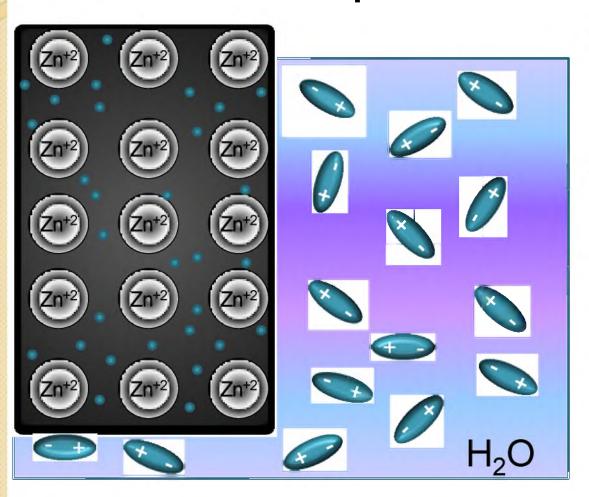
ЭЛЕКТРОХИМИЯ

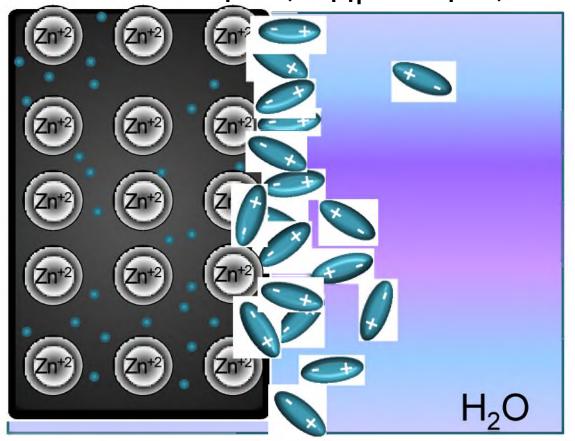

Лекция 2

- Электрохимия раздел химии, в котором изучаются химические процессы, идущие с поглощением или выделением электрической энергии.
- Они протекают на электродах (на границе раздела двух фаз «твердое тело-раствор», т.е. с участием ДЭС) и сопровождаются изменением состава раствора.
- Эти процессы осуществляются в гальванических элементах и электролизерах.

- Электрохимические процессы процессы взаимного превращения химической и электрической форм энергии в системах, состоящих из электродов и электролитов.
- Процессы превращенияхимической энергии вэлектрическую *Гальванические элементы*
- Процессы превращенияэлектрической энергии вхимическуюЭлектролизеры

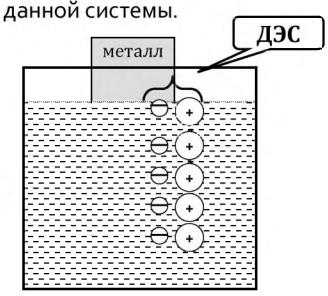
Двойной электрический слой (ДЭС)

• Механизм образования



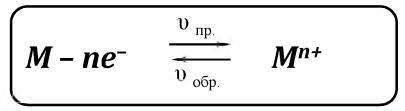
• электрон

• Сольватация (гидратация) ионов металла

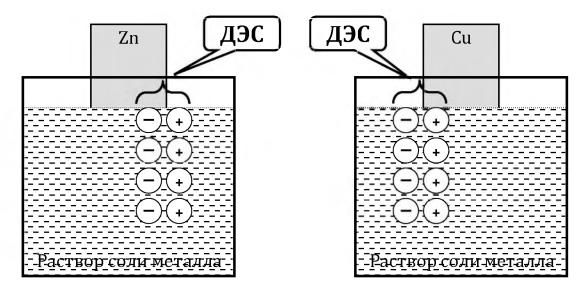

При погружении металла в раствор своей соли на границе раздела металл – раствор протекает следующая реакция:

$$M - ne^{-\frac{\upsilon_{\text{пр.}}}{\upsilon_{\text{oбр.}}}} M^{n+}$$

$$M^{n+} + mH_2O \longrightarrow M^{n+}mH_2O$$


При определенной (для каждого металла **своей**) величине заряда (а значит, потенциала) в системе наступает равновесие $\upsilon_{np} = \upsilon_{o6p}$.

Р**авновесный** скачок потенциала и называется электродным или окислительно-восстановительным потенциалом (ОВП)


Двойной электрический слой (ДЭС) — слой, формирующийся на границе раздела двух проводников (например, металл — жидкость).

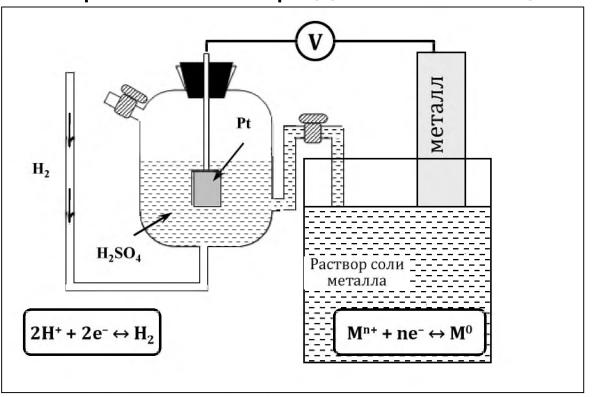
Формирование ДЭС на границе раздела металл – раствор

 $\upsilon_{\text{пр.}} > \upsilon_{\text{обр.}}$

 $\upsilon_{\rm np.} < \upsilon_{\rm obp.}$

Активный металл

Малоактивный металл


Равновесный скачок потенциала и называется электродным или окислительно-восстановительным потенциалом (ОВП) данной системы.

Таким образом, создается пограничная разность потенциалов, называемая электронным потенциалом, который зависит от:

природы растворителя,
природы металла,
природы иона,
концентрации иона,
температуры.

ЭЛЕКТРОДНЫЙ ПОТЕНЦИАЛ

Схема гальванического элемента для измерения электродного потенциала.

Нормальный водородный электрод представляет собой платиновый электрод, покрытый мелкодисперсной платиной (платиновой чернью), погруженный в раствор серной кислоты с концентрацией ионов водорода 1 моль/л, обдуваемый струей газообразного водорода под давлением 10⁵ Па и при Т = 298 К.

СТАНДАРТНЫЙ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЙ ПОТЕНЦИАЛ

СОВП – это разность потенциалов в гальваническом элементе, образованном металлом, погруженным в раствор соли с концентрацией ионов этого металла 1 моль/ли водородным электродом в стандартных условиях (Т = 298 К, Р=10⁵ Па, Ссоли = 1 моль/л).

$$E^{0}_{M^{n+}/M}$$
 $[E^{0}_{M^{n+}/M}] = B$

Стандартный электродный потенциал металла – справочная величина! Причем СОВП имеет положительное значение, если он более положителен, чем потенциал СВЭ, и отрицательное, если он более отрицателен по сравнению с водородным потенциалом.

чем положительнее значение СОВП, тем более сильным окислителем является вещество, содержащее данный элемент в окисленном состоянии, и тем более слабым восстановителем является вещество, содержащее элемент в восстановленном состоянии. (И наоборот.)

РЯД НАПРЯЖЕНИЙ МЕТАЛЛОВ

• В зависимости от значения СОВП простые вещества располагаются в электрохимический ряд напряжений, который начал устанавливать еще в XIX веке Н.Н. Бекетов.

Me:	Li	K	Ba	Ca	Na	Mg	Al	Ti	Mn	Zn
Me ⁿ⁺	Li ⁺	K ⁺	Ba^{2+}	Ca^{2+}	Na^+	Mg^{2+}	$A1^{3+}$	Ti ³⁺	Mn ²⁺	Zn^{2+}
E°, B	-3,04	-2,92	-2,91	-2,87	-2,71	-2,36	-1,66	-1,21	-1,18	-0,76
1										

Cr	Fe	Cd	Ni	Sn	Pb	H_2	Cu	Ag	Pt	Au
Cr ³⁻	Fe ²⁺	Cd^{2+}	Ni ²⁺	Sn ²⁺	Pb ²⁺	2H+	Cu ²⁺	Ag^+	Pt ²⁺	Au ³⁺
	1 0 44	0.40	0.05	0.14	0.10	0.00	. 0 2 4	. 0. 00	. 1. 2.0	. 1. 70
-0,7	1 -0,44	-0,40	-0,25	-0,14	-0,13	0,00	+0,34	+0,80	+1,20	+1,50

Основные закономерности РН

- Чем левее расположен металл в РН, тем он химически активнее, обладает большей восстановительной способностью, легче окисляется и труднее восстанавливается из его ионов.
- Чем правее расположен металл в РН, тем он химически менее активен, труднее окисляется и легче восстанавливается из его ионов.
- Все металлы с отрицательной величиной электродного потенциала, расположенные левее водорода, окисляются ионами гидроксония и выделяют водород из разбавленных растворов кислот, анионы которых не проявляют окислительных свойств.

• Металлы, стоящие в ряду напряжений левее, вытесняют металлы, стоящие правее из растворов их солей. Например:

$$Ca + Cu(NO3)2 = Cu + Ca(NO3)2$$

$$Cu + Ca(NO_3)_2 =$$

• Металлы, стоящие в PH условно делят на три группы:

Активные металлы Li – Al

Металлы средней активности Ті – Н

Малоактивные металлы После Н

ФОРМУЛА НЕРНСТА

 В условиях, отличающихся от стандартных, электродный потенциал системы вычисляют по уравнению Нернста:

$$E_{\text{Ox/Red}} = E_{\text{Ox/Red}}^{0} + \frac{R \cdot T}{n \cdot F} \ln \frac{[\text{Ox}]}{[\text{Red}]}.$$

где $E_{Ox/Red}$ – электродный потенциал,

 $\mathsf{E}^0_\mathsf{Ox/Red}$ – стандартный электродный потенциал,

R – универсальная газовая постоянная, 8,31 Дж/(моль·К);

Т – температура, К;

n – число электронов, участвующих в реакции;

F – постоянная Фарадея, 96500 Кл/моль; [Ox], [Red] – концентрация окисленной и восстановленной форм вещества, моль/л.

Для реакции:

$$Mg - 2e^{-} = Mg^{2+}$$

Окисленная форма – Mg^{2+} ; восстановленная форма – Mg.

$$E_{\text{Mg}^{2+}/\text{Mg}} = E_{\text{Mg}^{2+}/\text{Mg}}^{0} + \frac{R \cdot T}{n \cdot F} \ln \frac{[\text{Mg}^{2+}]}{[\text{Mg}]}.$$

Так металлы, твердые вещества, концентрация восстановленной формы равна 1

$$E_{\mathbf{M}^{n+}/\mathbf{M}} = E_{\mathbf{M}^{n+}/\mathbf{M}}^{0} + \frac{R \cdot T}{n \cdot F} \ln[\mathbf{M}^{n+}].$$

$$E_{M^{n+}/M} = E_{M^{n+}/M}^{0} + \frac{0,059}{n} \lg[M^{n+}].$$

В стандартных условиях при концентрации ионов металла равной единице:

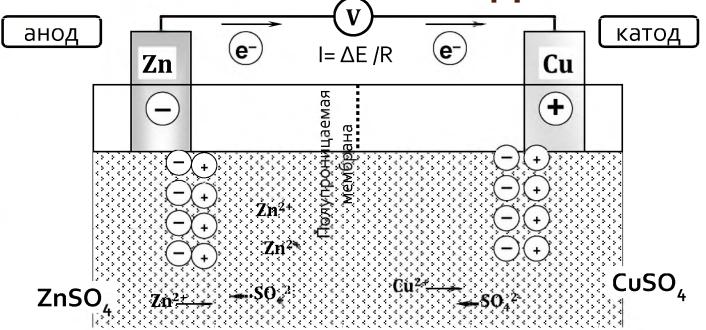
$$E_{\mathbf{M}^{n+}/\mathbf{M}} = E_{\mathbf{M}^{n+}/\mathbf{M}}^{0} + \frac{0.059}{n} \lg 1 = E_{\mathbf{M}^{n+}/\mathbf{M}}^{0}.$$

По величине электродного потенциала можно судить о термодинамической вероятности протекания реакций:

$$\Delta G = - nFE_{M^{n+}/M}.$$

Реакция протекает самопроизвольно в прямом направлении, если

$$\Delta G < 0; E_{M^{n+}/M} > 0.$$


Реакция протекает самопроизвольно в обратном направлении, если

$$\Delta G > 0; E_{M^{n+}/M} < 0.$$

Зависимость электродного потенциала водородного электрода от рН в стандартных условиях:

$$E_{2H^+/H_2} = -0.059 pH$$

Гальванический элемент Даниэля–Якоби

1) На цинковом электроде протекает реакция окисления:

$$Zn - 2e^- = Zn^{2+} - 1$$
-я полуреакция.

Цинк заряжается отрицательно

2) На медном электроде протекает реакция восстановления:

$$Cu^{2+} + 2e^{-} = Cu - 2$$
-я полуреакция.

Медь заряжается положительно

- 4) Движение ионов в растворе: анионы к цинку; катионы к меди.
- 5) Суммарная реакция:

$$Zn - 2e^- + Cu^{2+} + 2e^- = Zn^{2+} + Cu^{2+}$$

Электродвижущая сила гальванического элемента (ЭДС):

Для элемента Даниэля-Якоби (C = 1 моль/л; станд. условия):

$$E_{\mathrm{Zn^{2+}/Zn}} = E_{\mathrm{Zn^{n+}/Zn}}^{0} + \frac{0{,}059}{2}$$
 у $1 = E_{\mathrm{Zn^{n+}/Zn}}^{0} = -0{,}76\mathrm{B}$

$$E_{\mathrm{Cu^{2+}/Cu}} = E_{\mathrm{Cu^{2+}/Cu}}^{0} + \frac{0{,}059}{2}$$
ју $1 = E_{\mathrm{Cu^{2+}/Cu}}^{0} = 0{,}34\mathrm{B}$

ЭДС =
$$E_{\text{Cu}^{2+}/\text{Cu}} - E_{\text{Zn}^{2+}/\text{Zn}} = 0,34 - (-0,76) = 1,1$$
 В

Схема гальванического элемента: