Report on Laboratory Experiment No 3 Hydrogen Spectrum Research and Determination of Rydberg Constant

The student:	
Group	
First name	
Last name	
is allowed to do the laboratory work.	

Date

Signature of the teacher

Purpose of work

Study a visible region of the hydrogen emission spectrum and determination of Rydberg constant

Theoretical principals of work

Arrangement of the lines of the hydrogen emission spectrum is described by the formula:

From expression (1) follows that the hydrogen emission spectrum consist of several series which are represented in the scheme of energetic levels (Figure 1) by the vertical arrows.

It is clear from Figure 1 that Lyman series appears as a result of transition of atom from one of the higher levels with m =_____ to the basic one n =_____

The Balmer series – from the levels with m = ______ to the level with n = _____ The Pashen series – from the levels with m = ______ to the level with n = _____ The Brakket series – from the levels with m = ______ to the level with n = _____ In this laboratory experiment the wavelength of the lines of the ______ series are measured. These lines are designated by the symbols: H_{α} - red line (m = ____), H_{β} - bluish-green (m = _____), H_{γ} - blue (m = _____), H_{δ} - violet (m = _____).

Experimental Setup

Figure 2 shows scheme of monochromator

Collimator is intended for _

Prism is intended for	
Output tube is intended for	

MEASUREMENT RESULTS

a) Calibration of monochromator.

Calibrate monochromator means_____

Record the results of calibration according the known mercury spectrum in the Table 1

				Table 1
λ , nm				
n^0				

b) The Rydberg constant determination.

Replace mercury luminescent lamp by hydrogen discharge lamp and data of determination of spectral lines position of the Balmer series record to the table 2.

Table 2

m	3	4	5	6
n_0				
λ, nm				
$\overline{\nu}$, cm ⁻¹				
R, cm^{-1}				

Results of Calculation

Calibration curve

λ, nm

Error Analysis

Round off the value of $\Delta \tilde{R}$ and give the result in the form:

$$\overline{R} = \widetilde{R} \pm \Delta \widetilde{R} =$$

Resume

Test questions

1. Cite Bohr's postulates.

2. What shape of the spectrum is characteristic for gaseous substances? What is the nature of spectral lines?

3. What peculiarities are in the hydrogen spectrum? Record a formula for the hydrogen spectral series. What senses have the values in this formula?

4. How many spectral series has the hydrogen spectrum? How does the Bohr theory explain an origin of these series?

5. Energy of hydrogen atom in the first exited state (n = 2) equals 3.4 eV. Calculate the energies of stationary states correspond to the H_{α} , H_{β} , H_{γ} , and H_{δ} lines.

Answers

Realized by the student: Group _______ First name ______ Last name ______ Approved by the teacher: _______ Date _________ Signature of the teacher