficients that we use in
the diffusion approximation are averaged over the entire energy spec-
trum of neutrons as well as over the lattice cell compositions as
discussed in Chapter 4. The diffusion length measures the distance
that neutrons travel between birth and death. In thermal reactor
calculations, however, the diffusion coefficient and cross sections
used are often those averaged over only the thermal neutron energy
spectrum. Uncorrected, such calculations neglect the distance that
neutrons diffuse while slowing down to thermal energies. In some
systems, particularly those with light water moderators, such neglect
leads to significant error. Treating the neutron migration during both
slowing down and thermal diffusion more rigorously requires divid-
ing the neutron spectrum into two or more energy groups, and devis-
ing a diffusion equation for each. For thermal reactors, however,
dividing the flux into just two groups—fast and thermal—is often
adequate, particularly when considering the lattice physics in terms
of the four factor formula developed in Chapter 4. Figure 7.3 illus-
trates the same neutron cycle as Fig. 4.5, but with neutron diffusion
added for both fast neutrons, as they slow down through the inter-
mediate or resonance regions, as well as for thermal neutrons.

Two Group Approximation

To model a reactor with two group theory, we begin by defining the
fast and thermal flux as �1 and �2. To obtain the source of neutrons
for fast diffusion, we note that the number of thermal neutrons
absorbed is �a�2/cm3/s and that of these f�a�2/cm3/s are absorbed
in fuel. We next multiply by �T to obtain the number of fast neutrons
produced from thermal fission. However, we also include 1/k to take
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into account our varying of the neutrons per fission as in Eq. (7.3) in
order to obtain a steady state neutron distribution even though the
reactor is not exactly critical. Finally, we multiply by ", the fast
fission factor, and obtain ð1=kÞ"�Tf�a�2 as the number of fast neu-
trons produced/cm3/s. The diffusion equation for fast neutrons is

�~r �D1
~r�1 þ �r�1 ¼

1

k
"�Tf�a�2: ð7:31Þ

The first term on the left is the fast leakage. It has the same form as
Eq. (7.1) except

D1 ¼ 1=3�tr1 ð7:32Þ

is the diffusion coefficient for fast neutrons. The second term �r�1

accounts for the neutrons removed from the fast group by slowing
down. In paragraphs that follow we will discuss the calculation of
D1 and the removal cross section �r.

The source of neutrons for thermal diffusion is the same as those
removed from the fast group, multiplied by the resonance escape
probability p to account for those lost to capture in the fuel resonance
capture cross sections: p�r�1/cm3/s; Thus the thermal diffusion
equation is

�~r �D2
~r�2 þ �a�2 ¼ p�r�1; ð7:33Þ

where the first term accounts for thermal neutron leakage, and the
second for thermal absorption, where

D2 ¼ 1=3�tr2 ð7:34Þ
and �a are, respectively, the thermal diffusion coefficient and absorp-
tion cross section.
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↑

ε pfn ← ← (3) ←
↓ → →
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→

Fuel Moderator Leakage

n

FIGURE 7.3 Four factor formula with leakage for a thermal reactor
neutron cycle.
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For a uniform region the diffusion coefficients are space indepen-
dent and may be pulled outside the divergence operator. Dividing the
two diffusion equations by �r and �a, respectively, and defining fast
and thermal diffusion lengths by

L1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D1=�r

p
ð7:35Þ

and

L2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2=�a

p
; ð7:36Þ

we obtain

�L2
1r2�1 þ �1 ¼

1

k
"�Tf

�a

�r
�2 ð7:37Þ

and

�L2
2r2�2 þ �2 ¼ p

�r

�a
�1: ð7:38Þ

Next consider a uniform reactor with zero flux boundary condi-
tions on all its extrapolated outer surfaces. Similar to the technique
applied to the one group model in the preceding section, we may repre-
sent the spatial dependence of the flux with Helmholtz equations:

r2�1 þ B2�1 ¼ 0 ð7:39Þ

and

r2�2 þ B2�2 ¼ 0: ð7:40Þ

Using these equations to replace ther2 terms in Eqs. (7.37) and (7.38)
we obtain

�1 ¼
1

1þ L2
1B2

1

k
"�Tf

�a

�r
�2 ð7:41Þ

and

�2 ¼
1

1þ L2
2B2

p
�r

�a
�1: ð7:42Þ
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Finally, combining equations we have

k ¼ 1

1þ L2
1B2

1

1þ L2
2B2

k1; ð7:43Þ

where the infinite medium multiplication is given by the four factor
formula: k1 ¼ p"f�T . Note that we may now write—as in Eq. (3.2)—
k ¼ k1PNL, provided we replace the nonleakage probability given by
Eq. (7.8) with

PNL ¼
1

1þ L2
1B2

1

1þ L2
2B2

: ð7:44Þ

The definition of the thermal diffusion length is straightforward,
with both the transport and absorption cross sections appearing in
Eqs. (7.34) and (7.36) averaged over the thermal neutron spectrum.
However, the diffusion length for fast neutrons requires more careful
scrutiny. The Fermi age is the most frequently employed approxima-
tion for L2

1. It is defined as

	 ¼
Z E1

E2

DðEÞ
��sðEÞE

dE; ð7:45Þ

where the integral extends from fission energy neutrons down to
thermal neutrons, typically from E1= 2.0 MeV to E2 = 0.0253 eV.
Note that the slowing down power, ��s, introduced in Chapter 2,
appears in the denominator. Thus taking

L2
1 ¼ 	; ð7:46Þ

we see that a strong moderator results in a small diffusion length for
fast neutrons. We may gain some further insight with the following
simplified model. Over the energy range included in Eq. (7.45) we
approximate the diffusion coefficient and scattering cross section as
energy independent. Equation (7.46) thus reduces to

L2
1 �

D1

��s
lnðE1=E2Þ: ð7:47Þ

Combining this result with Eq. (7.35) allows us to write the removal
cross section as �r ¼ ��s= lnðE1=E2Þ. Next, recall from Eq. (2.59) that
the estimated number of elastic scattering collisions required to slow
a neutron down from E1 to E2 is n � ð1=�Þ lnðE1=E2Þ. Hence we
may approximate the removal cross section as �r � �s=n. Because
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L1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nD1=�s

p
, the smaller the number of collisions required to slow

the fission neutrons to thermal energies, the shorter the distance that
fast neutrons will diffuse before being slowed to thermal energies.

Migration Length

Retaining the one group theory developed in earlier sections for
thermal as well as fast reactors simplifies further analysis consider-
ably. For large reactors, we can accomplish this without a substantial
loss of accuracy simply by replacing the diffusion length L by the
migration length M in the one group equations. To define the migra-
tion length we multiply the nonleakage contributions from the two
groups, found in Eq. (7.44), together and obtain

PNL ¼
1

1þ ðL2
1 þ L2

2ÞB2 þ L2
1L2

2B4
: ð7:48Þ

Since B2 is small for large reactors, a reasonable approximation is to
drop the B4 term from the denominator. We may then write

PNL ¼
1

1þM2B2
; ð7:49Þ

where the migration area is defined as

M2 ¼ L2
1 þ L2

2; ð7:50Þ

and correspondingly the migration length is

M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2

1 þ L2
2

q
: ð7:51Þ

Table 7.1 lists the values of L1 (=
ffiffiffi
	
p

), L2, and M for the three
most common moderators and also representative values for power
reactors using each of them. The table indicates that the largest
correction to the thermal diffusion length is for water-moderated
systems. This comes about primarily because hydrogen’s large ther-
mal absorption cross section causes L2 to be quite small compared to
reactors utilizing other moderators. To lesser extent, the hydrogen’s
decreased scattering cross section over the energy range where fission
neutrons are born, pictured in Fig. 2.3a, increases the value of L1
since �s appears in the denominator of Eq. (7.45). For fast reactors
the diffusion and migration length are considered one and the same.
To complete Table 7.1, a representative value for a sodium-cooled
fast reactor (SFR) is M = 19.2 cm and for a gas-cooled fast reactor
(GCFR), M = 25.5 cm.
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Leakage and Design

To examine the relationship between neutron leakage and power reac-
tor design, we begin by combining Eq. (7.49) with k ¼ PNLk1 to obtain

k ¼ 1

1þM2B2
k1: ð7:52Þ

Suppose we make this expression more explicit by assuming that the
reactor is a cylinder with a height to diameter ratio of one. Then with
~H ¼ 2 ~R the buckling given by Eq. (7.20) becomes B2 ¼ 33:0= ~H2, and
we may write

k ¼ 1

1þ 33:0ðM= ~HÞ2
k1: ð7:53Þ

Thus the primary determinant of neutron leakage is ~H=M, the char-
acteristic dimension of the reactor, measured in migration lengths.

Very roughly speaking the reactor design process may be char-
acterized as follows. Ordinarily, the power P that the reactor must be
capable of producing has been set before the design commences. The
designers first fix the structure of the core lattice, selecting the fuel,
moderator, coolant, and other materials, their volume ratios, and
their geometrical configuration (i.e., fuel radius, lattice pitch, etc.).

TABLE 7.1
Representative Diffusion Properties for Moderators and Thermal Reactors

Type Description

L1 ¼
ffiffiffi
	
p

(cm)
Fast Diffusion
Length

L2 (cm)
Thermal
Diffusion
Length

M (cm)
Migration
Length

H2O Light Water 5.10 2.85 5.84
PWR Pressurized-H2O

Reactor
7.36 1.96 7.62

BWR Boiling-H2O
reactor

7.16 1.97 7.43

D2O Heavy water 11.5 173 174
PHWR CANDU-D2O

reactor
11.6 15.6 19.4

C Graphite 19.5 59.0 62.0
HTGR Graphite-

moderated He-
cooled reactor

17.1 10.6 20.2

Source: Data courtesy of W. S. Yang, Argonne National Laboratory.
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In doing so they attempt to select lattice parameters such that (a) for a
given fuel enrichment the value of k1 is near optimum and (b) the
power per unit volume (i.e., P000, the power density) that can be
transported from fuel to coolant outlet is maximized.

Because the core materials and lattice parameters largely deter-
mine the value of the migration length—which is, however, only
very weakly dependent on the fuel enrichment—at this point the
value of M is pretty much fixed. The core lattice design taken
together with maximum to average flux ratio determines �P000, the
achievable core averaged power density. Then with P and �P000 deter-
mined, the relationship P ¼ V �P000 determines the core volume. For a
cylindrical reactor with a height to diameter ratio of one, the volume is
V ¼ � ~H3=4 and consequently ~H ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
4V=�3

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4P=� �P0003

p
. Thus the core

lattice design determines M, and the achievable �P000, whereas a reactor’s
core volume increases linearly with the required output P of the
reactor at full power. Equation (7.53) indicates that as the volume
and therefore ~H=M increases, the nonleakage probability becomes
closer to one; that is, the leakage probability decreases. With a reac-
tor’s size and neutron nonleakage probability determined, the fuel
enrichment—which has very little effect on the migration length—is
adjusted to obtain the desired value of k1.

Chapter 8 details the thermal and hydraulic properties of reactor
cores that determine the power densities achievable in reactor lattices
as well as the coupling between neutronic and thermal-hydraulic
design. In the remainder of this chapter we examine first reactor
reflectors and their effects on multiplication and flux distribution
and then the neutron poisons used to control reactivity and their
interactions with the spatial flux distributions.

7.5 Reflected Reactors

Reflectors derive their name from the fact that some fraction of the
neutrons that escape the core will make a sufficient number of
scattering collisions in the diffusing reflector material to turn them
around such that they reenter the core—that is, they are reflected
back into to it. A reflector thus reduces the fraction of neutrons
leaking from the reactor. Figure 7.4 shows schematic diagrams of
cores with axial and radial reflectors. Reflectors have their largest
impacts on smaller cores, where the leakage probability is signifi-
cant. As we shall illustrate, a reflector’s importance diminishes as
the size of a reactor—measured by ~H=M—becomes larger.

Equation (7.9) for the neutron distribution within a uniform
core remains valid for reflected reactors. If both axial and radial
reflectors are employed, however, the separation of variables techni-
que applied in Section 7.3 is no longer applicable, and more advanced
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mathematical methods are required. If only an axial or a radial
reflector—but not both—is present, the solution again results from
inserting Eqs. (7.16) and (7.18) into Eq. (7.11). However the boundary
conditions are different, causing the height H of the critical core to
decrease in the case of an axial reflector, and the core radius R to
decrease in the case of a radial reflector. Conversely, if a reflector is
added and the core dimensions are not reduced, the multiplication
will increase, and this must be compensated by decreasing k1, for
example, by reducing the fuel enrichment or adding a neutron absor-
ber to the core. We treat only the axial reflector here; the effects
would be analogous for a radial reflector.

Axial Reflector Example

Because no fissionable material is present in a reflector, Eq. (7.3)
reduces to

r2�� 1

M
_ 2

� ¼ 0; ð7:54Þ

where we have replaced the diffusion length with M
_

, the migration
length of the reflector material. In cylindrical geometry the r2 opera-
tor in Eq. (7.54) takes the same form as in Eq. (7.9). Hence

1

r

d

dr
r

d

dr
�þ d2

dz2
�� 1

M
_ 2

� ¼ 0: ð7:55Þ

We again separate variables

�ðr; zÞ ¼  ðrÞ
ðzÞ ð7:56Þ

(a) (b)

FIGURE 7.4 Reflected reactor cores. (a) Axial reflector, (b) radial reflector.
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and divide the result by  
 to yield

1

 r

d

dr
r

d

dr
 þ 1




d2

dz2

 � 1

M
_ 2
¼ 0: ð7:57Þ

The radial flux distribution  must satisfy Eq. (7.18), with C02 ¼ 0, and
Eq. (7.19) once again determines Br since  must meet the zero flux
boundary condition at r ¼ ~R in the reflector as well as the core. Using
Eq. (7.14) to eliminate  , and defining

�2 ¼ B2
r þ

1

M
_ 2

ð7:58Þ

reduces Eq. (7.57) to

d2

dz2

 � �2
 ¼ 0; ð7:59Þ

which has a solution of the form


 zð Þ ¼ C001 expð�zÞ þC002 expð��zÞ: ð7:60Þ

Alternately, using the definitions of sinh and cosh given in
Appendix A, we may replace this expression with


 zð Þ ¼ C0001 sinhð�zÞ þC0002 coshð�zÞ: ð7:61Þ

We next add a reflector of height a to the top and bottom of
the core. Adding the reflector reduces the height of the critical
reactor from ~H to a yet to be determined value of H0; thus the
boundary condition at the top of the reflector is 
 H0=2þ að Þ ¼ 0.
This boundary condition removes one of the arbitrary coefficients
from Eq. (7.61). After some algebra, the result may be shown to be


 zð Þ ¼ C0 sinh �ðH0=2þ a� zÞ½ �: ð7:62Þ

The solution in the core once again takes the form of Eq. (7.16) with
C1 ¼ 0, because the solution still must be symmetric about the core
midplane. However, the axial buckling, which we now denote as B0z, is
yet to be determined since we no longer employ �ð� ~H=2Þ ¼ 0, the axial
boundary condition for a bare reactor. Thus in the core we have

� zð Þ ¼ C2 cosðB0zzÞ ð7:63Þ
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We are now prepared to apply the interface conditions specified
by Eqs. (6.42) and (6.43) at the core–reflector interface: continuity of
flux,

� H0=2ð Þ ¼ 
 H0=2ð Þ; ð7:64Þ

and of current

D
d

dz
� zð Þ

����
H0=2

¼ D
_ d

dz

 zð Þ

����
H0=2

; ð7:65Þ

where D
_

is the reflector diffusion coefficient. Inserting Eqs. (7.62),
and (7.63) into Eqs. (7.64) and (7.65) we obtain, respectively,

C2 cosðB0zH0=2Þ ¼ C0 sinhð�aÞ ð7:66Þ

and

B0zDC2 sinðB0zH0=2Þ ¼ �D
_

C0 coshð�aÞ: ð7:67Þ

Taking the ratio of these equations then yields

B0zD tanðB0zH0=2Þ ¼ �D
_

cothð�aÞ: ð7:68Þ

For thick reflectors (i.e., ones which are several diffusion
lengths thick) the fraction of neutrons that escapes from the outer
reflector surface becomes negligible. We may then approximate the
reflector as infinite, taking a!1. Because cothð1Þ ¼ 1, Eq. (7.68)
reduces to

B0z tanðB0zH0=2Þ ¼ �D
_

=D; ð7:69Þ

or, solving for H0,

H0 ¼ 2

B0z
arctan �

D
_

B0zD

 !
: ð7:70Þ

Note that once the radial dimension of the reactor and
the reflector material properties have been specified, �, given by
Eq. (7.58), and D

_

are specified. For simplicity we assume that D is
fixed. Then of the two remaining quantities, B0z and H0, we may fix
one and determine the other.
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Reflector Savings and Flux Flattening

We proceed by applying the foregoing formulas to two situations. In
the first we specify B0z ! Bz ¼ �= ~H. This is equivalent to stating that
the core composition is the same as it would be for a bare core of
length ~H. Replacing the buckling in Eq. (7.70) then gives

H0 ¼ 2 ~H

�
arctan �

~HD
_

�D

 !
; ð7:71Þ

which may be shown to be less than ~H. The reduction in the half core
height of the critical reactor is defined as the axial reflector savings:
�z ¼ 1=2ð ~H �H0Þ. For a thick reflector, it is approximately �z �M

_

D=D
_

.
Figure 7.5 provides a comparison of the flux distributions for a bare
and a reflected reactor in which the core composition is held constant
and the axial dimension reduced to maintain criticality. The treat-
ment of the radial reflector is analogous, with the complication that
Bessel functions are involved. Applying the thick reflector approxi-
mation to the radial reflector savings defined by �r ¼ ~R� R0, we
would obtain �r �M

_

D=D
_

, again for a thick reflector.
The second situation arises from specifying that the core height

remain constant by taking H0= ~H. Solving Eq. (7.70) then yields a
value B0z < �= ~H. Consequently, replacing Bz with the smaller value
B0z in Eq. (7.13) reduces the overall buckling in Eq. (7.6). Since the
denominator decreases with the addition of the reflector, the value of
k1must also be decreased—most likely by reducing the fuel enrich-
ment—in order for the multiplication to remain unchanged. Figure 7.6
compares the normalized flux distributions for bare and reflected

~
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N
eu

tr
on
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ux

FIGURE 7.5 Axial flux distributions for bare (—) and reflected (– –) reactors
with the same core composition.
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reactors in which the height is held constant and the composition
changed to maintain criticality.

To recapitulate, adding a reflector to a reactor allows either the
volume of the reactor or the value of k1 to be reduced, or some
combination of the two. Figure 7.6 also illustrates a third effect: Add-
ing a reflector flattens the flux distribution, thus lowering the ratio of
peak to average flux. These effects, however, become less significant as
the size of the reactor—measured in migration lengths—increases.
Clearly, the reflector savings amounts to a smaller fraction of the
core dimension as its size becomes larger. Likewise, if the core dimen-
sions are held constant, adding a reflector has a smaller effect on the
multiplication of a large reactor than on a small one. Table 7.2 com-
pares the maximum and minimum flux for two reflected reactors with
height to migration length ratios of ~H=M ¼ 10 and ~H=M ¼ 50 to a bare
reactor, with each of the three average fluxes normalized to one. The
numbers clearly indicate the reflector’s diminishing effect on flux
flattening as the size of the reactor increases.
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FIGURE 7.6 Comparison of bare and axial reflected reactor flux distributions
with the same core height.

TABLE 7.2
Flux Characteristics for axial Reflected and Bare Reactors

Reactor Maximum � Minimum � Average �

Reflected, ~H=M ¼ 10 1.373 0.323 1.00
Reflected, ~H=M ¼ 50 1.515 0.091 1.00
Bare 1.571 0.000 1.00
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7.6 Control Poisons

Control poisons are neutron absorbers that are deliberately included
in a reactor core. They may take the form of control rods, of soluble
poisons dissolved in liquid coolants, or of so-called burnable poisons
permanently embedded in the fuel or other core constituents.
Poisons serve a number of purposes. Control rods are inserted or
withdrawn to control the value of k as needed for startup, shutdown,
and changes in power level. They may also be used to keep the reactor
critical at a constant power by compensating for fuel depletion, fis-
sion product buildup, temperature changes, or other phenomena that
affect the multiplication. Control poisons affect both the multiplica-
tion and the flux distribution of a core; thus we must consider both.

We begin our analysis of control poisons with Eq. (7.3), assuming
for simplicity that we have a uniform unreflected reactor to which we
add a control poison. We further assume that the poison has no effect
on the fission cross section, and that its small effects on the diffusion
coefficient can be ignored. Its primary effect will be an increase in the
absorption cross section. We designate this increase by letting
�a!�aþ��a. Here, the additional absorption, ��a, may be uniform
across the core, as in the case of the boron absorber that is added to
the coolant of pressurized water reactors, or it may be localized as in
the form of one or more control rods. Burnable poisons typically are
distributed throughout the core but in an optimized nonuniform
manner that is beyond the scope of the following analysis.

Reactivity Worth

Before examining specific control rod configurations we derive a
general expression for the reactivity decrease resulting from the addi-
tion of a neutron absorber. Such a decrease frequently is referred to as
the worth of the absorber. We designate k and � as the multiplication
and flux distribution before the neutron poison is inserted and k0 and
�0 as the corresponding values following insertion. Thus the addition
of the absorber causes Eq. (7.3) to be replaced by

Dr2�0 þ 1

k0
��f�

0 � ð�a þ ��aÞ�0 ¼ 0: ð7:72Þ

We multiply by � and integrate over the reactor volume, V:

D

Z
�r2�0dV þ 1

k0

Z
���f�

0dV �
Z
�ð�a þ ��aÞ�0dV ¼ 0: ð7:73Þ
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Likewise, we multiply Eq. (7.3) by �0 and perform the same volu-
metric integration to obtain

D

Z
�0 r2�dV þ 1

k

Z
�0��f�dV �

Z
�0�a�dV ¼ 0: ð7:74Þ

Subtracting Eq. (7.74) from Eq. (7.73) then yields

D

Z
ð�r2�0 � �0 r2�ÞdV þ 1

k0
� 1

k

� �Z
���f�

0dV �
Z
���a�

0dV ¼ 0:

ð7:75Þ
Next we demonstrate that the first integral on the left vanishes.

Noting that

~r � ð�~r�0Þ ¼ �r2�0 þ ð~r�Þ � ð~r�0Þ ð7:76Þ

and

~r � ð�0~r�Þ ¼ �0 r2�þ ð~r�0Þ � ð~r�Þ; ð7:77Þ

we substitute these identities into the first integral of Eq. (7.75) and
then use the divergence theorem to convert the volume integral to an
integral over the reactor’s outer surface area A:

Z
ð�r2�0 � �0r2�ÞdV ¼

Z
~r�ð�~r�0 � �0~r�ÞdV

¼
Z

n
_�ð�~r�0 � �0~r�ÞdA ¼ 0:

ð7:78Þ

The surface integral vanishes since both the flux before and after the
change in absorption, that is � and �0, must vanish on the extrapo-
lated surface A.

With its first term eliminated, Eq. (7.75) reduces to

1

k0
� 1

k

� �Z
���f�

0dV ¼
Z
���a�

0dV: ð7:79Þ

Suppose the reactor is initially critical, then k = 1 and the reactivity
following control insertion will be 
 ¼ ðk0 � 1Þ=k0, reducing Eq. (7.79) to


 ¼ �
Z
���a�

0dV

�Z
���f�

0dV: ð7:80Þ

We have made no approximations in obtaining this equation.
Moreover, if the added absorption is uniform over the core, the cross
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sections may be pulled outside the integrals, yielding for the
reactivity,


 ¼ ���a

�
��f ¼ �

1

k1
��a=�a: ð7:81Þ

If the control material is localized within some volume of the
reactor, the distribution of the perturbed flux �0 must be treated
explicitly. Provided the perturbation to the flux is small, however,
we may write �0 ¼ �þ �� and ignore the size of �� relative to �. The
result is called the first-order perturbation approximation:


 ¼ �
Z
��a�

2dV

�Z
��f�

2dV: ð7:82Þ

Partially Inserted Control Rod

Equation (7.82) serves as a basis for estimating the reactivity worth of
a partially inserted control rod, provided the reactivity associated
with it is not large enough to significantly distort the flux distribu-
tion. Consider a uniform cylindrical reactor and begin by rewriting
the numerator of Eq. (7.82) explicitly in cylindrical coordinates:


 ¼ �
Z H=2

�H=2

Z 2�

0

Z R

0
��a�

2rdrd!dz

,Z
��f�

2dV: ð7:83Þ

We evaluate the numerator only over that volume occupied by the
control rod. Let ��a ¼ �ac in that volume, and ��a ¼ 0 elsewhere.
Assume that the rod is located at a distance r from the center of the
core and is inserted into the core a distance x from its top as indicated
in Fig. 7.7. We continue to assume that the flux is a function only of r
and z, and not of the azimuthal angle !. If the cross-sectional area of
the rod, say, ac, is small we can ignore the r variation of the flux over
its diameter and approximate the above expression as


r;x ¼ �ac�ac

Z H=2

H=2�x

�2ðr; zÞdz

,Z
��f�

2ðr; zÞdV: ð7:84Þ

For the uniform core with the flux described by Eq. (7.21), we obtain


r;x ¼ �ac�ac
C2J2

0ð2:405r= ~RÞR
��f�2ðr; zÞdV

Z ~H=2

~H=2�x

cos2ð�z= ~HÞdz: ð7:85Þ
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This expression simplifies when normalized to a fully inserted con-
trol rod (x = ~H) at the same radial location. Dividing 
r;x by 
r;H we
obtain


r;x ¼

R ~H=2
~H=2�x

cos2ð�z= ~HÞdzR ~H=2

� ~H=2
cos2ð�z= ~HÞdz


r;H ¼
x
~H
� 1

2�
sinð2�x= ~HÞ

� 	

r;H: ð7:86Þ

Figure 7.8 shows the control rod worth, that is, the negative
reactivity created by the rod, normalized to the fully inserted rod.
Note that the worth changes most rapidly when the tip is near the
midplane of the core, where the flux is largest. Control rod worth also
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FIGURE 7.7 Control rod inserted to a depth x at a distance r from a core
centerline.
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FIGURE 7.8 Normalized control rod worth vs insertion depth.
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varies with the radial position of the core. For example, if we compare
a rod situated at a radius r to one located along the core’s centerline,
because J0ð0Þ ¼ 1, we obtain


r;x ¼ J2
0ð2:405r= ~RÞ
0;x: ð7:87Þ

Control Rod Bank Insertion

Normally, control rods are grouped into banks, which may be inserted
or withdrawn in unison. As such, rod banks have large enough effects
on reactivity and on the flux distribution that the perturbation tech-
nique described above is no longer applicable. To model the reactivity
worth of a bank of control rods, we again consider a uniform cylin-
drical reactor, and specify a height to diameter ratio of one. To simplify
the derivation we take the origin of our r–z coordinates at the base of
the reactor, as indicated in Fig. 7.9, and assume that the bank is
inserted a distance x from the top of the reactor as indicated. Our
starting point is therefore Eq. (7.4), but k1 and M are no longer con-
stants; they are functions of z, taking different values in the rodded and
unrodded volumes of the core. Since the core is uniform in the radial
direction, however, we may again employ separation of variables as in
Eq. (7.11). Inserting these separated variables into Eq. (7.5) yields

1

 r

d

dr
r

d

dr
 þ 1

�

d2

dz2
�þ k1=k� 1

M2
¼ 0; ð7:88Þ

where we have replaced the diffusion with the migration length. The
first term on the left must be a constant, since the remaining two
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FIGURE 7.9 Cylindrical reactor with a control rod bank inserted to depth x.
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terms vary only in z. We set it equal to �B2
r given by Eq. (7.19), thus

satisfying Eq. (7.14) and meeting the boundary condition that
�ð ~R; zÞ ¼ 0. Thus Eq. (7.88) reduces to

d2

dz2
�þ k1=k� 1

M2
� B2

r

� �
� ¼ 0: ð7:89Þ

To account for the absorption in the control rod bank we subtract
�k1 from the infinite medium multiplication in the axial region of
the core occupied by the rod bank. Hence for that region,

k1 ! k1 � �k1 ¼ k1ð1� 
bÞ; ð7:90Þ

where 
b ¼ �k1=k1 is the reactivity worth of the bank when inserted
the entire length of the core. For simplicity we assume that the
presence of the control rods has no appreciable effect on the migra-
tion length. Equation (7.89) takes two forms for unrodded and rodded
volumes (u and r, respectively). With the rod bank inserted to a depth
x from the top of the core:

d2

dz2
�u þ �2�u ¼ 0; 0 � z � ~H � x; ð7:91Þ

and

d2

dz2
�r þ ð�2 � �2Þ�r ¼ 0; ~H � x � z � ~H; ð7:92Þ

where

�2 ¼ 1

M2

k1
k
� 1

� �
� B2

r ð7:93Þ

and

�2 ¼ 1

M2

k1
k

b: ð7:94Þ

The solutions must meet the boundary conditions �uð0Þ ¼ 0 and
�rð ~HÞ ¼ 0 as well as the interface conditions

�uð ~H � xÞ ¼ �rð ~H � xÞ ð7:95Þ
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and

d

dz
�uðzÞ

����
~H�x

¼ d

dz
�rðzÞ

����
~H�x

; ð7:96Þ

where we have made the assumption that the diffusion coefficients
in the rodded and unrodded core regions are the same. Solutions
meeting the boundary conditions at z ¼ 0 and z ¼ ~H may be shown
to be

�uðzÞ ¼ C sinð�zÞ ð7:97Þ

and

�rðzÞ ¼
C0 sin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

p
ð ~H � zÞ

h i
; �2 > �2

C0 sinh
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

p
ð ~H � zÞ

h i
; �2 < �2:

:

8<
: ð7:98Þ

Application of the interface conditions, Eqs. (7.95) and (7.96),
leads to two additional equations relating C and C0. Taking their
ratio yields the transcendental equation

� cot½�ð ~H � xÞ� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

p
cot

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

p
x


 �
; �2 > �2; ð7:99Þ

or

� cot½�ð ~H � xÞ� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

p
coth

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � �2

p
x


 �
; �2 < �2: ð7:100Þ

Given the reactor’s material properties, along with the definitions of
� and �, these transcendental equations can be solved numerically
for k.

The two limiting values of k reduce to be what is expected. For
the rods out case, Eq. (7.97) is applicable over the entire core. Thus we
must have �uð ~HÞ ¼ 0, from which it follows that �2

u ¼ ð�= ~HÞ2 ¼ B2
z ,

so that Eq. (7.93) yields

ku ¼
k1

1þM2ðB2
r þ B2

zÞ
: ð7:101Þ

Similarly, with the control rods fully inserted, Eq. (7.98) holds over the
entire core, and we must have �rð0Þ ¼ 0. Only the first of the pair can

meet this condition, and we obtain �2
r � �2

r ¼ ð� = ~HÞ2 ¼ B2
z , from

which Eqs. (7.93) and (7.94) yield kr ¼ ð1� 
bÞku. Next we consider
situations where the rod bank is partially inserted to a distance x.
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Figure 7.10 is a plot of the reactivity versus insertion length
for two cores, both with height to diameter ratios of one, and both
with rod bank worths of 
b ¼ 0:02. The ratio of core dimension to
migration length, ~H/M, is central to understanding the reactivity
curves and flux distributions. A core with a smaller value of ~H/M
is referred to as neutronically tightly coupled, because distur-
bances, such as control rod bank insertions, travel across it in
relatively few migration lengths, and therefore over relatively few
neutron generations. In a loosely coupled core—one with a large
~H/M ratio—the converse is true: Many neutron generations are
required to propagate a disturbance across the reactor. The net
effect is that in the more tightly coupled core distribution of the
neutron flux deviates less from that of a uniform core, and the
pattern of control rod worth is closer to that of Eq. (7.86); this can
be observed by comparing the ~H/M = 10 curve to Fig. 7.8, which
assumes no disturbance to the flux distribution. In contrast, the
~H/M = 50 curve is quite skewed; the rod bank has little effect
until it is inserted more than halfway into the core.

The effects on flux distribution are also pronounced. As
Fig. 7.11a indicates, as the rod bank is inserted into the more
tightly coupled core, with ~H/M = 10, the perturbed flux does not
deviate greatly from the standard axial cosine distribution. For the
more loosely coupled core, however, the flux is pushed toward the
bottom of the core as the rods are inserted. This is illustrated for
the ~H/M = 50 case shown in Fig. 7.11b. Note that all the curves in
Figs. 7.11a and 7.11b are normalized to the same average flux, thus
illustrating that the flux peaking can become quite severe in the
more loosely coupled core.
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FIGURE 7.10 Normalized control rod bank worth vs insertion depth for
core of heights ~H/M = 10 and ~H/M = 50 H.
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A reactor’s power density (i.e., power per unit volume) is limited
by thermal-hydraulic considerations. Thus for a given class of reac-
tors, higher powers imply larger volumes, and therefore larger values
of ~H/M, and more loosely coupled cores.

Comparing Tables 4.1 and 7.1 we see that both achievable aver-
age power densities and migration lengths vary greatly between reac-
tor designs. Generally, thermal reactors are more loosely coupled
than fast reactors, and they may have values of ~H/M substantially
exceeding 50. Thus prevention of excessive power peaking from con-
trol rod movements, refueling patterning, and other phenomena
becomes an increasing concern. In the following chapter we take up
the coupling between neutronics and the removal of heat from power
reactors that bears heavily on these issues.
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FIGURE 7.11 Normalized axial flux distributions for control rod bank
insertion depths of x/ ~H= 0.25, 0.50, and 0.75. (a) ~H/ ~M= 10, (b) ~H/M = 50.
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Problems

7.1. The material composition for the core of a large reactor yields
k1 ¼ 1:02 and M = 25 cm.

a. Calculate the critical volume for a bare cylinder with a height
to diameter ratio of one.

b. Calculate the critical volume of a bare sphere.

Which of the two volumes did you expect to be larger? Why?

7.2. Determine the height to diameter ratio of a bare cylindrical
reactor that will lead to the smallest critical mass.

7.3. Critical assemblies for studying the properties of fast reactors are
sometimes built in halves as shown in the figure. The two halves
are maintained in subcritical states by separating them with a
sufficient distance that neutronic coupling between the two is
negligible; they are then brought together to form a critical
assembly. Suppose the core composition under investigation has
an infinite medium multiplication of 1.36 and a migration length
of 18.0 cm. The assembly is configured with a height to diameter
ratio of one (H = D). Neglecting extrapolation distances,

D

H/2

D

H/2
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a. Determine the dimensions required to make the assembly
exactly critical when the two halves are brought into contact.

b. Determine the value of k for each of the halves when they are
isolated from each other.

7.4. A sodium-cooled fast reactor is to be built with the composition
given in problem 4.3 with a height to diameter ratio of 0.8. If the
reactor, which is bare, is to have a value of k = 1.005 when no
control rods are inserted, what should the value of the reactor’s
diameter be?

7.5. A cylindrical tank is constructed for storage of liquids
containing fissionable material. The tank has a diameter of
0.90 m, and it is surrounded by a nonreflecting neutron
absorber. Material with k1 ¼ 1:16 and M = 7.0 cm is poured
into the tank. Neglecting extrapolation lengths,

a. To what height can the tank be filled before it becomes critical?
b. Estimate the maximum value of k1 permissible (M remaining

unchanged) if it must be guaranteed that criticality will not be
reached no matter to what height the tank is filled.

c. It is decided to reduce the diameter of the tank so that the
material in part a can never reach criticality. Estimate the
reduced diameter.

7.6. Consider a critical reactor that is a cube with extrapolated side
length a.

a. With the origin at the center, apply separation of variables in
three-dimensional Cartesian geometry to show that the flux
distribution is

�ðx;y; zÞ ¼ C cosð�x=aÞ cosð�y=aÞ cosð�z=aÞ:

b. Find C in terms of the reactor power, volume, and ��f .
c. Determine the reactor’s buckling.
d. Suppose that a = 2.0 m and M = 20 cm. Determine the value

of k1 required to obtain criticality (i.e., k = 1.0).

7.7.*A cylindrical fast reactor has a volume of 1.4 m3 and a migration
length of 20 cm. For height to diameter ratios between 0.5 and
2.0 make plots on the same graph of the following:

a. The nonleakage probability PNL.
b. The value of k1 required for the reactor to be critical.

7.8. A critical bare cylindrical reactor has a height to diameter ratio
of one and a migration length of 7.5 cm. The core volume is
15 m3. To simplify analysis, an engineer replaced the cylinder
with a sphere of the same volume.
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a. What is the sign and magnitude of the error in the
multiplication caused by this simplification?

b. If the reactor has a larger volume of 30 m3, will the error be
larger or smaller than in part a? Justify your result.

7.9. Show that C1 = 0 in Eq. (7.16) from the boundary conditions
�ð� ~H=2Þ ¼ 0 without employing the symmetry condition
�ðzÞ ¼ �ð�zÞ.

7.10. Express C0001 and C0002 in Eqs. (7.61) in terms of C001 and C002 in
Eq. (7.60).

7.11. Apply the boundary condition 
ð ~H0=2þ aÞ ¼ 0 to determine C0002
in terms of C0001 in Eq. (7.61). Then determine C0 in Eq. (7.62) in
terms of C0001 and C0002 .

7.12. Consider the situation when the spherical system discussed in
Section 6.7 is critical. Determine the ratio of maximum to
average flux in the sphere.

7.13. A spherical reactor of radius R is surrounded by a reflector
that extends to r ¼ 1. L and D are the same for core
and reflector. Find the criticality equation relating k1, R, L,
and D.

7.14. A spherical reactor is constructed with an internal reflector
with parameters and D and �r

a and extending 0 � r � R. The
annular core, with parameters D, �a, and k1 (>1), extends
R � r � 2R.

a. Find the criticality condition (neglecting the extrapolation
distance).

b. Sketch the flux distribution for 0 � r � 2R.

7.15. Show from Eq. (7.71) that the reflector savings is approximated
by �z �M

_

D=D
_

for a thick reflector.

7.16. An infinite slab reactor (extending to infinity in the y and z
directions) has a thickness of 2a with vacuum on either side.
The properties for material 1 occupying 0 � x � a are k1

1 ¼ k1,
D1 ¼ D, and �1

a ¼ �a and those for material 2 occupying
a � x � 2a are k2

1 ¼ 0, D2 ¼ D, and �2
a ¼ 0. Neglecting

extrapolation distances,

a. Find a criticality equation relating a, k1, D, and �a.
b. Sketch the flux between 0 and 2a.

7.17. Apply the interface conditions at the tip of the control rod bank
to show that Eqs. (7.97) and (7.98) yield the criticality condition
given by Eqs. (7.99) and (7.100).
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7.18. Beginning with Eq. (7.98) prove that with the control rod
bank fully inserted.

a. �2
r � �2r ¼ B2

z

b. kr ¼ ð1� 
bÞku
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CHAPTER 8

Energy Transport

8.1 Introduction

The preceding three chapters concentrated on the time and space
distributions of neutrons in a reactor core, leading to Eq. (7.30),
which shows that in a critical reactor the flux level is proportional
to the reactor power. At very low power any level can be chosen, and
the equation still holds. However, for higher powers, at the levels
typically found in power reactors, two important limitations come
into play. First, the energy must be transported out of the core with-
out overheating the fuel, coolant, or other constituents; these ther-
mal limits determine the maximum power at which a reactor can
operate. Second, as temperatures rise, the densities of the core materi-
als change at different rates, and other temperature-related phenomena
occur. These affect the multiplication, causing temperature-related
reactivity feedback effects to ensue.

This chapter examines the energy transport from reactor cores,
defining power density and related quantities that determine tem-
perature distributions. These quantities allow the thermal limits
imposed on reactor operation to be examined in the later part of the
chapter. Chapter 9 combines the temperature distributions with the
neutron physics of reactor lattices to examine reactivity feedback
effects.

8.2 Core Power Distribution

The interaction of neutron physics with heat transport requirements
may be understood in broad terms as follows. Let P signify the reactor
power and V the core volume. Then

�P000 ¼ P=V ð8:1Þ
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defines the core-averaged power density. The ratio of maximum to
average power density is the power peaking factor:

Fq ¼ P000max

�
�P000: ð8:2Þ

Eliminating �P000 between these definitions offers some insight into
the interdisciplinary nature of reactor core design:

P ¼ P000max

Fq
V: ð8:3Þ

Reactors are normally designed to produce a specified amount of
power, while with other variables held constant the cost of construc-
tion rises dramatically with the core volume. Thus maximizing
the ratio P000max

�
Fq is a central optimization problem of core design.

The achievable maximum power density is dependent primarily on
materials properties and the temperatures and pressures that can be
tolerated by fuel, coolant, and other core constituents. Minimizing
the peaking factor falls much more into the domain of reactor phys-
ics, for nonuniform distributions of fuel enrichment, the positioning
of control rods and other neutron poisons, as well as other neutronic
considerations largely determine the value of Fq. The core volume
that is ultimately selected also has reactor physics repercussions,
most importantly on the core-averaged fuel enrichment and the non-
leakage probability. Table 8.1 displays representative properties for
the major classes of power reactors.

Finite Cylindrical Core

The distribution of power density is central to the interaction of reactor
physics with thermal-hydraulic phenomena. The power density in
watts/cm3, kW/liter or MW/m3 at any point~r in the reactor is given by

P000ðr*Þ ¼ ��fðr
*Þ�ðr*Þ; ð8:4Þ

where � is the number of W-s/fission and �f� is the number of fis-
sions/cm3/s. The fission cross section and the flux are spatial averages
over lattice cells of fuel, coolant, and other core constituents, with the
averages determined by the methods discussed in Chapter 4. We con-
sider specifically a cylindrical reactor of height H and radius R, and
take the origin at r = z = 0, the center of the reactor. We further assume
that the power distribution, and therefore �f and � in Eq. (8.4), are
separable functions of r and z. With this restriction we may represent
the power density distribution as

P000ðr; zÞ ¼ �P000frðrÞfzðzÞ: ð8:5Þ
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TABLE 8.1
3000 MW(t) Power Reactor Approximate Core Properties

PWR
Pressurized-
H2O
Reactor

BWR
Boiling-
H2O
Reactor

PHWR
CANDU-
D2O Reactor

HTGR
C-Moderated
Reactor

SFR Na-Cooled
Fast Reactor

GCFR He-cooled
Fast Reactor

�P000 (MW/m3) average
power density

102 56 7.7 6.6 217 115

�q0 (kW/m) average
linear heat rate 17.5 20.7 24.7 3.7 22.9 17

V (m3) core volume 29.4 53.7 390 455 13.8 26.1

H=M height and
diameter in migration
lengths

43.9 55.0 40.8 68.8 13.5 12.6

N number of
fuel pins 51,244 35,474 15,344 97,303 50,365 54,903

PNL nonleakage
probability

0.956 0.972 0.950 0.982 0.676 0.644

Source: Data courtesy of W. S. Yang, Argonne National Laboratory.



Since the volume integral

�P000 ¼ 1

V

Z
P000ðr*ÞdV ð8:6Þ

defines the core-averaged power density, inserting P000ðr; zÞ into this
expression determines normalization conditions on frðrÞ and fzðzÞ.
For cylindrical geometry we write the volume integration as

dV

V
¼ 2�r dr

�R2

dz

H
ð8:7Þ

and obtain

�P000 ¼ �P000
2

R2

Z R

0
frðrÞr dr

1

H

Z H=2

�H=2
fzðzÞdz: ð8:8Þ

Equations (8.5) and (8.6) are thus satisfied by the normalization
conditions

2

R2

Z R

0
frðrÞrdr ¼ 1 ð8:9Þ

and

1

H

Z H=2

�H=2
fzðzÞdz ¼ 1: ð8:10Þ

The power peaking factor is then the product of radial and axial
components, Fq ¼ FrFz; where the radial and axial peaking factors are

Fr ¼ frðrÞmax ð8:11Þ

and
Fz ¼ fzðzÞmax: ð8:12Þ

Common practice is also to include a local peaking factor Fl to
account for fuel element manufacturing tolerances, local control
and instrumentation perturbations, and other localized effects on
the power density, in which case

Fq ¼ FrFzFl: ð8:13Þ

In the quest to flatten the power distribution and reduce the
peaking factor, two or more radial zones containing fuels of different
enrichments frequently serve to decrease the radial peaking factor.
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The radial power profile might then look as shown in Fig. 8.1, where
the discontinuities on the power distribution are due to the disconti-
nuities in the fission cross section. In the axial direction, distortion of
the power occurs if partially inserted control rod banks enter from
one end of the core as shown in Fig. 7.11, where a control rod bank
enters from the top results in a power tilt, causing the flux to be
depressed toward the upper end of the core and peaked in the lower
half. The result is an increase in Fz. As comparison of Figs. 7.11a and
7.11b indicates, the magnitudes of such distortions tend to grow with
the reactors’ dimensions, measured in migration lengths.

Uniform Cylindrical Core Example

For a uniform core, the fission cross section in Eq. (8.4) is a constant.
Thus the power density is proportional to the flux. Equation (7.30)
indicates that for a uniform core the spatial flux dependence is
J0ð2:405r=RÞ cosð�z=HÞ. Thus we take frðrÞ and fzðzÞ to have the forms

frðrÞ ¼ CrJ0ð2:405r=RÞ ð8:14Þ
and

fzðzÞ ¼ Cz cosð�z=HÞ; ð8:15Þ

where Cr and Cz are normalization coefficients which we determine
by inserting these expressions into Eqs. (8.9) and (8.10):

Cr
2

R2

Z R

0
J0ð2:405r=RÞr dr ¼ 1 ð8:16Þ

Nonuniform

Uniform

P ″′

RO
r

FIGURE 8.1 Radial power distributions for uniform and nonuniform fuel
loadings.
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and

Cz
1

H

Z H=2

�H=2
cosð�z=HÞdz ¼ 1: ð8:17Þ

We have already evaluated integrals identical to these in Eqs. (7.26)
and (7.27), yielding

frðrÞ ¼ 2:32J0ð2:405r=RÞ ð8:18Þ

and

fzðzÞ ¼ 1:57 cosð�z=HÞ: ð8:19Þ

Because both the Bessel function and cosine have maximum
values of one, the radial and axial peaking factors are

Fr ¼ 2:32 ð8:20Þ

and

Fz ¼ 1:57; ð8:21Þ

and Eq. (8.13) yields

Fq ¼ 3:63Fl: ð8:22Þ

8.3 Heat Transport

The same lattice structure that profoundly affects the reactor multi-
plication, as detailed in Chapter 4, largely determines the transport of
heat out of the reactor. In what follows we present a simple fuel–
coolant model that is applicable to fast reactors and to thermal
reactors in which the liquid coolant also serves as the moderator. In
thermal reactors using solid moderators, most frequently graphite, a
three-region model would be required, taking into account the
temperatures in the moderator as well as the coolant. We consider
steady state heat transfer in this section before making a brief exam-
ination of thermal transients in Section 8.4.

Heat Source Characterization

Consider the cylindrical reactor discussed above, with a height H and
a radius R. Taking the origin of the coordinate system at the reactor’s
center, we designate the properties at a distance z along the axis of a
lattice cell whose centerline is located a radial distance r from the
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core centerline by the arguments ðr; zÞ. For simplicity, we assume that
the reactor’s power distribution is separable in the r and z directions
allowing us to describe it with Eq. (8.5).

Let q0ðr; zÞ be the thermal power produced per unit length of a fuel
element located in a lattice cell at ðr; zÞ; q0 is referred to as the linear
heat rate; it has units of W/cm or kW/m. A related quantity is the
surface heat flux q00ðr; zÞ, measured in W/cm2 or kW/m2. It measures
the rate of heat flow across the fuel element surface and into the
coolant, for a lattice cell located at ðr; zÞ. For a cylindrical fuel element
with radius a, surface heat flux and linear heat rate are related by

q00ðr; zÞ ¼ 1

2�a
q0ðr; zÞ: ð8:23Þ

Let Acell be the cross-sectional area of a lattice cell containing one
fuel element. The thermal power produced per unit volume of core at
that point (i.e., the power density) is then

P000ðr; zÞ ¼ q0ðr; zÞ=Acell: ð8:24Þ

Combining this expression with Eq. (8.5) allows the linear heat rate
to be expressed in terms of the radial and axial power components of
the power density:

q0ðr; zÞ ¼ Acell
�P000frðrÞfzðzÞ; ð8:25Þ

or correspondingly in terms of the reactor power,

q0ðr; zÞ ¼ Acell

V
PfrðrÞfzðzÞ; ð8:26Þ

since �P000 ¼P=V. If the reactor consists of N identical lattice cells,
each with a cross-sectional area of Acell, then we may express
reactor’s volume approximately as

V ¼ �R2 H ¼ NAcellH ð8:27Þ

and combine this expression with Eq. (8.26) to yield

q0ðr; zÞ ¼ 1

NH
PfrðrÞfzðzÞ: ð8:28Þ

Note that NH is just the total length of the N fuel elements contained
in the reactor core.

Steady State Temperatures

In what follows we develop some approximate expressions for
estimating the fuel and coolant temperature distributions in terms
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of the reactor power. The temperature drop from fuel to coolant is
proportional to the linear heat rate:

Tfeðr; zÞ � Tcðr; zÞ ¼ R0feq
0ðr; zÞ; ð8:29Þ

where Tfeðr; zÞ is the fuel element temperature averaged over the fuel
element’s cross section, �a2, and Tcðr; zÞ is the coolant temperature
averaged over the cross-sectional area of the coolant channel asso-
ciated with the lattice cell. We designate the proportionality con-
stant, R0fe, as the fuel element thermal resistance.

Appendix D contains the derivation of a simple expression for R0fe
and shows that for cylindrical fuel elements R0fe is nearly independent
of the pin diameter but inversely proportional to the fuel thermal
conductivity. The combination of Eqs. (8.28) and (8.29) expresses the
temperature drop in terms of the reactor power:

Tfeðr; zÞ � Tcðr; zÞ ¼ RfPfrðrÞfzðzÞ; ð8:30Þ

where

Rf ¼
1

NH
R0fe ð8:31Þ

defines the reactor core thermal resistance. We may volume-average
the fuel and coolant temperatures over the core by applying the
integration, defined by Eq. (8.7), to Eq. (8.30):

Tf � Tc ¼ RfP; ð8:32Þ

where we have used the normalization conditions of Eqs. (8.9) and
(8.10) to simplify the result.

We proceed by modeling the average and outlet coolant tempera-
tures, Tc and ToðrÞ, under the stipulation that Ti, the inlet tempera-
ture, is uniform over the cross-sectional area of the core. The coolant
heat balance for a lattice cell located a distance r from the reactor
centerline states that the heat added to the coolant is equal to that
produced in the fuel element:

Wchcp ToðrÞ � Ti½ � ¼
Z H=2

�H=2
q0ðr; z0Þdz0; ð8:33Þ

where Wch is the mass flow rate in kg/s and cp is the coolant specific
heat at constant pressure, in J/kg K. Inserting Eq. (8.28) expresses the
equation’s right-hand side in terms of the reactor power. Solving for
ToðrÞ yields
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ToðrÞ ¼
1

Wcp

P

NH
frðrÞ

Z H=2

�H=2
fzðzÞdzþ Ti: ð8:34Þ

Next, we define

W ¼ NWch ð8:35Þ

as the core mass flow rate through the N identical channels. Then,
using Eq. (8.10) to eliminate fzðzÞ, we have

T0ðrÞ ¼
1

Wcp
PfrðrÞ þ Ti: ð8:36Þ

The average core outlet temperature results from integrating this
relationship over the cross-sectional area of the core, that is, by
taking 2rdr=R2, and applying the normalization of Eq. (8.9):

�T0 ¼
1

Wcp
Pþ Ti: ð8:37Þ

The coolant temperature averaged over the core volume depends on
details of the axial power distribution. However, if the power distribu-
tion does not depart significantly from the axially symmetric condition

fzðzÞ � fzð�zÞ; ð8:38Þ

a reasonable approximation for the average coolant temperature is

�Tc ¼
1

2
ðTo þ TiÞ: ð8:39Þ

Using this approximation, we may employ Eq. (8.37) to obtain the
average coolant temperature in terms of the known inlet temperature
and the reactor power:

�Tc ¼
1

2Wcp
Pþ Ti: ð8:40Þ

Likewise, inserting this expression into Eq. (8.32) yields an average
fuel temperature of

�Tf ¼ Rf þ
1

2Wcp

� �
Pþ Ti: ð8:41Þ

Average coolant and fuel temperatures are required for modeling
the reactivity feedback effects discussed in the following chapter. Ther-
mal limits, however, are more closely related to maximum fuel and
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coolant temperatures as well as to the maximum values of the linear
heat rate and surface heat flux. The maximum coolant temperature
occurs at the core outlet, and may be obtained directly from Eq. (8.36):

T0jmax¼
1

Wcp
PFr þ Ti; ð8:42Þ

where Fr is the radial peaking factor defined by Eq. (8.11). The max-
imum temperature drop from fuel to coolant is determined from
Eq. (8.30) by employing the definitions of Fr and Fz:

Tfeðr; zÞ � Tcðr; zÞ
� ���

max
¼ RfPFrFz: ð8:43Þ

Determining Tfe

��
max

, however, requires that we know the coolant
temperature at the point where it occurs. Taking the maximum out-
let temperature from Eq. (8.42) would yield too large a value. A closer
estimate results from taking the average coolant temperature from
the channel with the maximum power output, that is, FrTc. Combin-
ing Eqs. (8.41) and (8.43) with this approximation then yields a
maximum fuel temperature of

Tf

��
max
¼ RfFrFz þ

1

2Wcp
Fr

� �
Pþ Ti: ð8:44Þ

For liquid-cooled reactors, particularly those utilizing oxide or
carbide fuels, the temperature drop from fuel to coolant is much larger
than the temperature increase in the coolant. Thus from Eqs. (8.32)
and (8.40),

�Tf � �Tc

�Tc � Ti

¼ 2WcpRf � 1: ð8:45Þ

Because Rf � 1=Wcp, approximations made in determining the
coolant temperature for use in Eq. (8.43) have relatively little impact
on maximum fuel temperature. Much more important is the follow-
ing: The core thermal resistance Rf is derived for Tfe averaged over the
cross-sectional area of the fuel rod. The temperature at the rod’s
hottest point, which is along its centerline, determines
the limitation on the linear heat rate. As indicated in Appendix D,
the centerline temperature may be obtained by replacing Rf in Eq.
(8.44) with Rcl, the thermal resistance from the centerline to the
coolant, which for a cylindrical fuel element is approximately

Rcl � 2 � Rf : ð8:46Þ
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Pressurized Water Reactor Example

The interplay between neutronics and thermal hydraulics may be
demonstrated though the following simplified design analysis of a
reactor that is cooled and moderated by pressurized water. The initial
design study assumes a uniform cylindrical core with a height to
diameter ratio of one, and no significant reflector savings. Assume
the following specifications:

Power P = 3000 MW(t)

Moderator/fuel ratio VH2O=Vfuel ¼ 1:9

Linear heat rate q0jmax ¼ 400 W/cm

Surface heat flux q00jmax ¼ 125 W/cm2

Inlet coolant temperature Ti ¼ 290�C

Outlet coolant temperature Tojmax ¼ 330�C

The reactor’s owner determines the power at which the
reactor must operate. The moderator to fuel ratio depends pri-
marily on reactor physics considerations. Fuel properties such as
thermal conductivity and melting temperature determine the
maximum linear heat rate. Surface heat flux in a pressurized
water reactor is limited to prevent the possibility of a boiling
crisis in which the fuel is insulated from the coolant as the
result of the formation of a vapor blanket at the fuel–coolant
interface. The coolant inlet temperature results from thermody-
namic analysis of the power plant, whereas the outlet tempera-
ture must be limited to prevent coolant boiling while operating
at the reactor’s design pressure.

The foregoing specifications—of which only the moderator to
fuel volume ratio depends primarily on neutronics—determine a
great many of the reactor’s physical characteristics:

a. Fuel radius
b. Lattice pitch
c. Core volume and dimensions
d. Core-averaged power density
e. Number of fuel elements
f. Coolant mass flow rate
g. Mean coolant velocity.

In what follows, we determine each of these in sequence.
The fuel radius is determined from Eq. (8.23):

ðaÞ a ¼ q0jmax

2�q00jmax

¼ 400

2� � 125
¼ 0:509 cm:
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Assuming square cells, the lattice pitch is determined from
VH2O=Vfuel ¼ ðp2 � �a2Þ=�a2 or

ðbÞ p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� VH2O=Vfuel þ 1
	 
q

a ¼
ffiffiffiffiffiffiffiffiffiffi
2:9�
p

0:509 ¼ 1:536 cm:

For the core volume we evaluate Eq. (8.26) at the point of the
maximum linear heat rate to obtain V ¼ AcellPFrFz=q

0jmax, where
Acell ¼ p2. For a bare, uniform core, Eqs. (8.20) and (8.21) stipulate
that Fr ¼ 2:32 and Fz ¼ 1:57. Thus

V ¼ p2PFrFz=q
0jmax¼ 1:5362 � 3000 � 106 � 2:32 � 1:57=400

¼ 6:445 � 107 cm3¼ 64:45 m3:

For a height to diameter ratio of one, V ¼ �ðH=2Þ2H. Hence

ðcÞ H ¼ ð4V=�Þ1=3 ¼ ð4 � 6:445 � 10
7
=�Þ1=3 ¼ 434 cm ¼ 4:34 m:

The core-averaged power density is just

ðdÞ �P000 ¼ P=V ¼ 3000 � 106=6:445 � 107 ¼ 46:5 W=cm3 ¼ 46:5 MW=m3:

The number of fuel elements is determined by dividing the core
cross-sectional area by the area of a lattice cell:

ðeÞ N ¼ �R2

Acell
¼ �ðH=2Þ

2

p2
¼ �ð434=2Þ2

1:5362
¼ 62;702:

Because the maximum outlet temperature is limited to 330 �C we deter-
mine the mass flow rate from Eq. (8.42); taking cp =6.4 �103 J/kg �C as
the specific heat of water at the operating coolant temperature yields

ðfÞ W ¼ 1

cp

PFr

ðT0jmax�TiÞ
¼ 1

6:4 � 103

3000 � 106 � 2:32

ð330� 290Þ
¼ 27:2 � 103 kg=s ¼ 27:2 � 106 g=s:

We determine the mean coolant velocity from W ¼ �Aflow�v, where
Aflow ¼ N � ðp2 � �a2Þ, and we take the density of the pressurized
water at 300 �C as 0.676 g/cm3. Thus

ðgÞ �v ¼ W

�Nðp2 � �a2Þ ¼
27:2 � 106

0:676 � 62;702 � ð1:5362 � �0:5092Þ
¼ 415 cm=s ¼ 4:15 m=s:
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Finally, once the foregoing parameters are settled upon, the fuel
enrichment and control poison requirements must be specified to
obtain an acceptable value of k, the neutron multiplication.

The simplified modeling assumptions employed in this analysis
have not taken into account a number of significant factors. For
example, they do not allow space for control rods or structural sup-
ports, and these could add 10% or more to the core volume. Likewise,
they do not include Fl, the local peaking factor, nor do they allow for
substantial reductions in Fr that typically result from reducing the
enrichment of the fuel elements or increasing the number of burnable
poison rods to be placed in the highest flux regions of the core. The
reduction in peaking factor in real designs substantially increases
the average power density and decreases the core volume toward the
PWR numbers quoted in Table 8.1. Nevertheless, the model demon-
strates the substantial constraints under which the neutronics design
of a power reactor core must proceed. Moreover, the foregoing calcula-
tions model represents only an attempt to obtain a workable set of core
parameters; in reality, design is an iterative process. So, for example, if
it turned out that the calculated coolant flow required a mean coolant
velocity that is too large or resulted in an excessive pressure drop across
the core, it would need to be reduced, and the other core parameters
adjusted to accommodate the reduction.

8.4 Thermal Transients

As Eq. (8.32) indicates, the heat transferred from fuel to coolant under
steady state conditions is just P ¼ ðTf � TcÞ=Rf . Conversely if cooling
were cut off entirely, all of the heat produced would go into heating
up the fuel adiabatically:

Mfcf
d

dt
�TfðtÞ ¼ PðtÞ; ð8:47Þ

where Mf and cf are the total fuel mass and specific heat, respectively.
We may obtain an approximate lumped parameter model for thermal
transients by combining these two expressions:

Mfcf

d

dt
�TfðtÞ ¼ PðtÞ � 1

Rf

�TfðtÞ � �TcðtÞ
� �

: ð8:48Þ

As justification for this equation consider the two bounding cases.
At steady state the derivative on the left vanishes and Eq. (8.32) results.
If all cooling is lost (say, by setting the convection from fuel to coolant
to zero, which is equivalent to Rf !1) the last term vanishes and
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Eq. (8.47) results. A more convenient form of this model results from
dividing by Mfcf :

d

dt
�TfðtÞ ¼

1

Mfcf
PðtÞ � 1

�
�TfðtÞ � �TcðtÞ
� �

: ð8:49Þ

The first term on the right is the adiabatic heat-up rate, that is, the
rate of fuel temperature rise if a power P is maintained but all cooling
is cut off. The last term includes the core thermal time constant,

� ¼Mfcf
Rf ; ð8:50Þ

which is a measure of the time required for heat to be transferred
from fuel to coolant.

The thermal time constant is useful for the analysis of transi-
ents; comparisons of it to other time constants such as the prompt
and delayed neutron lifetimes, the rates of control rod insertions, and
so on are often useful in judging the degree to which differing phe-
nomena interact. For cores with liquid coolants, the value of � is
typically of the order of a few seconds, larger for oxide than for metal
fuel. It is substantially larger for high temperature gas-cooled lattices,
such as pictured in Fig. 4.1d, where the heat must pass through the
graphite moderator before arriving at a coolant channel.

Fuel Temperature Transient Examples

Reactor power levels cannot change instantaneously, because of
the kinetic effects of delayed neutrons discussed in Chapter 5.
However, idealized step changes are useful in focusing attention on
the significance of the thermal time constant. We consider two such
hypothetical situations. In the first, a reactor operating at steady state
power Po is shut down instantaneously at t ¼ 0. Equation (8.32)
stipulates that the initial condition on the fuel temperature is
�Tfð0Þ ¼ RfPo þ �Tc. Assuming the coolant temperature remains con-
stant, Eq. (8.49) then reduces to

d

dt
�TfðtÞ ¼ �

1

�
�TfðtÞ � �Tc

� �
; t > 0: ð8:51Þ

Application of the integrating factor technique described in
Appendix A yields a solution of

�TfðtÞ ¼ �Tc þ RfPo expð�t=�Þ: ð8:52Þ

Thus the fuel temperature decays exponentially, causing the fuel to
lose half of its stored heat in a time t ¼ 0:693� .
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Next consider the converse situation in which the power suddenly
jumps from zero to Po. The initial condition will now be Tfð0Þ ¼ Tc,
and with constant coolant temperature, Eq. (8.49) takes the form

d

dt
�TfðtÞ ¼

Po

Mfcf

� 1

�
�TfðtÞ � �Tc

� �
; t > 0: ð8:53Þ

This equation may be solved using the integrating factor, yielding a
solution of

�TfðtÞ ¼ �Tc þ RfPo½1� expð�t=�Þ�: ð8:54Þ

At long times the exponential vanishes, causing �Tfð1Þ to obey the
steady state condition given by Eq. (8.32). At short times, measured
as t� � , we may expand the exponential as expð�t=�Þ � 1� t=� ,
which reduces the result to

�TfðtÞ � �Tc þ RfPot=� ¼ �Tc þ
Po t

Mfcf
; ð8:55Þ

which is just the adiabatic heat-up rate. Thus we see that on time
scales short compared to the thermal time constant, the core
behaves adiabatically; for transients that are slow compared to the
time constant, the core behaves in a quasi-steady state manner.

Coolant Temperature Transients

For simplicity, we have assumed that the coolant temperature remains
constant in the above equations. This is often a reasonable approxima-
tion since if the coolant is a liquid the temperature changes in it are
typically much smaller than in the fuel. Comparing the temperature
drop between fuel and coolant, given by Eq. (8.32), with the tempera-
ture rise of the coolant, given by Eq. (8.37), provides a reference point:

�Tf � �Tc

�To � Ti

¼ RfWcp: ð8:56Þ

Typically, for liquid-cooled reactors with oxide or carbide fuel
RfWcp � 1.

For situations in which the time dependence of the average
coolant temperature may become important, a differential equation
approximating its behavior may be derived as follows. The power P
appearing in Eqs. (8.32) and (8.40) represent, respectively, the heat
flowing from the fuel to the coolant, and that being carried away by
the coolant. Under steady state conditions they are equal. However, if
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P in Eq. (8.32) is greater than its value in Eq. (8.40), the difference
must appear as the rate at which internal energy is added to the
coolant within the core. If Mc is the coolant mass within the core
and cp is its specific heat, then the rate of internal energy increase is

Mccp
d

dt
�TcðtÞ ¼

1

Rf

�TfðtÞ � �TcðtÞ
� �

� 2Wcp �TcðtÞ � Ti

� �
: ð8:57Þ

We may rewrite this equation in terms of two additional time constants

d

dt
�TcðtÞ ¼

1

� 0
�TfðtÞ � �TcðtÞ
� �

� 1

� 00
�TcðtÞ � Ti

� �
: ð8:58Þ

Here

� 0 ¼Mccp

Mfcf

�; ð8:59Þ

but � 0 � � because even for liquid coolants the heat capacity of
the coolant in the core typically is much less than the fuel. The remain-
ing time constant can be expressed in terms of tc, the time required for
the coolant to pass from core inlet to outlet. Suppose that Aflow is the
flow area of the core, and �c and �vc the density and average speed of
the coolant; then W ¼ �cAflow�vc and Mc ¼ �cAflowH. Thus we have

� 00 ¼ Mccp

2Wcp
¼

�cAflowHcp

2�cAflowvccp
¼ H

2vc
¼ 1

2
tc: ð8:60Þ

This time constant also tends to be substantially smaller than the
fuel time constant. Thus the coolant follows the fuel surface transi-
ent quite rapidly such that the energy storage term on the left of
Eq. (8.57) can be ignored in most cases.

To the extent that the foregoing assumptions hold, we can
model the coolant by setting the left-hand side of Eq. (8.57) to
zero. We then have

�TcðtÞ ¼
1

1þ 2RfWcp
2RfWcpTi þ TfðtÞ
� �

: ð8:61Þ

Combining this result with Eq. (8.49) then yields

d

dt
�TfðtÞ ¼

1

Mfcf

PðtÞ � 1

~�
�TfðtÞ � Ti

� �
; ð8:62Þ
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where

~� ¼
2RfWcp

1þ 2RfWcp
�: ð8:63Þ

However, because for most reactors RfWcp � 1, we may often make
the approximations ~� � � and

�TcðtÞ � Ti þ
1

2RfWcp
TfðtÞ: ð8:64Þ

Equations (8.62) and (8.64) provide a simple thermal model for
use in analyzing reactor transients. In such transients thermal time
constants—which are often of the order of a few seconds—frequently
interact with the effects of the prompt and delayed neutron life
times. Neutronic and thermal effects are strongly coupled through
temperature-induced reactivity feedback. We take up these feedback
effects in the next chapter.
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Problems

8.1. The leakage probability of a power reactor is 0.08. As a first
approximation to a new reactor an engineer estimates that the
same power density can be achieved if the power is to be
increased by 20%. Assuming the height to diameter ratio of
the cylindrical core remains the same,

a. What will the leakage probability be in the new reactor with
the power increased by 20%?

b. If k1 is proportional to the fuel enrichment, by what percent
will the enrichment of the core need to be changed to
accommodate the 20% increase in power?
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8.2. A sodium-cooled fast reactor lattice is designed to have a migration
length of 20 cm and a maximum power density of 500 W/cm3.
Three bare cylindrical cores with height to diameter ratios of one
are to be built, with power ratings of 300 MW(t), 1000 MW(t), and
3000 MW(t). For each of the three cores determine the following:

a. The core height H.
b. The buckling B2.
c. The nonleakage probability PNL.

8.3. Consider a nonuniform cylindrical reactor with core radius R
and height H. With control rods partially inserted, the power
density distribution is approximated by

P000ðr; zÞ ¼ A½1� ðr=RÞ4� cosð�z=HÞ � 0:25 sinð2�z=HÞ½ �:

Assume the (r, z) origin is at the center of the reactor.

a. Find A in terms of the reactor power P.
b. Determine frðrÞ and fzðzÞ.
c. Determine Fr, Fz, and Fq (assuming Fl ¼ 1:1).
d. Plot frðrÞ and fzðzÞ.

8.4. Consider a nonuniform cylindrical reactor with core radius R
and height H. Two zones of fuel are employed, with a higher
enrichment at the radial periphery to decrease the radial peaking
factor. As a result, the power density is given by

P000ðr; zÞ ¼
A½1� ðr=RÞ4� cosð�z=HÞ for 0 	 r 	 3

4
R

1:7A½1� ðr=RÞ4� cosð�z=HÞ for
3

4
R 	 r 	 R

8><
>:

Assume the (r, z) origin is at the center of the reactor.

a. Find A in terms of the reactor power P.
b. Determine frðrÞ and fzðzÞ.
c. Determine Fr and Fz.

8.5. Beginning with the heat balance WchcpdTcðr; zÞ ¼ q0ðr; zÞdz
show that if the power distribution is axially symmetric,
q0ðr;�zÞ ¼ q0ðr; zÞ, then Eq. (8.39) for the average coolant
temperature is exact.

8.6. You are to design a 3000 MW(t) pressurized water reactor. The
reactor is a uniform bare cylinder with a height to diameter
ratio of one. The coolant to fuel volume ratio is 2:1 in a square
lattice. The volumes occupied by control and structural
materials, as well as the extrapolation distances, can be
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neglected. The core inlet temperature is 290 �C. The reactor
must operate under three thermal constraints: (1) maximum
power density = 250 W/cm3, (2) maximum cladding surface
heat flux = 125 W/cm2, and (3) maximum core outlet tempera-
ture = 330 �C. Determine the following:

a. The reactor dimensions and volume.
b. The fuel element diameter and lattice pitch.
c. The approximate number of fuel elements.
d. The mass flow rate and average coolant velocity.

8.7. A uniform cylindrical reactor core has a height to diameter
ratio of one. The reactor is reflected both radially and axially
with radial and axial reflector savings each being equal to M,
the migration length of the core composition.

a. Show that the power peaking factor (with Fl ¼ 1:0) is given by

Fq ¼
1:889 1þ R=Mð Þ�2 R=Mð Þ2

J1½2:405 1þ R=Mð Þ�1R=M� sin½ �=2ð Þ 1þ R=Mð Þ�1R=M�
:

b. Plot Fq vs R/M between R/M = 5 and R/M = 50 as well as the
results for the same reactor without the reflector.

8.8.*Suppose the reflected reactor in problem 8.7 is a sodium-cooled
fast reactor with M = 18.0 cm and a power of 2000 MW(t). If the
thermal design limits the maximum allowable power density to
450 W/cm3,

a. What is (1) the minimum value that the core radius can
have, (2) the corresponding value of the core volume, and
(3) the required value of k1 to maintain criticality?

b. Suppose that, to increase the thermal safety margins, it is
decided to reduce the maximum permissible power density
by 10%. What are the percentage changes for the reflected
reactor in radius, volume, and k1? (Assume that M remains
the same.)

8.9. Repeat problem 8.8 in the absence of the reflector.

8.10. Consider the PWR design at the end of Section 8.3. Suppose
that by varying the enrichment in the fuel assemblies and
distributing the control poisons in a nonuniform pattern the
designers are able to reduce the radial and axial peaking factors
to Fr ¼ 1:30 and Fz ¼ 1:46. Redesign the reactor by solving parts
c through g of the pressurized water reactor example using
those peaking factors.
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8.11. An unachievable ideal would be a reactor with a perfectly flat
flux distribution: Fr ¼ 1:00 and Fz ¼ 1:00. Repeat problem 8.10
for such an idealized reactor.

8.12. Suppose that the designers of the pressurized water reactor
treated in Section 8.3 conclude that the thermal-hydraulic
design must have larger safety margins by reducing the coolant
flow velocity by 10% and the maximum coolant temperature by
5�C. The reactor physicists are asked to accommodate those
changes by reducing the radial peaking factor. What percentage
reduction would be required?

8.13. A reactor initially operating at a power Po is put on a period T
such that the power can be approximated as PðtÞ ¼ Po expðt=TÞ.
Assuming that the coolant temperature is maintained at its
initial value Tcð0Þ, solve Eq. (8.48) and show that the fuel
temperature will be

TfðtÞ ¼ Tcð0Þ þ
PoRf

1þ �=T expðt=TÞ þ ð�=TÞ expð�t=�Þ½ �:

8.14. In the prismatic block form of the graphite-moderated gas-
cooled reactor the heat passes through the moderator before
reaching the coolant. Figures 4.1d and 4.2c show such a
configuration. Develop a set of three coupled differential
equations in forms similar to Eqs. (8.49) and (8.57) that
describe the transient heat transfer in such a reactor. Assume
that the heat transfer between fuel and moderator and between
moderator and coolant is described by PðtÞ ¼ ½�TfðtÞ � �TmðtÞ�=R1

and PðtÞ ¼ ½�TmðtÞ � �TcðtÞ�=R2, respectively. Assume that W is
the mass flow rate, and that the masses, specific heats, and
densities of fuel, moderator, and coolant are given by Mi, ci, and
�i with i = f, m, and c.

8.15.*A sodium-cooled fast reactor has the following characteristics

P = 2400 MW(t), W = 14,000 kg/s,

� = 4.0 s, cp = 1250 J/(kg �C),

Mfcf = 13.5 � 106 J/�C, Mccp = 1.90 � 106 J/�C.

Ti = 360 �C,

Suppose the reactor undergoes a sudden trip, which may be
approximated by setting the power equal to zero. Assuming
the inlet temperature remains at its initial value, find the
core outlet temperature and plot your results.
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8.16.*Assume that the reactor in the preceding problem suffers a control
failure and undergoes a power transient PðtÞ ¼ Pð0Þ½1þ 0:25t�,
where t is in seconds. The shutdown system trips the reactor if
the outlet temperature rises by more than 40 �C.

a. Determine the coolant outlet temperature transient and plot
your result until the temperature rises by 40 �C.

b. At what time does the reactor shutdown system terminate
the transient?
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CHAPTER 9

Reactivity Feedback

9.1 Introduction

In Chapters 5 through 7, where the time and spatial distributions of
neutrons in reactors are examined, the reader learned that with a
specified set of cross sections the criticality equations allow reactors
to operate at any power, without affecting the multiplication; the
power level simply provides the normalization for the flux solution.
The independence of power level from multiplication, however, only
holds when the neutron flux is small. At higher power levels the
temperatures of the fuel and coolant increase. Thermal expansion and
other phenomena, such as Doppler broadening, then bring about
changes in the cross sections, and concomitant changes in the value
of k. In Chapter 8 we examined the temperature effects associated with
power level changes. In this chapter we complete the loop by examining
the reactivity feedback resulting from those changes in temperature.

We begin by defining reactivity coefficients and then look at
those caused specifically by fuel and by moderator temperature
changes. We proceed by examining the reactivity effects that take
place under various operating conditions, such as heat up from room
temperature to operating conditions, changes in power level, transi-
ents, and so on. After examining reactivity control and the concepts
of excess reactivity, temperature, and power defects, we conclude
with a discussion of reactor transients.

9.2 Reactivity Coefficients

The treatment of reactor kinetics in Chapter 5 indicates that the
power produced by a reactor is determined by the time-dependent
multiplication kðtÞ, or correspondingly the reactivity,

�ðtÞ ¼ kðtÞ � 1

kðtÞ : ð9:1Þ
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In some situations it is possible to determine a priori the reactivity
versus time. Such is often the case, for example, when control rods of
known properties are moved in a prescribed manner in a reactor
operating at very low neutron flux levels. As soon as a reactor produces
enough power to raise the temperatures in the core above their ambi-
ent levels, however, the material densities as well as some of the
microscopic cross sections become affected. Because the core multi-
plication depends on these densities, a reactivity feedback loop is
established in which k, and thus �, is dependent on temperatures and
densities that in turn are determined by the reactor power history. The
understanding of the nature of mechanisms leading to reactivity feed-
back is essential to the analysis of power reactor behavior.

In relating the incremental reactivity changes to reactor multi-
plication, the following approximation is nearly universal:

d� ¼ dk=k2 � dk=k ¼ dðln kÞ: ð9:2Þ

Because k rarely differs from one by more than a few percent, little
error is introduced into �. Moreover, the logarithmic form of Eq. (9.2)
facilitates the analysis of reactivity effects: Because k frequently is
approximated with the four factor formula, writing d� ¼ dðln kÞ allows
the factors to be transformed from multiplicative to additive form. In
addition, since we make widespread use of Eq. (3.2) for expressing the
multiplication as a product of infinite medium and leakage effects,

k ¼ k1PNL; ð9:3Þ

taking the logarithmic differential of k, and utilizing the definition of
the nonleakage probability given by Eq. (7.49), yields additive terms
for infinite medium and leakage effects:

dk

k
¼ dk1

k1
� M2B2

1þM2B2

dM2

M2
þ dB2

B2

� �
: ð9:4Þ

Moreover, since the leakage probability for large power reactors
usually is quite small,

PL ¼
M2B2

1þM2B2
� 1: ð9:5Þ

In large, loosely coupled cores changes in k1 often dominate, justifying
the following approximation:

dk

k
� dk1

k1
: ð9:6Þ
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For thermal reactors Eq. (9.2) combined with the four factor formula,
k1 ¼ "pf�T , introduced in Section 4.4, allows further subdivision of
reactivity effects into additive terms:

dk1
k1
¼ d"

"
þ dp

p
þ df

f
þ d�T

�T
: ð9:7Þ

In what follows we examine a simplified model in which the
multiplication changes only with the average fuel and coolant tem-
peratures, �Tf and �Tc:

k1 ¼ k1ð�Tf ; �TcÞ: ð9:8Þ

We may then use partial derivatives to write

dk1
k1
¼ 1

k1

@k1

@�Tf

d�Tf þ
1

k1

@k1

@�Tc

d�Tc: ð9:9Þ

Assuming the coolant and moderator are one and the same allows us
to simply replace �Tc by �Tm, and apply the four factor formula:

1

k1

@k1

@�Tx

¼ 1

"

@"

@�Tx

þ 1

p

@p

@�Tx

þ 1

�T

@�T

@�Tx

þ 1

f

@f

@�Tx

; ð9:10Þ

where x = f and m indicate fuel and moderator, respectively. For
reactors in which the moderator is distinct from the coolant, the
four factor expressions introduced in Chapter 4 can be appropriately
modified to take into account both moderator and coolant tempera-
tures, k1ð�Tf ; �Tc; �TmÞ, and then we apply Eq. (9.10) to all three tem-
peratures. If the coolant is a gas, however, it is usually adequate to
consider only fuel and moderator temperature coefficients, since the
density of the coolant gas is too small for its temperature to have an
appreciable effect on reactivity.

Fuel Temperature Coefficient

Doppler broadening of the resonance capture cross sections of the
fertile material accounts for the dominant part of the fuel tempera-
ture coefficient in low enrichment thermal power reactors and makes
a substantial contribution in fast reactors as well. In thermal systems
the effect appears as a decrease in the resonance escape probability
with increased fuel temperature. There is no Doppler effect on ", its
contribution coming from energies well above where fuel resonance
cross sections occur. There may be relatively minor changes in �T

and f in situations where substantial plutonium-239 is present, as it
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has a resonance only slightly above thermal energies. The latter
effects are neglected in what follows, however, because they tend to
be small compared to the change in the resonance escape probability.

The Doppler effect arises from the dependence of neutron cross
sections on the relative speed between neutron and nucleus. The
resonance cross sections are sharply peaked in energy, as shown, for
example, in Fig. 4.6. For a given neutron speed the cross section must
be averaged over the range of relative speeds resulting from the
thermal motions of the fuel atoms, which constitute a Maxwell-
Boltzmann distribution discussed in Chapter 2. This averaging has
the net effect of slightly smearing the resonance in energy, causing
them to appear wider and less peaked. The smearing becomes more
pronounced as the fuel temperature rises, as shown in the exagger-
ated cross section curves in Fig. 4.6a. Thus we may approximate �f ,
the fuel temperature coefficient, as

�f ¼
1

k

@k

@�Tf

� 1

p

@p

@�Tf

: ð9:11Þ

In power reactor cores the concentration of resonance absorbers
in the fuel is quite large. The effect is then to depress the neutron flux
in the fuel both spatially, making ’fðEÞ=’mðEÞ< 1, and in energy, as
Fig. 4.6b indicates. The flux depression, known as resonance self-
shielding, is most pronounced where the resonance cross section is
largest. More rigorous analysis shows that as the fuel temperature
increases, the flux depression or self-shielding becomes less pro-
nounced, as sketched in Fig. 4.6b. The net effect is to increase the
absorption rate and also the resonance integral. By inserting Eq. (4.40)
for the resonance escape probability into Eq. (9.11) and performing
the differentiation we obtain

�f ¼ �
VfNfe

Vm�m �m
s

@I

@�Tf

¼ � ln
1

p

� �
1

I

@I

@�Tf

: ð9:12Þ

An approximation for the temperature dependence of the reso-
nance integral that is useful for thermal reactor analysis is given by

I � IðToÞ½1þ ~�ð
ffiffiffiffiffiffi
�Tf

q
�

ffiffiffiffiffiffi
To

p
Þ�; ð9:13Þ

where �Tf and To are absolute temperatures in degrees kelvin, with
the reference temperature taken as To = 300 K. The coefficient is a
function of the surface to mass ratio ðS=M ¼ 4=�DÞ of a cylindrical
fuel element of diameter D cm:

~� ¼ C1 þC2ð4=�DÞ; ð9:14Þ
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where Table 9.1 displays the constants. Differentiating Eq. (9.13), we
obtain

1

I

@I

@�Tf

¼ ~�

2
ffiffiffiffiffiffi
�Tf

q I Toð Þ
Ið�TfÞ

: ð9:15Þ

With IðToÞ=Ið�TfÞ � =; inserting this expression into Eq. (9.12) then
yields

�f ¼ �
~�

2
ffiffiffiffiffiffi
�Tf

q ln 1=pðToÞ½ �: ð9:16Þ

Other effects may make smaller contributions to the fuel tem-
perature coefficient. Fuel expansion, for example, causes perturba-
tions in the four factors; however, these effects tend to be small in
low enrichment reactors relative to that of Doppler broadening.

Moderator Temperature Coefficient

In those thermal reactors in which the moderator is a liquid, con-
tributions to the moderator coefficient,

�m ¼
1

k

@k

@�Tm

; ð9:17Þ

derive primarily from density changes, with changes in the thermal
neutron energy spectrum playing a secondary role. To illustrate, we
first expand �m in terms of Nm, the moderator atom density:

�m ¼
1

k1

@k1
@Nm

@Nm

@�Tm

: ð9:18Þ

The atom density change in turn relates to the temperature coeffi-
cient through the volumetric coefficient of thermal expansion at
constant pressure:

�m ¼ �
1

Nm

@Nm

@�Tm

: ð9:19Þ

TABLE 9.1
Constants C1 and C2 for Eq. (9.14)

Fuel C1 C2

Uranium metal 0.0048 0.0064
UO2 0.0061 0.0047

Source: Pettus, W. G., and M. N. Baldwin, ‘‘Resonance Absorption in U238 Metal and Oxide
Rods,’’ Babcock and Wilcox Company Report No. BAW-1244, 1962.
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Combining the two equations then yields

�m ¼ ��mNm
1

k1

@k1
@Nm

: ð9:20Þ

Consider next the dependence of the four factors on Nm. The fast
fission factor increases somewhat with decreased moderator density
because the neutrons are not slowed down as effectively to below the
energy range where fast fission takes place. The effect is small, how-
ever, as is the effect on �T , compared to that on the resonance escape
probability and the thermal utilization. Thus we approximate

1

k1

@k1
@Nm

’ 1

p

@p

@Nm
þ 1

f

@f

@Nm
: ð9:21Þ

Differentiating the expressions for p and f, given by Eqs. (4.54) and
Eq. (4.55), with respect to Nm yields

1

p

@p

@Nm
¼ 1

Nm
lnð1=pÞ ð9:22Þ

and

1

f

@f

@Nm
¼ � 1

Nm
ð1� fÞ: ð9:23Þ

Combining Eqs. (9.20) through (9.23), we find

1

k1

@k1
@Tm

¼ ��m lnð1=pÞ � ð1� fÞ½ �: ð9:24Þ

A decrease in moderator density decreases the effectiveness by
which neutrons are slowed down through the resonance region.
Hence the resonance absorption increases, causing the resonance
escape probability to decrease. The lower moderator density, how-
ever, causes the thermal utilization to increase, resulting in a posi-
tive temperature effect from the second term in Eq. (9.24).

Although exceptions may occur under some conditions, gener-
ally in liquid-moderated reactors the decreasing moderator density is
the dominant effect and causes the moderator temperature coeffi-
cient to be negative. Increases in moderator temperature also cause
hardening of the thermal neutron spectrum, as indicted in Figure 3.5.
In liquid-moderated reactors, the effects of spectral hardening are
small compared to that of the reduced moderator density. In solid-
moderated reactors, however, the thermal expansion has a much
smaller effect, and spectral hardening dominates the determination
of the temperature coefficient. The spectral effects depend on com-
plication interactions to thermal neutron scattering in solid crystal
structures and the non 1/v dependence of some isotopes’ absorption
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cross sections. As a result moderator temperature coefficients in
solid-moderated systems may be positive over some temperature
ranges. In such situations reactor stability requires that the negative
fuel temperature coefficient have a larger magnitude.

Fast Reactor Temperature Coefficients

The temperature coefficients of fast reactors differ in a number of
respects from those of thermal reactors. First, the sizes of fast reactors
measured in migration lengths tend to be substantially smaller than
those for thermal reactors. This results both from the higher power
density designs and from the fact that neutron cross sections are
smaller for fast than for thermal spectrum neutrons. Consequently,
the leakage terms in Eq. (9.4) have more substantial effects on
reactivity.

In fast as well as in thermal reactors the Doppler broadening of
capture resonances accounts for the major part of the negative fuel
temperature coefficient. It is, however, smaller in magnitude
because, as indicated by the spectra in Fig. 3.6, only a fraction of
the neutrons in a fast reactor are slowed to the energy range where
the large capture resonances in fertile materials occur.

Coolant temperature coefficients in fast reactors are yet more
difficult to predict with elementary models, for they stem from the
difference between two competing effects. With increased tempera-
ture, the coolant density decreases. Since in liquid-cooled fast reactors
the coolant tends to degrade the neutron spectrum to lower energies,
removal of coolant atoms hardens the neutron spectrum. As a result
the larger value of �ðEÞ at higher neutron energies, as indicated in
Fig. 3.2, causes the increased coolant temperature to increase the
value of k1. Conversely, the decreased density that results from
increased coolant temperature lengthens the migration length. Exam-
ination of Eq. (9.4) indicates that an increase in M will also increase the
neutron leakage, decreasing the nonescape probability and decreasing
the reactivity. Determining which of these effects is larger requires
computational models that are beyond the level of this text.

9.3 Composite Coefficients

Chapter 8 provides a reactor model in terms of the average tempera-
ture of the fuel and coolant, �Tf and �Tc. We can model the reactivity
feedback by expanding it in terms of these temperatures:

d�fb ¼
1

k

@k

@�Tf

d�Tf þ
1

k

@k

@�Tc

d�Tc; ð9:25Þ
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where, for low leakage cores, the coefficients may be modeled solely
in terms of k1 with little loss of accuracy. Reactivity coefficients
couple to these temperatures in three distinctly different sets of
circumstances. These lead to the definitions of the prompt and iso-
thermal temperature coefficients, and to the power coefficient.

Prompt Coefficient

A large reactivity insertion will cause a reactor to go on such a short
period that the power changes significantly over time spans that are
short compared to the number of seconds needed to transfer heat from
fuel to coolant. Over such short time spans the amount of heat trans-
ferred to the coolant is not enough to increase its temperature appreci-
ably. As a result the dominant feedback reactivity comes directly from
the heating of the fuel. Thus we take d�Tc � 0, reducing Eq. (9.25) to

d�fb ¼
1

k

@k

@�Tf

d�Tf : ð9:26Þ

The quantity

�f ¼
d�fb

d�Tf

¼ 1

k

@k

@�Tf

ð9:27Þ

is alternately known as the fuel temperature or the prompt coeffi-
cient, because it provides prompt feedback in the case of a sudden
change in power. For a reactor to be stable, it must be negative.

A second mechanism does cause some instantaneous coolant
heating. The increased number of neutrons colliding elastically
with coolant atoms transfers some of their kinetic energy to the
coolant atoms. However, this effect is significant compared to the
Doppler broadening of the fertile material resonance only for systems
fueled with highly enriched uranium—such as those found in naval
propulsion reactors—where the presence of uranium-238 is greatly
diminished.

Isothermal Temperature Coefficient

In many power reactors the entire core is brought very slowly from
room temperature to the operating inlet coolant temperature, either
by operating the reactor at a very low power or by using another
source of heat such as that generated by the coolant pumps. In such
an operation a reasonable approximation is to assume that the core
behaves isothermally with a temperature �T, that is,

�Tf ¼ �Tc ¼ Ti ¼ �T: ð9:28Þ
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Dividing Eq. (9.25) by d�T yields the isothermal temperature
coefficient,

�T �
d�fb

d�T
¼ 1

k

@k

@�Tf

þ 1

k

@k

@�Tc

; ð9:29Þ

or equivalently �T ¼ �f þ �c, which accounts for the reactivity feed-
back under such circumstances.

Power Coefficient

Operating a reactor at more than a small percentage of its rated power
causes the fuel temperature to rise significantly above that of the
coolant, and the average coolant temperature to increase above that
at the core inlet. Thus �Tf > �Tc > Ti, and we must replace the isother-
mal temperature coefficient with a reactivity coefficient that is applic-
able to a reactor operating at power. To obtain the power coefficient we
divide Eq. (9.25) by an incremental power change, dP:

�P �
d�fb

dP
¼ 1

k

@k

@�Tf

d�Tf

dP
þ 1

k

@k

@�Tc

d�Tc

dP
: ð9:30Þ

Provided the power changes are executed in a quasi-static man-
ner, that is, the power changes are slow compared to the time
required to remove heat from the fuel to the core outlet, the steady
state heat transfer relationships derived in Chapter 8 are applicable.
Differentiating Eqs. (8.41) and (8.40) with respect to power yields

d�Tf

dP
¼ Rf þ

1

2Wcp
ð9:31Þ

and

d�Tc

dP
¼ 1

2Wcp
: ð9:32Þ

Inserting these expressions into Eq. (9.30) then expresses the power
coefficient as

�P ¼ Rf þ
1

2Wcp

� �
1

k

@k

@�Tf

þ 1

2Wcp

1

k

@k

@�Tc

; ð9:33Þ

or, equivalently, as �P ¼ Rf�f þ ð2WcpÞ�1ð�f þ �cÞ.
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Temperature and Power Defects

The magnitudes as well as the signs of the temperature and power
coefficients strongly affect the control of reactivity in a power reactor.
The temperature and power defect concepts make their influence clear.

Suppose we ask how much reactivity the control system must
add to bring a reactor core from room temperature to the operating
inlet temperature. The control reactivity must just compensate for
the negative feedback reactivity. We find the reactivity decrease by
integrating the isothermal temperature coefficient of Eq. (9.29) from
room temperature, Tr, to the operating inlet temperature Ti:

DT ¼
Z Ti

Tr

�Tð�TÞd�T ð9:34Þ

The temperature defect, as defined here, is negative provided the
temperature coefficient is also negative. To compensate for it an
equal amount of reactivity must be added to the reactor through with-
drawal of control rods or other means in order to bring the reactor from
room to operating temperature. These two states normally are referred
to as cold critical and hot zero-power critical, respectively.

As the reactor power increases above the hot zero-power state to its
rated level, a negative power coefficient causes the reactivity to decrease
further by an amount determined by integrating the fuel and coolant
temperature coefficients between inlet and full power conditions:

DP ¼
Z �TfðpÞ

Ti

�fð�TfÞd�Tf þ
Z �TcðpÞ

Ti

�eð�TcÞd�Tc: ð9:35Þ

where �TðPÞ¼ Rfþð2WcpÞ�1
h i

PþTi and �TcðPÞ¼ð2WcpÞ�1PþTi: This

quantity is defined as the power defect. Because it is negative if the
temperature coefficients are negative, the control system must add
an equal amount of reactivity to bring the reactor from zero to full
power. If the coefficients are temperature in dependent, then we
have simply DP¼�RD:

9.4 Excess Reactivity and Shutdown Margin

For any well-defined state of a reactor core, we define the excess reactivity
�ex as the value that � would take if all movable control poisons were
instantaneously eliminated from the core. Large excess reactivities are
undesirable because they require large amounts of neutron poisons to be
present in the core to compensate for them. The more control poison that
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is present in a core, the more extreme is the care that must be taken: The
possibility of events that could lead to rapid ejection of a large enough
fraction of that poison to bring the reactor near to prompt critical must be
eliminated. Reactor designs must be shown to survive many hypothetical
accidents without damage, including the ejection of a control rod, the
uncontrolled withdrawal of a control rod bank, rapid dilution of soluble
boron poison in water coolant, and so on. As a result, strict limitations are
placed on the maximum amount of reactivity allowed in any one control
rod,andalso inany onebankofcontrol rods.Thus the need for largeexcess
reactivities complicates control system design by requiring increased
numbers of control rod banks and/or more rods per bank. Such require-
ment, in turn, increase the cost of the core since control rods occupy
valuable space and add electromechanical complexity to the system.

Thus although negative temperature and power coefficients are
necessary to ensure stability while the reactor is operating, inordi-
nately large magnitudes of these quantities create problems by
increasing the amount of excess reactivity that the control system
must be able to overcome. The plots of excess reactivity in Fig. 9.1
versus time from beginning to end of core life (from BOL to EOL)
illustrate this point by depicting the transitions between four states
of the reactor: cold shutdown, cold critical, hot zero-power critical,
and full power from the beginning through the end of core life. With
this terminology, ‘‘cold’’ means ambient or room temperature, and
‘‘hot zero power’’ stipulates that the entire reactor has been heated to
the temperature of the coolant inlet at full power, but essentially no
power is being produced and thus the core is isothermal. As a reactor
is taken from cold shutdown to full power, negative temperature

d

BOL time

ρ e
x

EOL

c
Temperature defect

Power defect

Shutdown marginb
a

FIGURE 9.1 Excess reactivity vs time for different core states. (a) Cold
shutdown, (b) cold critical, (c) hot zero power, (d) full power.

Reactivity Feedback 231



feedback causes excess reactivity to decrease, meaning that control
poisons must be removed to keep the reactor critical. Conversely,
when the reactor is shut down, temperatures decrease, causing excess
reactivity to increase, and control poisons must be added.

Bringing the reactor critical from an initial shutdown state at
room temperature decreases the excess reactivity from curve a to b.
A minimum shutdown margin is invariably imposed by regulatory
bodies and must be incorporated into control poison specifications.
The core is then heated from cold critical to hot zero power, reducing
the excess reactivity from curve b to c, with the difference being the
magnitude of the temperature defect. Transitions between room
temperature and hot zero-power temperature are carried out quite
slowly, often limited by such mechanical considerations as excessive
thermal stresses that would be induced in pressure vessels or piping if
too rapid temperature transients were imposed. As the reactor is
brought from zero to full power, more control poison must be with-
drawn to compensate for the power defect in moving from curve c
to d. Note that at full power, there is still excess reactivity in the
core, and therefore control poison must be present. The shapes of the
curves versus time are determined by fuel depletion and the buildup
of fission products during core life. At the end of core life there is no
excess reactivity at full power: All of the movable control poison has
been extracted, and hence power must be reduced, or—more likely—
the reactor is shut down for refueling. With online refueling, of
course, curve d would be roughly horizontal, with very close to zero
excess reactivity, and no specified end of core life.

In shutting down the reactor, we move back up the excess reactivity
curve. The reactor may be made subcritical—or scrammed as the expres-
sion goes—from any power level. At that point all of the control poison is
inserted. However, it must always be guaranteed that even as the reactor
cools to ambient temperature, enough control poison remains to over-
come the excess reactivity and maintain the shutdown margin.

9.5 Reactor Transients

The preceding section assumes implicitly that the transitions between
room temperature, hot zero power, and full power take place very slowly.
Such quasi-static transitions require the reactor to be on a period that is
much longer than the time necessary for the heat produced in fission to be
transferred to the coolant and convected out of the core. We may then
employ steady state relationships for heat transfer as the reactor passes
though a series of well-defined states, in which the excess reactivity is
very close to being nullified by the control poisons. There are, however,
situations that call for more rapid changes of neutron populations. In the
startup of a reactor from cold critical, for example, the initial power is
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many orders of magnitude smaller than under operating conditions. Thus
temperature feedback is insignificant, and a reactor period is chosen
according to the kinetics equations of Chapter 5. At higher power levels
where temperature feedback becomes important, changes in operating
levels to follow power demand or for other reasons frequently must take
place more rapidly than can be described with a quasi-static model.
Finally, the examination of hypothetical reactor mishaps frequently
involves transients that take place over time spans that are comparable
to or shorter than those required to transfer heat from fuel to coolant.

Reactor Dynamics Model

To examine reactor transients we adopt a simple model in which a
positive reactivity, �iðtÞ, is inserted, and the feedback results from
fuel and coolant temperature coefficients, �f and �c, respectively,
which we assume are negative constants. If the reactor is critical
and in steady state operation at the time of transient initialization,
the total reactivity becomes

�ðtÞ ¼ �iðtÞ � �f

�� �� �TfðtÞ � �Tfð0Þ
� �

� �cj j �TcðtÞ � �Tcð0Þ
� �

; ð9:36Þ

where we impose absolute value signs to indicate negative tempera-
ture coefficients. To analyze the transient we substitute this expres-
sion into the kinetics equations, given by Eqs. (5.47) and (5.48).
Written in terms of the reactor power, and with the external source
set equal to zero, they become

d

dt
PðtÞ ¼ ½�ðtÞ � ��

�
PðtÞ þ

X
i

�i
~CiðtÞ ð9:37Þ

and

d

dt
~CiðtÞ ¼

�i

�
PðtÞ � �i

~CiðtÞ; i ¼ 1;2;3;4;5;6: ð9:38Þ

We approximate the temperatures using the transient heat transfer
model given by Eqs. (8.62) and (8.64):

d

dt
�TfðtÞ ¼

1

Mfcf
PðtÞ � 1

~	
�TfðtÞ � Ti

� �
ð9:39Þ

and

�TcðtÞ ¼ Ti þ
1

2RfWcp
TfðtÞ: ð9:40Þ
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Provided we approximate the thermal time constant as ~	 � 	 ¼MfcfRf ,
Eq. (9.40) allows the coolant temperature to be eliminated from
Eq. (9.36):

�ðtÞ ¼ �iðtÞ � �j j �TfðtÞ � �Tfð0Þ
� �

; ð9:41Þ

where

�j j ¼ �f

�� ��þ 1

2RfWcp
�cj j: ð9:42Þ

If a reactor is critical before the transient is initiated, then
~Cið0Þ ¼ �i=�i�ð ÞPð0Þ and the initial temperatures are given by the
steady state conditions from Eqs. (8.40) and (8.41):

�Tfð0Þ ¼ Rf þ
1

2Wcp

� �
Pð0Þ þ Ti ð9:43Þ

and

�Tcð0Þ ¼
1

2Wcp
Pð0Þ þ Ti: ð9:44Þ

Transient Analysis

We first apply the foregoing model to very slow transients, that is,
ones in which the added reactivity increment �iðtÞ ¼ �o�� is so
small that the resulting reactor period in the absence of feedback
would be substantially longer than the fuel time constant, 	 . In
such situations, we may neglect the temperature derivative on the
left of Eq. (9.39) and employ the resulting quasi-steady state heat
transfer equation

�TfðtÞ ¼ Rf þ
1

2Wcp

� �
PðtÞ þ Ti; ð9:45Þ

which when combined with Eq. (9.40) yields

�TcðtÞ ¼
1

2Wcp
PðtÞ þ Ti: ð9:46Þ

Substituting Eqs. (9.45) and (9.46) into Eq. (9.36) yields an approxi-
mate reactivity of

�ðtÞ � �o � Rf �f

�� ��þ 1

2Wcp
ð �f

�� ��þ �cj jÞ
� 	

PðtÞ � Pð0Þ½ �: ð9:47Þ
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Note, however, that the bracketed term is just equal to the magni-
tude of the power coefficient defined by Eq. (9.33). Hence,

�ðtÞ � �o � �Pj j PðtÞ � Pð0Þ½ �: ð9:48Þ
In sufficiently slow transients, there will be a small initial

prompt jump in the power, but then it will come to equilibrium as
the rise in core temperatures compensates for �o, sending �ðtÞ!0.
The new equilibrium power will be

Pð1Þ ¼ �o

�Pj j
þ Pð0Þ: ð9:49Þ

If small increments of reactivity are added successively at a very slow
rate, then we may replace �o with _�t, where _� is referred to as the
ramp rate, and obtain a reactor power that increases linearly with
time:

PðtÞ ¼ _�t

�Pj j
þ Pð0Þ: ð9:50Þ

It cannot be stressed too strongly that the foregoing quasi-static
analysis is only applicable to very small step reactivity insertions, or
to exceedingly small ramp rates of reactivity addition. Otherwise,
description of the transient requires the full set of Eqs. (9.36) through
(9.42); Eqs. (9.49) and (9.50) only become applicable at long times, and
only in those cases where equilibrium can be reestablished.

We now proceed to results that cannot be predicted with the
simple quasi-static model. They require the full dynamics mode,
Eqs. (9.36) through (9.42). Results obtained using parameters represen-
tative of a large pressurized water reactor appear in Figs. 9.2 and 9.3.

In Fig. 9.2 step reactivities of 0.20 and 0.95 dollars, that is,
�o ¼ 0:2� and �o = 0:95�, are inserted into a reactor operating at full
power. They demonstrate, respectively, what one might see during a
normal operational transient, and a transient—approaching prompt
critical—that is typical of those analyzed for hypothetical accidents.
Note that curve a, resulting from the 0.20 dollar transient, undergoes
a small prompt jump, followed by a slight gradual decrease to an
equilibrium value determined by Eq. (9.49). In curve b, for the 0.95
dollar insertion, the reactor goes on to a very short period, and it
exhibits a large power spike before the fuel gains enough temperature
for negative feedback to negate the initial reactivity insertion. Over
such short time spans heat does not have time to escape the fuel.
Hence, at short times we may determine the fuel temperature by
setting the last term in Eq. (9.39) to zero, and integrating to obtain

�TfðtÞ �
1

Mfcf

Z t

0
Pðt0Þdt0 þ �Tfð0Þ; ð9:51Þ
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where �TcðtÞ � �Tcð0Þ. Inserting this expression into Eq. (9.36) gives

�ðtÞ � �o �
�f

�� ��
Mfcf

Z t

0
Pðt0Þdt0; ð9:52Þ

where �f is just equal to the prompt temperature coefficient given by
Eq. (9.27). Thus over time spans that are short relative to the thermal
time constant the feedback is proportional to the energy generated by
the transient. Over the longer term the power will gravitate to a value
determined by Eq. (9.49) only if the transient generates no boiling or
other disruptions that invalidate the simple model presented here.

In practice, the rate at which reactivity is inserted often is as
important as the total amount of reactivity available, whether that
rate results from the planned withdrawal of a control rod bank or from
a hypothesized accident scenario in which poison is suddenly ejected
from the core. Indeed, because it is difficult to hypothesize physical
mechanisms that could inject large amounts of reactivity ‘‘instanta-
neously’’ on time scales shorter than a prompt neutron lifetime, more
realistic analysis normally centers on the rate at which reactivity
might increase.

Figure 9.3 illustrates two power transients, both resulting from
inserting reactivity at the very rapid rate of _� ¼ �, that is 1.0 dollar/s,
but with different initial conditions. We apply the same model, simply
replacing �o with _�t in the foregoing equations. In the absence of
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FIGURE 9.2 Power transients vs time initiated from full power for step
reactivity insertions. (a) 0.20 dollars insertion, (b) 0.95 dollars insertion.
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temperature feedback both transients would pass through prompt criti-
cal at one second. However, feedback does occur in both, and hence the
severities of the transients depend strongly on the initial conditions. The
differences become apparent by modifying short-time approximation
given by Eq. (9.52) to apply to the ramp insertion of reactivity:

�ðtÞ � _�t�
�f

�� ��
Mfcf

Z t

0
Pðt0Þdt0; ð9:53Þ

which is reasonably applicable over the first one or two seconds, because
we are using a fuel thermal time constant of 	 ¼ 4:5 s. In curve a, the
transient is initiated at full power, with Pð0Þ= 3000 MW(t), allows nega-
tive feedback to accumulate rapidly. Thus, �ðtÞ never approaches prompt
critical, and consequently the rate of power increase is quite modest.
Curve b, however, results from initiating the transient at hot zero power,
with Pð0Þ= 1.0 MW(t). Hence the integral on the right of Eq. (9.53) builds
at a much slower rate, allowing the reactivity to exceed prompt critical
before being curtailed by negative reactivity feedback. A power spike
thus ensues before sufficient energy is deposited in the fuel to bring the
reactivity negative and terminate the transient.

The differences between curves a and b in Fig. 9.3 have strong
implications for reactor operations. While at reactor is at full power, a
reactor trip is normally initiated if the power rises by several percent.
As Fig. 9.3 indicates, curve a reaches this point within a small
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FIGURE 9.3 Power transients vs time for a reactivity insertion rate of
1.0 dollars/s. (a) Initiated from full power, (b) initiated from low power.
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fraction of a second. Thus if control rod banks are inserted within
the next few seconds, the reactor is shut down following only a
nominal rise in power. At lower powers, however, trip levels can-
not be maintained too close to the initial power, for if they were,
there would be no room to maneuver power to meet increased
demand. Even if there were, curve b indicates that there is little
possibility of generating a trip signal until well after one second
into the transient. Because the power spike lasts substantially less
than a second, there is no possibility that control rods can be
inserted fast enough to limit its consequences. For this and a
number of other reasons, the manipulation of reactors at very low
power, where there is little or no negative temperature feedback,
requires added care in order to eliminate the possibility of a so-
called startup accident.
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Problems

9.1. Table 4.2 displays the four factors for a pressurized water reactor
at 300 K. Assume the reactor is fueled with UO2 fuel pins with
diameters of 1.1 cm and a density of 11.0 g/cm3.

a. Determine the fuel temperature coefficient and plot its value
between 300 and 1000 K.

b. Estimate the coolant temperature coefficient, assuming that
the water has a coefficient of thermal expansion given by
�m ¼ 0:004 K�1.
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9.2. Consider a hypothetical reactor in which all of the materials
have the same volumetric coefficient of thermal expansion.
Thus all of the nuclide densities decrease according to the
same ratio: N 0=N ¼ const:<1.

a. Show that the expansion with increased temperature has no
effect on k1.

b. Using the facts that the core mass, NV, remains constant, and
that M / N�1, show from Eq. (9.4) that the reactivity change

from expansion is negative, with a value of
dk

k
¼ � 4

3
PL

dV

V
.

9.3. Assume a pressurized water reactor has the parameters specified
in the example at the end of Section 8.3. Assume the core has a
thermal resistance of Rf = 0.50 �C/MW(t). If the reactor fuel and
moderator temperature coefficients are �f ¼ �3:2 � 10�5 �C�1 and
�m ¼ �1:4 � 10�5 �C�1,

a. Determine the isothermal temperature coefficient.
b. Determine the power coefficient.

9.4. At full power a 1000 MW(t) sodium-cooled fast reactor has coolant
inlet and outlet temperatures of 350 and 500 �C and an average fuel
temperature of 1150 �C. The fuel and coolant temperature
coefficients are�f ¼ �1:8� 10�5=	C and�c ¼ þ0:45� 10�5=	C.

a. Estimate the core thermal resistance and the mass flow rate,
taking for sodium cp = 1250 J/kg �C.

b. Estimate the temperature and power defects, assuming a
‘‘cold’’ temperature of 180 �C.

9.5.*A 3000 MW(t) pressurized water reactor has the following
specifications: core thermal resistance 0.45 �C/MW(t), coolant
flow 68� 106 kg/hr, coolant specific heat 6.4� 103 J/kg �C. The
fuel temperature coefficient is

1

k

@k

@�Tf

¼ � 7:2 � 10�4ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
273þ �Tf

q ð	CÞ�1

and the coolant temperature coefficient is

1

k

@k

@�Tc

¼ 30þ 1:5�Tc � 0:010�T2
c


 �
� 10�6 ð	CÞ�1:

a. Over what temperature range is the core overmoderated?
b. What is the value of the temperature defect? Assume room

temperature of 21�C and an operating coolant inlet temperature
of 290 �C.

c. What is the value of the power defect?
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9.6. A sodium-cooled fast reactor lattice is designed to have the
following properties: migration length 18.0 cm and a maximum
power density 450 W/cm3. Fractional sodium voiding results in
the following reactivity effects:

Dk1=k1 ¼ þ0:002; DM=M ¼ þ0:01:

Three bare cylindrical cores with height to diameter ratios of one
are to be built with power ratings of 300 MW(t), 1000 MW(t), and
3000 MW(t).

a. Find H, the core height, B2, the buckling, and k1 for each of
the cores.

b. For each of the three cores, determine the reactivity change
caused by the voiding.

c. Briefly interpret your results from part b.

9.7. For the reactor specified in problem 9.4 the power is maintained
at 1000 MW(t) while the following quasi-static changes are made:

a. The inlet temperature is slowly decreased by 10 �C.
b. The flow rate is slowly increased by 10%.

For each of the cases determine by how much the reactivity
must be increased or decreased to keep the reactor running at
constant power.

9.8. In the prismatic block form of the graphite-moderated gas-
cooled reactor the heat passes through the moderator before
reaching the coolant. Figure 4.1d shows such a configuration.
Assume that R1 and R2 are the thermal resistances between
fuel and moderator and between moderator and coolant,
respectively, and that W and cp are the coolant mass flow rate
and specific heat.

a. Develop a set of three coupled equations similar to those in
Eqs. (8.40) and (8.41) to model the steady state heat transfer.

b. Determine the isothermal temperature coefficient in terms of
the fuel, moderator, and coolant temperature coefficients.

c. Determine the power coefficient in terms of the same
temperature coefficients.

9.9. Suppose a power reactor has negative values of �f and �c, the fuel
and coolant temperature coefficients. Using the thermal hydraulic
model developed in Chapter 8,

a. Show that if very slow changes take place in the coolant inlet
temperature and mass flow rate, but no control poisons are
added or subtracted, the power will undergo a quasi-static
change of
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dP ¼
�f þ �c

�� �� P

2W2cp
dW � dTi

� �

Rf þ
1

2Wcp

� �
�f þ

1

2Wcp
�c

����
����
:

b. If the flow rate increases, does the power increase or
decrease? Why?

c. If the inlet temperature increases, does the power increase or
decrease? Why?

9.10.*Apply appropriate software to Eqs. (9.37) through (9.42) for a
uranium-fueled reactor. Use the following parameters, which
are typical of a large pressurized water reactor: � ¼ 50� 10�6 s,
� ¼ �4:2� 10�5=oC, Mfcf ¼ 32� 106J=oC, and 	 ¼ 4:5 s, and
RfWcp
1. With an initial steady state power of 10 MW,
make a plot of the power versus time for the following:

a. A step reactivity increase of 10 cents.
b. A step reactivity increase of 20 cents.
c. A step reactivity decrease of 10 cents.
d. A step reactivity decrease of 20 cents.

9.11.*Using the data and initial conditions from problem 9.10 and
applying appropriate software,

a. Determine what ramp rate of reactivity insertion will cause
a power spike with a peak power that exceeds 100 MW(t).

b. Determine what ramp rate of reactivity insertion will cause
a power spike with a peak that exceeds 1000 MW(t).

9.12.*Repeat problem 9.10 for a plutonium-fueled sodium-cooled fast
reactor with the following parameters: � ¼ 0:5� 10�6s,
� ¼ �1:8� 10�5=	C, Mfcf ¼ 5:0� 106 J=	C, and 	 ¼ 4:0 s.

9.13.*A 2400 MW(t) plutonium sodium-cooled fast reactor has the
following characteristics:

W ¼ 14;000 kg=s; �f ¼ �1:8� 10�5=	C;

Mfcf ¼ 13:5� 106 J=	C; cp ¼ 1250 J=ðkg 	CÞ;
� ¼ 0:5� 10�6 s; Ti ¼ 360 	C;
	 ¼ 4:0 s; �c ¼ þ0:45� 10�5=	C:

Mccp ¼ 1:90� 106 J=	C;

The reactor undergoes a loss of flow transient with WðtÞ ¼
Wð0Þ=ð1þ t=toÞ, where to ¼ 5:0 s. Employ appropriate software
to Eqs. (9.36) through (9.40) to analyze the transient: Make plots
of the reactor power, fuel, and coolant outlet temperatures for
0< t< 20 s. (Hint: Note that ~	 cannot be approximated by 	 in
this problem.)
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CHAPTER 10

Long-Term Core Behavior

10.1 Introduction

This final chapter addresses the longer term changes that occur over
the lifetime of a power reactor core. These are most directly tied to the
evolution of the fuel composition and its by-products as a function of
time. They fall into three categories: (1) the buildup and decay of
radioactive products of fission, (2) fuel depletion, and (3) the buildup
of actinides resulting from neutron capture in fissile and fertile mate-
rials. For the most part these phenomena take place on time scales that
are substantially longer than those detailed thus far. Whereas fission
products have half-lives from seconds to decades, many of the more
important, such as xenon and samarium, have half-lives of several
hours or more. The effects of fuel depletion are measured on yet longer
time scales, typically weeks, months, or years. These times are much
longer than those dealt with in earlier chapters. In reactor kinetics we
dealt with prompt neutron lifetimes that are small fractions of a second
and delayed neutron lifetimes of minutes of less. In energy transport
we most typically dealt with thermal time constants ranging from
seconds to minutes. These differences in time scale often serve to
simplify the analysis. For example, in reactor kinetics we need not
consider fuel depletion; it is much too slow a process. Conversely, in
fuel management studies, we can assume reactor kinetics effects to be
instantaneous and also neglect the effects of thermal transients.

10.2 Reactivity Control

As a power reactor operates the multiplication decreases with time as
the fuel is depleted and fission products accumulate. To analyze these
effects we model a thermal reactor utilizing the four factor formula,
given by Eq. (4.24), multiplied by the nonleakage probability to
account for the core’s finite size:

k ¼ �Tf"pPNL: ð10:1Þ
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The effects of fuel burnup and fission product buildup appear primar-
ily in the thermal cross sections, and therefore affect �T and f. Utilizing
Eqs. (4.48) and (4.49) we may write these more explicitly to obtain

k ¼
��f

f

�f
a þ &ðVm=VfÞ�m

�

"pPNL; ð10:2Þ

where we hereafter drop the subscript T that indicates thermal cross
sections.

Fuel depletion causes the fission cross section to become time

dependent, �f
f ! �f

fðtÞ. Fuel depletion also causes the fuel absorption

cross sections to become time dependent, but in addition fission
products generated in the fuel add to the capture cross section. Thus
�f

a ! �f
aðtÞ þ �fp

a ðtÞ. While fuel burns and fission products accumulate,
of course, the reactor must be kept critical, that is, with k = 1. To
accomplish this the control rods or other neutron poisons must be
present at the beginning of core life; these are then extracted to main-
tain criticality as power is produced. These poisons appear as a control
capture cross section �con

� ðtÞ added to the denominator of Eq. (10.2).
Thus as detailed in Chapter 9, to maintain criticality we must have

1 ¼
��f

fðtÞ
�f

aðtÞ þ �fp
� ðtÞ þ &ðVm=VfÞ�m

� þ �con
� ðtÞ

"pPNL: ð10:3Þ

Near universal practice, however, is to calculate the multiplication
with all of the removable control poisons withdrawn from the core:

kðtÞ ¼
��f

fðtÞ
�f

aðtÞ þ �fp
� ðtÞ þ &ðVm=VfÞ�m

�

"pPNL: ð10:4Þ

The excess reactivity is then defined as

�exðtÞ ¼
kðtÞ � 1

kðtÞ � kðtÞ � 1; ð10:5Þ

where kðtÞ remains greater than one until the end of core life, at
which time all of the movable control poison has been extracted.

Substantial amounts of excess reactivity at the time of reactor
startup allow for extended core life before refueling must take place.
As indicated in Chapter 9, however, large excess reactivities create
challenges in the design of a reactor’s control system. Control rods
are the most common means for compensating for excess reactivity.
However, in large, neutronically loosely coupled cores great care
must be taken to ensure that their presence does not distort the
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flux distribution to the extent that excessive power peaking results.
In pressurized water reactors dissolving a soluble neutron absorber in
the coolant and varying the concentration with time serves to com-
pensate for excess reactivity. Burnable poisons embedded in the fuel
or other core constituents offer an additional means of limiting
excess reactivity as well as mitigating localized power peaking.

Both fission product buildup and fuel depletion contribute to the
deterioration of reactivity, but on different time scales. Fission pro-
ducts tend to build to a saturation value and then remain at constant
concentration as indicated in Section 1.7. The two fission products
with the largest capture cross section are xenon-135 and samarium-
149, and these have half-lives measured in hours; they therefore
come to equilibrium within days following startup or shut down.
Fuel depletion evolves more slowly over time spans typically mea-
sured in weeks or months. Thus to great extent we can uncouple the
two phenomena and treat them separately. We treat fission products
first, and then fuel depletion and the buildup of transuranic nuclei;
we conclude with a brief treatment of burnable poisons.

Before proceeding we note that we may also analyze fast reactors
with a form similar to Eq. (10.4):

kðtÞ ¼
��f

fðtÞ
�f

aðtÞ þ ðVc=VfÞ�c
�

PNL: ð10:6Þ

Here the factors ", p, and & are removed, and the cross sections are
averaged over all neutron energies, instead of only the thermal energy
range. We have also replaced m with c so the equation is applicable to
fast as well as thermal reactors. The effects of the fission product
buildup, however, are much less significant in fast reactors since they
have substantial capture cross sections only for thermal neutrons.

10.3 Fission Product Buildup and Decay

As Chapter 1 details, fission reactions on average produce two radio-
active fission fragments, each undergoing one or more subsequent
radioactive decays. Many of the resulting fission products have mea-
surable thermal absorption cross sections. Thus their buildup creates
neutron poisons. The poisons’ significance depends both on the fis-
sion product production and decay rates. For as we saw in Chapter 1
equilibrium is eventually reached if a radioisotope is produced at a
constant rate, for after several half-lives the rate of decay will equal
the rate of production. In tracking fission products in an operating
reactor, however, we must also take into account the rate of destruc-
tion that results from neutron absorption.
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Suppose we let NðtÞ be the concentration of a particular fis-
sion product isotope at a time t following reactor startup, and
specify the fission rate as ��f�. If some fraction �fp of the fissions
results in the production of the fission product, then the rate of
production will be �fp

��f�. The fission product will decay away at
a rate �NðtÞ, where � is the isotope’s decay rate. In addition, if the
isotope has a thermal neutron absorption cross section of �a, it
will undergo destruction at a rate of �aNðtÞ�. Thus its inventory
will grow at a net rate of

d

dt
NðtÞ ¼ �fp

��f�� �NðtÞ � �aNðtÞ�: ð10:7Þ

Note that both of the loss terms are proportional to NðtÞ:Thus we
may write this equation in the compacted form

d

dt
NðtÞ ¼ �fp

��f�� �0NðtÞ; ð10:8Þ

where

�0 ¼ �þ �a�; ð10:9Þ

and refer to the related quantity t01=2 ¼ 0:693=�0 as the effective half-life.
Since Eq. (10.8) has the same form as Eq. (1.39), we employ the

same integrating factor technique to obtain

NðtÞ ¼
�fp

��f�

�0
1� expð��0tÞ½ �: ð10:10Þ

The concentration of each fission product depends strongly on the
time t that the reactor has been operating, relative to the values of �0

and �a�. If �0t� 1 then the concentration will increase linearly with
time: NðtÞ � �fp

��f�t. However at longer times, when �0t� 1, the
concentration will reach a saturation value of �fp

��f�
�
�0, and increase

no further.
Note that a reactor’s inventory of those isotopes that have reached

saturation is proportional to ��f� and therefore to the power at which
the reactor is operating, whereas the inventory of those for which
�0t� 1 is proportional to ��f� t and therefore to the total energy that
has been produced by the reactor. Thus iodine-131 quickly reaches its
saturation value since it has a half-life of 8.0 days; its inventory there-
after will be proportional to the reactor power. In contrast, cesium-137,
with a half-life of 30.2 years, increases linearly with time over the few
years that fuel is in the reactor, and its inventory is proportional to the
total energy that has been produced from the fuel.
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Xenon Poisoning

The most substantial fission product effects on reactor operation
come from the exceedingly large absorption cross section of the
isotope xenon-135, which measures 2.65� 106 b. Xenon is produced
both directly and from the decay of other fission products, most
importantly iodine-135. The sequence of beta decays leading to
xenon may be summarized as

135

52
Te

fission; �T

#
�!	
�

11s

135

53
I

fission; �I

#
�!	
�

6:7hr

135

54
Xe

fission; �X

#
�!	
�

9:2hr

135

55
Cs �!	

�

2:3�106yr

135

56
Ba;

ð10:11Þ

where we have included the half-lives. In dealing with time spans
measured in hours, we may assume the tellurium-135 decay is
instantaneous and combine the yields of tellurium and iodine iso-
topes into �I; Table 10.1 gives values of �I and �X. Likewise, we may
neglect the decay of cesium since its half-life is more than a million
years.

With these simplifications, we need just two rate equations. Let I
and X denote the concentrations of the iodine and xenon isotopes. We
then have

d

dt
IðtÞ ¼ �I

��f���IIðtÞ ð10:12Þ

and

d

dt
XðtÞ ¼ �X

��f�þ �IIðtÞ � �XXðtÞ � �aXXðtÞ�: ð10:13Þ

No neutron absorption term, �aIIðtÞ�, appears in the first equation
since even at high flux levels iodine absorption is insignificant com-
pared to its decay.

TABLE 10.1
Thermal Fission Product Yields in Atoms per Fission

Isotope Uranium-235 Plutonium-239 Uranium-233

135I 0.0639 0.0604 0.0475
135Xe 0.00237 0.0105 0.0107
149Pm 0.01071 0.0121 0.00795

Source: M. E. Meek and B. F. Rider, ‘‘Compilation of Fission Product Yields,’’ General Electric
Company Report NEDO-12154, 1972.
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Following reactor start-up both iodine and xenon concentrations
build from zero to equilibrium values over a period of several half-
lives. Since the half-lives are in hours, after a few days equilibrium is
achieved. The equilibrium concentrations result from setting the
derivatives on the left of Eqs. (10.12) and (10.13) to zero:

Ið1Þ ¼ �I
��f�
�
�I ð10:14Þ

and

Xð1Þ ¼
ð�I þ �XÞ��f�

�X þ �aX�
: ð10:15Þ

Note that for very high flux levels, where �aX�� �X, neutron absorp-
tion dominates over radioactive decay, and the maximum xenon
concentration possible is ð�I þ �XÞ��f

�
�aX.

Next consider what happens following reactor shutdown. Let Io

and Xo be the concentrations of iodine and xenon at the time of
shutdown. If the reactor is put on a large negative period, to first
approximation we may assume that the shutdown is instantaneous
compared to the time spans of hours over which the iodine and
xenon concentrations evolve. This assumption allows us to deter-
mine the isotopes’ concentrations by setting � ¼ 0 in Eqs. (10.12) and
(10.13). The solution of Eq. (10.12) yields the exponential decay of the
iodine,

IðtÞ ¼ Io expð��ItÞ; ð10:16Þ

where t is now taken as the time elapsed since shutdown. Inserting
this expression into Eq. (10.13), with � ¼ 0, yields

d

dt
XðtÞ ¼ �IIo expð��ItÞ � �XXðtÞ: ð10:17Þ

Employing the integrating factor technique detailed in Appendix A
we obtain a solution of

XðtÞ ¼ Xoe��Xt þ �I

�I � �X
Io e��Xt � e��It
� �

: ð10:18Þ

The first term results from the decay of xenon. The second arises
from the production of xenon—caused by iodine decay—following
shutdown and then the subsequent decay of that xenon. If the reactor
has been running for several days—long enough for iodine and xenon
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to reach equilibrium—we may replace Io and Xo by the values of Ið1Þ
and Xð1Þ given by Eqs. (10.14) and (10.15):

XðtÞ ¼ ��f�
ð�

I
þ �

X
Þ

�X þ �aX�
e��Xt þ �

I

�I � �X
e��Xt � e��It
� �� �

: ð10:19Þ

The effect on reactivity appears as a contribution of �aXXðtÞ to
the fission product term in the denominator of Eq. (10.4). It causes a
negative reactivity that to a first approximation is proportional to
�aXXðtÞ. Figure 10.1 contains plots of the negative reactivity versus
time for a representative thermal reactor that has operated at four
different flux levels. The curves provide insight into the challenges
caused by xenon following shutdown. For a sufficiently large
operating flux the xenon concentration actually rises following
shutdown; for uranium-fueled reactors that flux is approximately
4�1011 n/cm2/s. The peak concentration occurs at 11.3 hours after
shutdown. Since xenon has a large absorption cross section, this
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FIGURE 10.1 Xenon-135 reactivity transient following shutdown from
four different flux levels (adapted from Introduction to Nuclear Reactor
Theory, 1972, by John R. Lamarsh, Copyright by the American Nuclear
Society, La Grange Park, IL).
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increase causes a loss in reactivity that must be overcome if the
reactor is to be restarted. Figure 10.1 also depicts a dead time over
which the reactor could not be restarted if 0.2 is the reserve of excess
reactivity at room temperature provided by the control system.

Xenon poisoning can cause difficulties at other times. If a reac-
tor is operated in a periodic manner, for example, at lower power at
night than in the daytime to follow electrical load demand, the time
lag in the xenon buildup and decay must be compensated by the use
of periodic insertion of control poisons. In large, neutronically loosely
coupled cores, where control rod effects are localized, xenon may give
rise to space–time oscillations. If these are not adequately damped,
they may result in increased power peaking in local areas of the core
and violate thermal limitations on local power density.

Samarium Poisoning

A second fission product with a large thermal absorption cross sec-
tion is samarium-149. Although smaller than xenon, its cross section
of 41,000 b must be taken explicitly into account. Samarium is
stable, arising from the fission product chain

149
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�!	
�

1:7hr

149
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�

53hr

149

62
Sm: ð10:20Þ

Since the half-life of neodymium is much shorter than that of pro-
methium, to a good approximation we can assume that the promethium
is produced directly by fission; Table 10.1 gives the value of �P. Thus

d

dt
PðtÞ ¼ �P

��f�� �PPðtÞ ð10:21Þ

and

d

dt
SðtÞ ¼ �PPðtÞ � �aSSðtÞ�: ð10:22Þ

The saturation activities reached after several half-lives of reac-
tor operations result from setting the derivatives on the left of these
equations to zero: Pð1Þ ¼ �P

��f�
�
�P and Sð1Þ ¼ �P

��f

�
�aS. The solu-

tions of Eqs. (10.21) and (10.22) following shutdown yield

PðtÞ ¼ Po expð��PtÞ ð10:23Þ
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and

SðtÞ ¼ So þ Po 1� e��Pt
� �

; ð10:24Þ

where t is the time elapsed since shutdown. Provided the saturation
values have been reached by the time of shutdown, we can combine
equations to obtain

SðtÞ ¼
�P

��f

�aS
þ
�P

��f�

�P
1�e��Pt
� �

: ð10:25Þ

Analogous to xenon poisoning, samarium causes a reactivity loss
that is approximately proportional to �aSSðtÞ. Figure 10.2 illustrates
the reactivity loss for the same set of reactor parameters used in
Fig. 10.1. The samarium concentration rises following shutdown,
and at long times is greater than the saturation value by an amount

φ T = 5 × 1014

φ T = 5 × 1013

φ T = 1014

φ T = 1013

100 200

Time after shutdown, hr

N
eg

at
iv

e 
re

ac
tiv

ity

3000
0

0.01

0.02

0.03

0.04

0.05

FIGURE 10.2 Sumarium-149 reactivity transient following shutdown
from four different flux levels (adapted from Introduction to Nuclear
Reactor Theory, 1972, by John R. Lamarsh, Copyright by the American
Nuclear Society, La Grange Park, IL).
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�P
��f�
�
�P. Thus to restart the reactor after an extended shutdown

sufficient additional reactivity must be available to overcome the
added samarium that resulted from the promethium decay.

10.4 Fuel Depletion

Heretofore we have written the power density simply as P000 ¼ ��f�.
To examine the long-term behavior of a power reactor core, however,
we must divide this term into its component parts. Most common
reactor fuels are composed of either natural or partially enriched
uranium. In fewer cases the fresh fuel may be a mix of plutonium
and uranium. The contribution of uranium-238 to fission is quite
small in most reactors and we ignore it for purposes of illustration.
From Eq. (1.28) we observe, however, that if fertile material such as
uranium-238 is present in substantial amounts, it will capture neu-
trons and then undergo radioactive decay to become a fissile material,
which may then undergo fission. Thus for a uranium-fueled reactor
we must consider fission in both uranium-235 and plutonium-239
(which according to the convention introduced in Section 1.6 we refer
to as ‘‘25’’ and ‘‘49,’’ respectively). Thus accounting for power produc-
tion from the two fissile isotopes, we have

P000 ¼ � �25
f N25ðtÞ þ �49

f N49ðtÞ
h i

�ðtÞ: ð10:26Þ

Note that since the isotopic concentrations change with time as the
fissile material is depleted, the flux must also be time dependent,
gradually increasing to allow the reactor power to remain constant
over long periods of time.

Fissionable Nuclide Concentrations

Rate equations similar to those discussed earlier for the buildup and
decay of fission products govern the evolution of the concentrations
of fissile and fertile materials. For the uranium isotopes,

d

dt
N25ðtÞ ¼ �N25ðtÞ�25

a �ðtÞ; ð10:27Þ

and

d

dt
N28ðtÞ ¼ �N28ðtÞ�28

a �ðtÞ: ð10:28Þ
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In contrast, the rate equation for plutonium must include a produc-
tion as well as a destruction term since it is the product of the decay
chain given in Eq. (1.28):

nþ 238

92
U!239

92
U �!	

23m

239

93
Np �!	

2:36d

239

94
Pu: ð10:29Þ

The uranium-238, which constitutes a large fraction of the fuel
nuclei in most reactors, captures neutrons and undergoes decay first to
neptunium and then to plutonium-239. Since the half-lives of these
processes are short compared to the weeks, months, or years over which
fuel depletion studies are made, little accuracy is lost by assuming that
the plutonium appears instantaneously, following neutron capture by
uranium-238. Conversely, although plutonium is radioactive, its half-
life is so long that the fraction of plutonium that decays away during the
life of a reactor core is negligible. Thus we assume that plutonium is
created immediately upon capture of a neutron in uranium-238 and is
destroyed only by neutron absorption, which either causes fission or the
creation of plutonium-240. In either case the rate equation is

d

dt
N49ðtÞ ¼ �28

� �ðtÞN28ðtÞ � �49
a �ðtÞN49ðtÞ: ð10:30Þ

We solve the three rate equations for uranium and plutonium by
first integrating Eq. (10.27) directly to obtain

N25ðtÞ ¼ N25ð0Þe��25
a �ðtÞ: ð10:31Þ

where the neutron fluence is defined by

�ðtÞ ¼
Z t

0
�ðt0Þdt0: ð10:32Þ

In the same manner, the solution of Eq. (10.28) is

N28ðtÞ ¼ N28ð0Þe��28
a �ðtÞ: ð10:33Þ

Since the absorption cross section of uranium-238 is quite small com-
pared to the fission cross sections appearing in these equations, however,
we may assume that the change in its concentration can be neglected,

N28ðtÞ�N28ð0Þ; ð10:34Þ

without substantial loss of accuracy. Applying this approximation
reduces Eq. (10.30) to

d

dt
N49ðtÞ ¼ �28

� �ðtÞN28ð0Þ � �49
a �ðtÞN49ðtÞ; ð10:35Þ
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which is easily solved using the integrating factor technique of
Appendix A. Assuming no plutonium is present at the beginning of
reactor life, so that N49ð0Þ ¼ 0, we obtain

N49ðtÞ ¼ �28
� N28ð0Þ e��

49
a �ðtÞ

Z t

0
e�

49
a �ðt0Þ�ðt0Þdt0: ð10:36Þ

Using Eq. (10.32) and the differential transformation d� ¼ �ðt0Þdt0,
the integral may be evaluated to yield

N49ðtÞ ¼
�28
�

�49
a

N28ð0Þ 1� e��
49
a �ðtÞ

� �
: ð10:37Þ

Figure 10.3 shows the long-term evolution of the slightly
enriched fuel typical of that in water-cooled reactors. In addition to
the two fissile nuclides treated in our simple model, the figure shows
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FIGURE 10.3 Change in fuel composition vs neutron fluence (adapted
from ‘‘FUELCYC, a New Computer Code for Fuel Cycle Analysis,’’ Nucl.
Sci. Eng., 11, 386 (1961), by M. Benedict et al., Copyright by the American
Nuclear Society, La Grange Park, IL).
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the buildup of the higher isotopes of plutonium and uranium that
result from successive neutron captures. A quantity that is often used
to evaluate fuel performance is the conversion ratio, defined as the
ratio of fissile material created to fissile material destroyed. If the
ratio is greater than one, it is often referred to as the breeding ratio,
for then the reactor is creating more fissile material than it is con-
suming. In our simplified model, which includes only uranium and
plutonium-239, the conversion ratio is

CRðtÞ ¼
�28
� N28ð0Þ

�25
a N25ðtÞ þ �49

a N49ðtÞ: ð10:38Þ

This equation indicates that increased fuel enrichment results in a
decreased value of CR(0), the initial conversion ratio. Thereafter the
plutonium isotopes build into the core. As this happens an increasing
fraction of the fission comes from plutonium. By the time the right-
hand side of Fig. 10.3 is reached more than one-third of the fissile
material in the core is plutonim-239.

The effect of the depletion of uranium-235 and the buildup of
plutonium on reactivity is illustrated by writing the fuel cross sec-
tions in Eq. (10.4) in terms of the nuclide densities:

kðtÞ ¼
��25

f N25ðtÞ þ ��49
f N49ðtÞ

�25
a N25ðtÞ þ �49

a N49ðtÞ þ �28
� þ �fp

� ðtÞ þ &ðVm=VfÞ�m
a

"pPNL:

ð10:39Þ

Generally, the depletion of uranium-235 and the buildup of fission
products will overwhelm the buildup of plutonium-239. Thus the
value of the multiplication will decrease with time. The net effect of
these competing phenomena takes the form similar to that shown in
the example labeled ‘‘no burnable poison’’ in Fig. 10.4.

Burnable Poisons

In pressurized water reactors dissolving a soluble neutron absorber in
the coolant and varying the concentration with time compensate for
much of the excess reactivity. Burnable poisons embedded in the fuel
or other core constituents offer an additional means of limiting
excess reactivity as well as mitigating localized power peaking.

A burnable poison is an isotope possessing a large neutron capture
cross section that is embedded in the fuel or other core constituent to
limit excess reactivity early in core life. Boron and gadolinium are often

Long-Term Core Behavior 255



used for this purpose. A burnable poison’s concentration is limited by a
rate equation similar to those above:

d

dt
NBPðtÞ ¼ �NBPðtÞ�BP

� �ðtÞ; ð10:40Þ

which has a solution of

NBPðtÞ ¼ NBPð0Þe��BP
� �ðtÞ: ð10:41Þ

Its effect is apparent by adding its capture cross section to the
denominator of Eq. (10.39):

kðtÞ ¼
��25

f N25ðtÞ þ ��49
f N49ðtÞ

�25
a N25ðtÞ þ �49

a N49ðtÞ þ �28
� þ �fp

� ðtÞ þ &ðVm=VfÞ�m
a þ �BP

� NBPðtÞ
"pPNL:

ð10:42Þ

Because a burnable poison’s capture cross section is large compared
to the others appearing in this expression, the exponential in
Eq. (10.41) decays rapidly, causing its effect on the multiplication to
be concentrated early in core life. The curve marked ‘‘uniformly
distributed boron’’ in Fig. 10.4 illustrates this point. Burnable poisons
are selected such that the isotope resulting from neutron capture has
a small capture cross section, thus avoiding subsequent poisoning of
the chain reaction.
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FIGURE 10.4 Effect of burnable poisons on reactor multiplication (adapted
from ‘‘Kinetics of Solid-Moderator Reactors,’’ by H. B. Steward and M. H.
Merrill, Technology of Nuclear Reactor Safety, Vol. 1, 1965, T. J. Thompson
and J. G. Beckerley, Eds. Countesy of the MIT Press).
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Further leveling of the excess reactivity curve can be accom-
plished by concentrating the burnable poison in lumps instead of
distributing it uniformly across the fuel. With such lumping of a
strong absorber, spatial self-shielding, similar to that discussed for
resonance capture in Chapter 4, takes place. Consequently, neutron
capture in the burnable poison is limited early in the fuel life and
results in a smoothing of the poison’s suppression of excess reactivity
over a longer time period. As the curve marked ‘‘lumped boron’’ in Fig.
10.4 illustrates, lumping the poison further minimizes the maximum
excess reactivity, and therefore facilitates the design of the control
system. Clever design of such lumping can also serve to flatten the
spatial distribution of the power density over the life of a core.

10.5 Fission Product and Actinide Inventories

Thus far we have considered the production of fission products and
actinides as they affect the reactivity of a power reactor core. The
radioactive materials generated during the operation of power reac-
tors also are of concern for the potential health hazards that they
represent. We briefly allude to the two basic categories of concern:
preventing the radioactive materials from reaching the environment
should a catastrophic accident take place while the reactor is operat-
ing, and providing for long-term disposal of the radioactive inventory
following removal of the fuel from the reactor. The inventories, half-
lives, chemical characteristics, and other properties of the isotopes
that are most important differ depending on whether reactor safety
during core lifetime or long-term disposal of radioactive waste fol-
lowing shutdown is under consideration.

During the core lifetime fission product concentrations build
and reach saturation levels according to their yields and characteris-
tic half-lives. To recapitulate earlier discussions, following several
half-lives the inventory of a fission product reaches its saturation
value. A reactor’s inventory of isotopes with half-lives short com-
pared to the operational life of its fuel will be proportional to the
reactor’s power after it has been operating for some length of time.
Conversely, isotopes with half-lives that are long compared to the
reactor core life—say, a decade or more—build linearly with time and
result in an inventory that is proportion to the amount of energy that
the reactor has produced.

Reactor safety is concerned with preventing the accidental release
fission products or other radioactive materials to the environment.
Fission products with short as well as long half-lives must be safe-
guarded. Equally important are the quantities in which they are pro-
duced, the volatility of the chemical forms that they take, their ability
to penetrate the reactor containment and other engineered barriers

Long-Term Core Behavior 257



against their release to the environment, and finally the mechanisms
by which they cause biological damage. Radioiodine, the noble gases,
strontium, and cesium are among the most important isotopes to be
scrutinized in the analysis of hypothesized reactor accidents.

In contrast, only isotopes with long half-lives are of concern for
waste disposal, for those with half-lives of a few years or less are
easily stored until their radioactivity is exhausted. The more persis-
tent fission products have half-lives of several decades, and these
must be isolated for hundreds of years. The actinides—plutonium,
neptunium, americium, and others produced by successive capture of
neutrons in uranium and its by-products during reactor operation—
present the truly long-term challenges in waste disposal. Although
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FIGURE 10.5 Time dependence of the risk factor for wastes from spent
fuel, stored without reprocessing, normalized to the uranium ore needed to
produce the PWR fuel from which it came (adapted from ‘‘Formation of
Recycling of Minor Actinides in Nuclear Power Stations,’’ by L. Koch, in
Handbook of the Physics of Chemistry of Actinides, Vol. 4, 1986. Courtesy
of Elsevier Science, Amsterdam).

258 Fundamentals of Nuclear Reactor Physics



produced in smaller quantities than fission products, actinides have
half-lives measured in thousands of years or more. Figure 10.5 shows
the radiotoxicity from discharged fuel, relative to that of uranium
ore. Note that for time spans of more than a century following reactor
shutdown virtually all of the radioactivity results from actinides
rather than from fission products. Increasing attention is being direc-
ted toward reprocessing reactor fuel in order to recycle it, fissioning
more of the plutonium created from uranium-238 capture and
increasing greatly the quantity of energy produced relative to the
mass of long half-life radioactive waste created.
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Problems

10.1. Prove that for a reactor operating at a very high flux level, the
maximum xenon-135 concentration takes place at approximately
11.3 hours following shutdown.
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10.2. Make a logarithmic plot of the effective half-life of xenon-135
over the flux range of 1010 � � � 1015n=cm2=s.

10.3. A thermal reactor fueled with uranium has been operating at
constant power for several days. Make a plot of the ratio of
concentration of xenon-135 to uranium-235 atoms in the reactor
versus its average flux. Determine the maximum value that this
ratio can take.

10.4. A pressurized water reactor at full power has an average power
density of �P000 ¼ 80 MW=m3 and a peaking factor of Fq ¼ 2:0.
After the reactor has operated for several days,

a. What is the average xenon concentration?
b. What is the maximum xenon concentration?
c. What is the average samarium concentration?
d. What is the maximum samarium concentration?

(Assume a fission cross section of ��f ¼0.203 cm1.)

10.5. A reactor is started up and operated at constant power. Solve
Eqs. (10.12) and (10.13) and determine the iodine and xenon
concentration as a function of time.

10.6. Samarium-157 is produced at a rate of 7.0� 105 atoms/fission. It
then undergoes decay: 157

62 Sm �!	
0:5 min

157
63 Eu �!	

15:2 hr

157
64 Gd. Although

the absorption cross section of samarium and europium are
negligible, the thermal absorption cross section of gadolinium
is 240,000 b. Suppose that a reactor operates at a power density
of 100 MW/m3 and a flux level of 8.0� 1012 n/cm2/s.

a. Solve the decay equations for GðtÞ, the atom density of
gadolinium, at a time t following reactor startup.

b. Evaluate Gð1Þ.
c. If the reactor has been operated for several weeks and then is

shut down, what is the concentration of gadolinium, after
the reactor has been shut down for several weeks?
(Assume that the energy produced per fission is 3.1� 10�11 W s)

10.7. Verify Eqs. (10.18) and (10.19).

10.8. A reactor has operated for several weeks at constant power,
reaching the equilibrium concentrations of iodine and xenon
Io and Xo given by Eqs. (10.14) and (10.15). At t = 0 the power is
cut back, dropping the flux level from � to ~�. Solve Eqs. (10.12)
and (10.13) and show that the iodine and xenon concentrations
following the power reduction are

IðtÞ ¼ �
I

�
I

��f
~�þ ð�� ~�Þe��It
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and

XðtÞ ¼ ð�I
þ �

X
Þ

�X þ �aX�
��f�e�ð�Xþ�aX

~�Þt þ ð�I
þ �

X
Þ

�X þ �aX
~�

��f
~� 1� e�ð�Xþ�aX

~�Þt
h i

þ �I

�X � �1 þ �aX
~�

��fð�� ~�Þ e��It � e�ð�Xþ�aX
~�Þt

h i
:

10.9. Under load following conditions, a reactor operates each
day at full power for 12 hours, followed by a shutdown of
12 hours. Calculate the iodine concentration, I(t), over a
24 hour time span. Use the periodic boundary condition
I(24 hr) = I(0).

10.10. Under load following conditions, a reactor operates each day
at full power for 12 hours, followed by a shutdown of 12 hours.
Calculate the promethium concentration, P(t), over a 24 hour
time span. Use the periodic boundary condition P(24 hr) = P(0).

10.11. Taking into account neutron capture in plutonium-239 and
plutonium-240,

a. Write a rate equation for the concentration of plutonium-
240.

b. Solve the equation from part a using Eq. (10.37) for the
concentration of plutonium-239.

10.12. Neptunium-238 has a thermal absorption cross section of
33 b, which we have neglected in deriving Eq. (10.30). In a
reactor operating at a flux level of � ¼ 5� 1014 n=cm2=s,
what fraction of the neptunium will capture a neutron
instead of decaying to plutonium-239?

10.13. Consider uranium fuel in a thermal reactor with an initial
enrichment of 4%.

a. What is the conversion ratio (CR) at the beginning of core life?
b. After half of the uranium-235 has been burned, what is the

conversion ratio?
c. After half of the uranium-235 has been burned, what

fraction of the power is being produced from plutonium-
239?

Hint: Make use of the approximations in Eqs. (10.31) and (10.37).

10.14. Thorium-232 is a fertile material that may be transmuted
to fissile uranium-233 through the following reaction:
232

90
Th �!n 233

90
Th �!	

22 min

233

91
Pa �!	

27:4 days

233

92
U, where the half-lives

are indicated. Assume that a fresh core is put into operation
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containing only thorium-232 and uranium-235. Thereafter
neutron capture in thorium takes place at a constant rate

of �th
a

��.

a. Assuming that the half-life of
233

90
Th can be ignored,

write down and solve the differential equation for the

concentration of
233

91
Pa.

b. Write down and solve the differential equation for the

concentration of
233

92
U:

(Assume N02ðtÞ ¼ N02ð0Þ and �ðtÞ ¼ �ð0Þ:)
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savings, 184

Resonance:
absorption, 68, 73, 79, 226
cross sections, 42, 78
escape probability, 102–105, 108,

109, 175, 223, 224, 226
self-shielding, 224

Rod bank, 91, 131, 186, 190, 191,
193, 203, 231, 236, 238, 244

Rod drop, 132
Rod oscillator, 133

Samarium, 243, 245, 250–2
concentration, 251
poisoning, 250

Saturation activity, 20
Scalar flux, 64, 273
Scattering:

anisotropic, 277
collisions, 12, 29, 37, 48, 57, 63,

65, 66, 148, 180
cross section, 37, 41, 44–6, 50, 52,

61, 62, 68, 69, 80, 90, 177, 178
elastic, 37, 40, 41, 44, 48–53,

61–4, 67, 68, 72, 94, 177
inelastic, 52
isotopic, 142, 146, 155, 275, 277
neutron, 39, 48, 226

Semi-infinite medium, 144, 148
Shutdown margin, 230
Slowing down decrement, 50
Sodium-cooled fast reactor (SFRs),

72, 94, 178
Solid-moderated reactors, 110
Source jerk, 131, 133

see also Rod bank
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Spatial diffusion, 139
Spatial neutron balance, 140
Spectral hardening, 71, 226
Spherical Geometry, 149
Startup accident, 238
Steady state temperatures, 205
Steam generators, 90, 92
Step reactivity changes, 126
Strontium, 20, 21, 258
Subcritical assemblies, 157
Surface heat flux, 205, 208, 209
Surface sources, 147

see also Albedos

Tellurium-135, 247
Temperature drop across, 280
Thermal cross section averages, 79
Thermal diffusion, 174–8
Thermal disadvantage factor, 107
Thermal energies, 51, 61, 73, 100,

102, 117, 174, 178, 224
Thermal expansion, volumetric

coefficient of, 225
Thermal fission, 101, 174
Thermal hydraulic considerations,

194, 200
Thermal neutrons, 40, 42, 58, 65,

70, 99, 100, 106, 174, 177, 245
flux, 107
leakage, 175
measurments, 39
range, 61, 70, 99
spectrum, 71, 106, 177, 226

Thermal reactor lattices, 78, 98
Thermal time constant, 212, 213,

234, 237, 243, 282
Thermal transients, 211
Thermal utilization, 101, 106, 108,

109, 226
Thermodynamic analysis, 209
Thermonuclear reaction, 8, 9

Thorium, 13, 17, 47
Threshold cross sections, 46
Transient analysis, 234
Transport equation, 273, 274
Transuranic nuclei, 245
Two group theory, 174

Uncollided flux, 32, 33, 153, 155, 156
Uniform cylindrical core, 203
Uniform source, 144
Uranium, 1, 2, 9, 11, 15–17, 35, 36,

42, 44, 45–7, 49, 51, 52, 58–62,
65, 73, 78, 81, 90–3, 105, 129,
130, 228, 249, 252, 253, 255,
258, 259

cross sections, feature of the, 44
fueled reactor, 130, 249, 252
nuclear fission of, 1

Uranium-235, 9, 11, 15–17, 35, 58,
59, 129, 252, 255

depletion of, 255
Uranium-238, 16, 17, 35, 42, 44, 46,

47, 49, 51, 58, 60, 61, 105, 228,
252, 253, 259

Vacuum boundaries, 146

Waste disposal, 258
Water-cooled reactors, 72, 90, 93,

105, 254
Wigner-way formula, 15

Xenon, 243, 245, 247–51
poisoning, 247, 250, 251

Zero flux boundary condition, 147,
176

Zero power:
kinetics, 133
temperature, 232

Zirconium, 90, 92, 93
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