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Evaluation of Errors 

 
 Physics is said to be a science of measurements. To measure a physical 

quantity, it is necessary to compare it with a well-known standard. In the process of 

comparison we make errors. Errors are caused by inaccuracy of experimental 

equipment and measuring procedure. It is useless to speak about absolutely 

accurate measurements. One can only speak about the interval of probable values 

of the physical quantity under investigation. The theory of measurements deals with 

a problem how to choose an adequate method of measurements and to evaluate the 

experimental errors. 

 All kinds of measurements are known to be subdivided into two groups: 

direct and indirect measurements. If a physical quantity is being measured directly 

with a measuring device, these measurements are called direct measurements. For 

example, you can measure a distance with a ruler, a thickness with a micrometer, a 

time with a watch, and an electric current with an amperemeter. But in many 

applications a physical quantity y to be measured depends on other quantities x1, 

x2,… which are measured directly, i.e., 

     y = f(x1,x2,…)                (1.1) 

Thus, the value of y is to be calculated. To measure the speed of a body v=S/t, you 

are to measure the distance S and the time t needed for the body to cover this 

distance and then to divide S by t. The measurements of such kind are called 

indirect measurements, and sometimes they are rather complicated. 

 All the errors made in an experiment can be subdivided into three groups: 

crude (gross), systematic, and random errors. Crude errors may arise because of 

some unexpected external influence, inadequate experimental procedures, and so 

on. While analyzing the experimental data, such errors should not be taken into 

account and measurements should be repeated. 

 Systematic errors are the errors which have the same sign and value and are 

repeated during the experiment. The errors of this kind can be eliminated while 

making calculations. 

 Random errors are caused by a great number of factors which are very 

difficult to consider. They may arise when conditions of the experiment do not 

change. They are small but inevitable. For example, they may be caused by random 

vibrations of experimental devices, random variations in external electromagnetic 

fields, mechanical friction, temperature variations, and so on. The theory of random 

errors is well elaborated and permits their influence on experimental results to be 

evaluated. The art of an investigator consists in his ability to distinguish between 

systematic and random errors.  

 Let us denote a random variable by x and its true value by x . According to 

the theory of probabilities, x  is called the mathematical expectation. The quantity          

                                                xxx                                                  (1.2) 

is called the deviation (i.e., the error).  
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   For a random quantity we cannot find a true value; we can only determine an 

interval where it must be located and we can indicate the probability of finding it in 

this interval. To calculate this probability, an expression for the probability density 

was derived by Gauss. This expression is the Gauss distribution which is very 

often called the normal distribution 
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Here,  is called the standard deviation and 
2
 is the variance of the random 

quantity x. The function f(x) is 

shown in Figure 1. 

The quantity  
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is the probability that the value x lies 

in the interval from x to x + dx. 

Obviously, 
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                              Figure 1.                                  The value of  characterizes the  

width of the distribution function. The greater , the wider is the distribution 

function. 

 The Gauss law was derived under the following assumptions: 

1. The values of x are continuos. 

2. Negative and positive deviations x have the same probability. 

3. The larger the deviation x, the lower is its probability. 

The random variables having these properties are called normal. 

 For the majority of  physical quantities, the Gauss distribution holds very well. 

   The quantities x and  are called the parameters of the Gauss distribution. In 

practical applications these parameters are unfortunately unknown and some 

estimates should be used. The best estimate for the mathematical expectation is the 

arithmetic mean, i.e.,  

     
n

x
x i
~  ,                     (1.6) 

where n is the number of measurements and xi is a  specific value of x in the ith 

measurement. In the theory of errors, it is also shown that the best estimate for the 

standard  deviation can be represented as follows: 
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The degree of proximity between x~  and x  can be characterized by the confidence 

interval x~  within which the error modulus will lie with a sufficiently high 

confidence probability i.e., 

        }~~{ xxxp .                       (1.8) 

In other words, this is a statement that with a probability , the true value x  lies in 

the interval xx ~~   (see Figure 2). 

 A method for numerical 

evaluating the confidence interval was 

developed by W. S. Gosset.  

  Here we give only a practical  

implementation of this method. 

 

1. Having measured individual values 

of x, we need to determine x~ . 

 

2. The total error is considered to    

consist of two parts: xi is an error in  

 Figure 2.                                        individual measurement  and xa is random 

error, which are summed geometrically 

         22~
ai xxx  .           (1.9) 

     Usually, half the device accuracy is chosen as an individual error. 

3. The random error is calculated in accordance with the relation  
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where the quantities t,n are called Student’s coefficients. They depend on the 

confidence probability  and the number of measurements (usually n = 3  5). 

The values of t,n are tabulated. As a rule,  is chosen to be 0.95; then, for 

example, t,3 = 4.3 and  t,5 = 2.78. 

4. The value of x~  should be rounded off, and the value of x should be given with 

accuracy corresponding to that of the error. The result cannot have more 

significant digits than the initial measurements. For example, 

v = (320  10) m/s, or g = (9.812  0.007) m/s
2
. 

In general the quantity to be determined depends on several variables  

)( 21 ,...x,xfy      (1.11) 

Note: In the above relation, xi are independent variables whose errors should be 

evaluated in accordance with items 1  4. 

 According to the theory of probabilities, y can be expressed as follows: 

           )( 21 ,...x~,x~fy~  ,    (1.12) 

and the confidence interval y~  can be represented in the form 
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where 
ix

f
~


 are the partial derivatives with respect to ix~ , and xi are the confidence 

intervals. When the function f(x1, x2,…) is rather complicated, it is more convenient 

to rewrite Eq. (1.13) in the form  
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   A very simple but efficient method of evaluating the error in indirect 

measurements is often used. The values of xi are varied (and can be measured only 

once). Then the values of yi are calculated for each run. The result is  

  yyy ~~  ,             (1.15) 

where  
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Here, n is the number of runs. Thus, the value of y~  is estimated as if y were 

directly measurable quantity. In the strict sense, this method is incorrect, but in 

practice it gives the same results as the conventional one. Try to use it and compare 

the results of both methods of evaluating indirectly measured quantities.       
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Experiment 1. Measuring the linear dimensions of a body 

   The space and time play a special role in physics, because all physical phenomena 

are developing in a spatiotemporal continuum. So it is very important to measure 

with high accuracy a distance between bodies and their linear dimensions. There 

are many methods to do it.  

   In this work we discuss a direct method of measuring the linear dimensions when 

measurable quantities are being compared with some standard quantities (for 

example, 1 m) which are conventionally used as units of length. There are many 

types of devices used to measure the body’s linear dimensions. The most simple of 

them are a ruler, a calliper, a micrometer, a microscope, etc.  

   The choice of a measuring device depends on accuracy you wish to have. If 

accuracy of about 1 mm is needed, it is sufficient to use a conventional scale ruler. 

If you wish to get the results with accuracy in the range 0.1  0.05 mm, you must 

use a calliper, 0.01 mm – a micrometer, 0.001 mm or more  a microscope or some 

other measuring device. 

   The main parts of a vernier calliper are a basic scale ruler (a) and a short scale 

ruler (vernier) (b) made to slide along the divisions of basic ruler for indicating 

parts of divisions (see Figure 1). 

Figure 1. 

The vernier scale with accuracy 0.1 mm is shown in Figure 2.   

 

Figure 2. 

    In Figure 2 the upper scale represents 10 mm of the basic ruler, and the lower 

one represents 9 mm of the vernier. So, one division of vernier scale is 0.1 mm 

shorter than that of basic ruler. The divisions of vernier are made in such a way: 
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one division of vernier corresponds to 
mm

m 1
1

1



 divisions of the basic ruler, 

where m is the number of vernier divisions. It is capable of measuring linear 

dimensions with accuracy  
m

1
 of the basic scale.  

   Let y be the spacing of the basic scale divisions, and x be the spacing of vernier 

divisions. It is clear that  
m

y
yx   or  ymmx )1(  . The quantity  

m

y
xyx   is called the accuracy of a vernier. 

   In an arbitrary position of vernier relative to the main scale ruler, one of the 

vernier divisions coincides with a certain basic scale division. The idea of the 

vernier method is based on the ability of our eyes to indicate this coincidence of 

divisions. 

   Let L be the measurable length. Let the first end of the vernier coincides with the 

zero division of the basic scale, and the second end be between the divisions k and 

(k + 1). So, L = (ky + L), where L is yet unknown. Now put the zero division of 

vernier to the end of measurable length. Because divisions of both scales are 

different, the nth vernier division coincides with a certain basic scale division, and  

we can write   

                                            xnxynnxnyL  .                                     (1) 

The total length  is               xnkyL   or   

                                          
m

y
nkyL  .                                                                (2) 

If measuring surfaces of sliders (c) are in contact, the zero vernier and basic scale 

divisions coincide. It is easy to see that the distance between the first division of 

vernier and the neighboring division of basic scale is 0.1 mm, for the second 

division this value is 0.2 mm, and so on, up to the ninth division where the distance 

is 0.9 mm. For example,  when you shift the vernier slider a little to the right and 

the vernier division number eight coincides with the closest division of the basic 

scale, this means that the vernier slider has been shifted at a distance of 0.8 mm. 

   The measuring procedure is the following: the body to be measured is inserted 

between the contact surfaces of sliders (you press slightly the vernier sliders to the 

body to be measured). The integer number of millimeters is read on the basic scale 

(up to the zero division of the vernier). Decimal pieces are read by the vernier 

division which coincides with the basic scale division. The method of measuring by 

a calliper  with accuracy 0.05 mm is the same. 

   Using a calliper, you can measure not only the outside dimensions of a body, but 

also its inside dimensions, for example, the inside diameter of a boring (Figure 1d) 

or the depth of a boring (Figure 1e). 
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Micrometer (Fig. 3)   

 

Figure 3. 

A cramp (7) and a sleeve (3) are tightly joined. There are a reading line and sliding 

scale (0.5 mm divisions) on the sleeve. A micrometry thread with a pitch of 0.5 mm 

is cut in the inner part of the sleeve. A spindle (2) can move inside the sleeve. A 

thimble (5) is joined with a spindle (2) by a coarse adjustment screw (is not shown) 

and can be adjusted in a right position relative to the spindle. There are fifty 

longitudinal divisions along the round thimble. 

   When the spindle and an anvil (1) are in contact, zero divisions of the thimble  

and reading line of the sleeve coincide.  In order to simplify the measurement 

procedure, a coarse adjustment screw with a ratchet (6) is provided. With the help 

of the ratchet, the pressure upon the body is under control. The thread pitch of the  

micrometer is 0.5 mm. The upper and lower reading lines (3) are also shifted by 0.5 

mm. So, one turn of the thimble results in the spindle displacement at 0.5 mm, and 

two turns – at 1mm.  

    In order to measure the linear dimension of a body, you ought to insert it 

between the spindle and the anvil and by turning the ratchet, to press it slightly. The 

right position of the body is indicated by a slight ratchet drill. Then you can read 

the measurement: millimeters are being read on the reading line and the decimal 

places – on the sliding scale.  

 

Procedure 
 

 Use a calliper to measure the length (a), width (b) and height (c) of a parallelepiped 

and record the data in Table 1. Each dimension must be measured five times.  

1. Calculate the average values of a, b, and c. 

2. Calculate the parallelepiped volume cbaV ~~~~
 . 

Table 1. 

No. a (mm) b (mm) c (mm) 

1    

2    
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3    

4    

5    

Average a~  b
~

 c~  

 

3. Use a micrometer to measure the height (h) and diameter (d) of a cylinder and 

record the data in Table 2.  

Table 2.  

No. h (mm) d (mm) 

1   

2   

3   

4   

5   

Average h
~

 d
~

 

 

4. Calculate the average values of  h and d. 

5. Calculate the cylinder volume h
d

V
~

4

~
~

2
 . 

Error Analysis 

 

1. Calculate the standard deviation of an average quantity 

   

45

~...~
~

2
5

2
1

~





aaaa
a .   

2. Calculate the random error a~r
~a~ σ2.78  , where 2.78 is Student’s coefficient 

for five measurements and 0.95  is the confidence probability. 

3. Calculate the error of individual measurement  

mm 0475010950
2

1
...a~ m.i   

Here 0.95 is the confidence probability and 0.1 is the accuracy of caliper.  

4. Calculate the total error  

22
m.ir a~a~a~   . 

5. Do analogous calculations to determine the errors b and c. 

6. Calculate relative, , and absolute, V
~

 , errors  

222

~

~

~

~

~

~~~







 













 








 


c

c

b

b

a

a
VV   and   

V

V
~

~


 . 

6. Round off V
~

  to the nearest tenth and V
~

 to the same significant digit. Give the 

result in the form: 
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VVV
~~

 . 

7. Calculate the total error  

22
m.ir a~a~a~   . 

8. Do analogous calculations to determine the errors b and c. 

6. Calculate relative, , and absolute, V
~

 , errors  

222

~

~

~

~

~

~~~







 













 








 


c

c

b

b

a

a
VV   and   

V

V
~

~


 . 

9. Round off the value of V
~

  to the nearest tenth and V
~

to the same significant 

digit. Give the result in the form: 

VVV
~~

 . 
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Experiment 2. Measuring the free-fall acceleration  
 

Objective: Measuring the free-fall acceleration. 

Devices and instruments: A special setup (a magnet, a timer, a basket, and a long 

rod) and a number of steel balls. 

Theoretical principles 

 In a dynamical (noninertial) reference frame the second Newton’s law can be 

written in the form:  

0
2ω arna mm

r

U
mm 



 .                                    (1) 

Here U is the potential energy, 0a  is the frame linear acceleration, ω  is the frame 

angular velocity, and r  is the radius-vector. 

 In the present work, we will discuss the free fall of a small sphere in the 

gravitational field of the Earth. So, ω  is the angular speed of the Earth. In the strict 

sense, the Earth is noninertial frame, and we ought to discuss every term on the 

right side of Eq. (1) before the derivation of the formula for the free-fall 

acceleration. 

1) 
dr

dU
  is a force acting between the body and the Earth (we do not take into 

account some other fields and forces).  

0mg
d

d


r

U
,                                                             (2) 

where g0  is the “true” free-fall acceleration. Equation (2) can be written in the form  

20 γ
R

mM
mg  .                                                           (3) 

Here M is the Earth’s mass, R is the Earth’s radius, R=7.37·10
6  

m, and  is the 

gravitational constant,   6 67. ·10
-11

 (SI).   So,  

9.81γ
20 

R

mM
g  m/s

2
.                                                 (4) 

2) In Eq. (1), 00 a , because there is no linear acceleration when the Earth moves 

in space. 

    3) ω is negligibly small, and it is quite natural to neglect the force of such a type. 

Of course, the Earth’s axis nutates and precesses, but their influence is practically 

zero. Indeed, the Earth’s axis makes one turn (precession) during 26000 years and 

one 10-oscillation (nutation) during 18.6 years. The values of pω  and nω  are 

 91064.0
36002436526000

2 



p  s

-2
 (precession), 

 9102.1
3600243656.18360

2 



n  s

-2
 (nutation). 
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4)  The Coriolis acceleration ][cor vωa  . For high speeds its value cannot be so 

small in comparison with g. But in our experiment 10v m/s, and  

 34
cor 10109

360024

2π10  



a m/s

2 10 4g. 

 The maximum accuracy of our experiment is 0.1% = 10
-3

. So we neglect the 

Coriolis force. 

5)  In Eq. (1) the centrifugal force is Fc = m
2
 Rsin. In our case  = 56 (the 

Tomsk latitude), so 

   gRma 326
2

2
c 103102.8sin56106.4

360024

2π
sinω  










  , 

and we cannot consider this force to be negligible. Taking into account the 

preceding, we can write (see Fig. 1) 

                      cαgg  0 .            (5) 

The quantity P = mg is called the body’s 

weight. 

The discrepancy ( )g g0   is zero at the 

Earth’s poles and is 0.3% of g on the 

equator. The Earth is a slightly oblate, 

and the free-fall acceleration g varies 

with latitude . At the equator, g is 0.2% 

less then at the poles. The value of g 

changes from g = 9.780 m/s
2
 at the 

equator to g = 9.832 m/s
2 
at the poles.  

              Figure 1.                                    The standard value of g is taken to be g =   

                                                         9.780 m/s
2
. 

 

Experimental arrangement 
 

 In the normal position, the double-

contact switch (SW) is turned to the left 

and the electric current runs through the 

magnet, the iron ball (B) being hold by 

the magnet. If  the switch is turned to the 

right, the current through the magnet is 

broken, and the ball begins to fall. At that 

moment, the electric timer (T) starts. The 

ball strikes the contact plate (CP), and the 

timer stops. The ball falls into the basket 

(BS). Knowing the time of fall and the distance h, it is easy to calculate the value of 

the free-fall acceleration g: 

                                      ,
2

2gt
h   .

2t

h
g               (6) 

 
 

Figure 2. 
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Work order 
1.  With the help of a long ruler, measure the distance h (h is about 2 meters). 

2.  Push the tumbler (SW) to the left position, and with the help of the long rod pull 

the ball to the magnet. 

3.  Push the tumbler (SW) to the right position and record the time of free fall. 

4.  Repeat the procedure no less than five times, and write down the data in Table 1. 

5.  Repeat the experiment with another ball. 

Table 1. 

 

No. t  t  l  g  g  

1 

. 

. 

5 

     

Note: Because of the magnetic inertia, the ball does not start to fall immediately 

after the electric circuit has been broken, and this time delay must be 

subtracted from time t . (The time delay is given). 

6.  Calculate the experimental error. 

7.  Taking into account that gac  , it is rather easily, using Figure. 1, to obtain 

                             







 sin1 c

0
g

a
gg             (7) 

or                        gggg o 1.0024)102.4(1sin56
9.8

102.8
1 3

2

0 












 
 



.       (8) 

Calculate the Earth’s mass using the formula 

                     
611

2
0

02
106.3  ,106.67γ  ,

γ
  ,

γ
  R

Rg
Mg

R

M
.       (9) 

Compare this value with the tabulated one. 
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Experiment 3. Determining the coefficient of sliding friction 
 

If we put a physical body on a surface and begin to pull it, we must 

overcome some force even if this surface is horizontal. The forces of that kind are 

called the friction forces. They are present everywhere and by the way, are quite 

necessary for walking and driving. 

Static friction. If with the 

help of a dynamometer we 

begin to pull a bar along the 

plane, we can see that the 

bar starts moving only when 

the acting force is greater 

than some threshold value. 

While the driving force is 

smaller than the threshold 

value, the bar is at rest, and 

the friction force Ff and the 

driving force F are exactly 

the same. This friction force 

is called the static friction 

force. Its value is max,'0 ff FF   and depends on the normal force FN (i.e., the 

component of the force perpendicular to the plane); in such a way, F k Ff N' ', max  , 

where k' is the dimensionless coefficient of static friction which depends on the 

characteristics of both contact surfaces.  

Sliding friction. When the driving force is greater than max,' fF , the body begins to 

move. The measurement of the friction force Ff in motion is especially simple when 

the body moves at a constant speed. In this situation we have  

fFF 0  

(The total force is equal to zero when the body moves at a constant speed). 

The absolute value of the friction force fF  is the same as that of the driving force 

F , but of course their directions are opposite. By analogy with the static friction we 

can use the coefficient of sliding friction k in accordance with the following 

relation:  

Nf k FF  . 

The relation between the forces of static and sliding friction is: slfsff FF ,,  , and 

we have kk ' . 

In the first approximation, the force of sliding friction between dry surfaces does 

not depend on the speed. That is quite different from the other kinds of friction, for 

 

Figure 1. Dry solid frction. 
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example, in a viscous medium or in the air, where the friction force depends 

strongly on the velocity. 

Friction on an inclined plane 

A body on an inclined plane starts 

moving only when the downward 

force sinmg  is greater than the 

maximum force of static friction 

 cos'sin mgkmg  , in other words 

'tanα k . With the help of this 

relation, 'k  can be evaluated by 

measuring the angle  when the body 

begins to move. The coefficients of 

static and sliding friction for several 

pairs of materials are given in the table 

below. 

 

Materials 'k  K 

Iron-iron 0.15 0.09–0.03 

Iron-wood 0.6 0.5–0.2 

Iron-ice 0.027 0.014 (sledge, skates) 

Rubber-asphalt 0.9 0.85 

0.45 (damp) 

 

Description of the laboratory  

device  

 The laboratory device consists of a 

drawing board and a T-square. The T -

square has two elements: a ruler R and a 

driving block B. The driving block is 

connected with the ruler by a screw  S and 

can be set at different angles  (Fig.3). 

When the ruler moves to the right at a 

constant speed, the body moves upward 

along the ruler. There is a small (d  1 cm) 

orifice in the center of the body. The ruler 

and the body can be made from different 

 Ff 

FN 

mg 

mgsin

 

 

Figure 2. 

Figure 3. Laboratory device. 
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materials. In our laboratory the ruler is made from duralimin; on one side of the 

body surface there is a plate made from brass, and on the other side there is a plate 

made of rubber. 

Theoretical principles 

 A body moves on a horizontal 

plane. Because of this, we must take 

into account only horizontal forces 

which act in this plane: the normal 

force NF  perpendicular to the 

friction plane, the sliding friction 

force fF  parallel to the friction 

plane, and the force BF  of friction 

between the board and the body. 

When the body moves at a constant 

speed, we have: 0 BfN FFF  

The direction of the force BF  depends on the forces NF and fF . The direction of 

motion and the vector BF  are opposite and just because of this the body moves in 

the direction which is given by the geometrical sum of vectors NF and fF . This 

motion is schematically shown in Figure 5. 

 In accordance with 

Figures 4 and 5, 

2

1
l

l
tanαk  . 

Here A0 and A1 are the 

initial and final positions 

of the body. Through the 

orifice in the body we can 

mark these points with the 

pencil on a sheet of paper. 

A0A2 = l2 is the distance 

measured along the 

normal to the ruler between the initial and final positions of the body. 

Work order  

1.  Put a sheet of paper (about 20  20 cm
2
) on the drawing board and fix it by putty 

or drawing-pins. Lay the ruler on the paper at angle  (see Figure 3) equal to 30 

and move it to the left. 

2.   Lay the body on the ruler as shown in Fig. 3 and mark the initial position of the 

body by a pencil (Figure 5, point A0). 

 
 

 A0

A2

A3

 Figure 5.  A1A2 = l1,    A0A2 = l2. 

Figure 4.  
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3.  Very cautiously and without jabs move the driving block to the right and mark 

the final position of the body (Figure 5, point A1). 

4.  Do all necessary geometrical drawings and measure the distances l1 and l2. Write 

down these values in the table. Repeat the experiment five times.  

5.  In order to be sure that the value of the coefficient of sliding friction does not 

depend on the friction force acting between the body and the board, lay a 200-g 

weight on the body and repeat items 1-4. 

6.  In order to be sure that the coefficient of sliding friction does not depend on the 

normal force FN, lay the ruler at the angle  equal to 60 and repeat items 1-4. 

7.  Repeat items 1-6 for an other pair of materials. 

 

Table 1. 

Pair N

o. 

Weight, 

g 
, l1 l2 tanα/ 21  llk  kk Δ  

Duralimin-brass 1 

2 

. 

. 

 

 

0 

 

 

30 

    

Duralimin-brass 1 

2 

. 

. 

 

 

200  

 

 

60 

    

Duralimin-brass 1 

2 

. 

. 

 

 

0 

 

 

60 
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Table 2. 

Pair N

o. 

Weight, 

g 
, l1 l2 tanα/ 21  llk  kk Δ  

Duralimin- 

rubber 

1 

2 

. 

. 

 

 

0 

 

 

30 

    

Duralimin- 

rubber 

1 

2 

. 

. 

 

 

200  

 

 

60 

    

Duralimin- 

rubber 

1 

2 

. 

. 

 

 

0 

 

 

60 

    

 

Attention! You can simplify the experimental procedure if instead of the values l1 

and l2 you measure the angle  with a protractor and then calculate tan. 

8.  Calculate the absolute errors for every run (items 1-5 in Tables 1 and 2) 

 

 

1)(
Δ 1

2









nn

kk

tk

n

i

α,n . 

Here  ntα,  is Student’s coefficient, n is the number of measurements, and  is the 

confident probability (for  = 0.95 and n = 5, α,nt =2.78). 

9.  Using the experimental data, draw some conclusions concerning this laboratory 

work. 
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Experiment 4. Studying the distribution function of random 
variables 

 

Objective: Plot an experimental histogram of the distribution of random variables 

and compare it with the Gauss theoretical distribution; give no less than ten 

evaluations of average values (with the help of Student’s coefficients) for n = 3, 5, 

and 10 successive measurements. 

Devices and Instruments  

An electric timer. 

Basic theoretical principles  

    Very many natural variables x are distributed in accordance with the Gauss law 

which can be written in the form 

                                         
2

2

σ2

)(

e
2ππ

1
)f(

xx

x




 .                                                 (1)    

Here x is the arithmetic average, and  is the standard deviation. 

The value of  is the main characteristic of measurements and  depends on the 

method of measurements, accuracy, and properties of the variable. In the special 

course of the probability theory it is shown that                                                           

                                                      σlimσ



n

,                                                          (2) 

where n is the number of measurements, and   is the standard deviation of the 

estimate of the mean 

                                
1)(

)xx(

σ 1

2
i









nn

n

 ,                                                                  (3) 

                                 
n

x

x

n

i
 1 .                                                                                (4) 

In practice for n  100 it is quite possible to take σσ  . 

  It has been shown by English mathematician W. Gosset (pseudonym Student) that 

for n measurements the confidence interval can be expressed as follows: 

                                         σΔ α,ntx  .                                                                      (5) 

Here t n ,  is the so-called Student’s coefficient which depends on the number of 

measurements and on the confidence probability (in our laboratory,  = 0.95). For 

example, tn = 2.78 ( n = 5), tn = 4.3  ( n = 3), and tn = 2.2   ( n = 10). 

Obviously, there is a tendency: the greater n , the smallerx . 
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Work order  
1.  Switch on the electric timer, and when the arm makes one turn, switch it off. 

Sometimes it will be one second, sometimes some other value. In order to make 

calculations easier, instead, for example, 1.02 write down 102 in the table, and so 

on. Do no less than n150  measurements. In such a way, you will have n 

random variables x. 

2.  Do necessary calculations  

   No.    x   2)( xx   

   1 

   2 

   … 

  150 

 

   x1 

   x2 

   … 

   x150 

  2
1 )( xx   

  2
2 )( xx   

      

   … 

  2
150 )( xx   

    x                 σ  

      

3.  It is very convenient to use the procedure which is clear from the figure below.  

 

 
 

Here, each point corresponds to one measurement. The total number of points is of 

course n.   

4.  Divide the total range x into equal sections (intervals) including 1, 2, or 3 runs 

with the same x in such a way as to have 106   intervals. Count the number of 

points in each interval and write them down in the table below. Here x is the 

length of the interval, and x i  is its center.  
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 No.  

Interval 

  Number of 

      points ni        
 f

n

n x
i

i



 

    )( ixf  

 1 

 2 

 3 

 … 

 … 

 … 

10 

             n1  

            n 2  

            n 3  

          … 

          … 

          … 

        n10  

         f 1  

         f 2  

         f 3  

         … 

         … 

         … 
      f 10  

    )( 1xf  

    )( 2xf  

    )( 3xf  

        … 

        … 

        … 

  )( 10xf  

      

    This table is just an example. You may have your own subdivisions. It is useful 

to take  the end points of each interval between the integer values x and write 

them down in the column Interval. The values fi represent the frequency of 

finding the random variable x in the ith interval. As n , )( ii xff  , where 

)( ixf  is the Gauss distribution. 

5.  For calculated values plot the histogram and compare it with the Gauss 

distribution. An example of such a histogram is shown in the figure below. The 

solid curve shows the Gauss distribution. 

 

95 100 105 x  
 

6.  Take at random 3, 5, and 10 successive runs, every number several times, and 

with the help of Eqs. (3), (4), and (5) evaluate x  and xΔ  for every run. 

    Present this result in the form given below 
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95 100 105

150

3

3

3

5

5

5

10

10

10

x

 
 

   The number to the right of every rectangle indicates the number of measurements 

in the run, the length of the rectangle is 2x , and the middle point is x  for the 

given run. Plot no less than ten calculations of this kind. 

7.  Give some conclusions concerning the results of experiment. 
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Experiment 5. Elastic and inelastic collisions of balls  
 

Objective: Studying the laws governing elastic and inelastic collisions of balls and  

determining the elasticity coefficient for different pair of balls. 

 

Devices and Instruments:  Special arrangement for experiments with balls and 

different balls. 

 

Theoretical principles 
     In mechanics, collisions are described as a short interaction of two or several 

bodies when these bodies are brought in contact. The straight line through the 

contact point perpendicular to the contact surface is called the line of collisions. 

The collision is called central when the centers of mass of colliding bodies are at 

the line of collision. There are two kinds of impacts: elastic and inelastic. When the 

collision is elastic, the total kinetic energy does not change. The collision is called 

perfectly inelastic, when after collision two bodies move as a whole. The collision 

can be characterized by the ratio K = E2/E1, where E2 and E1 are kinetic energies 

after and before collision, respectively. Of course, E1  and E2 are total kinetic 

energies of the colliding bodies. Obviously, 0   K   1. 

    If a ball with mass m1 and speed v1 strikes a ball at rest ( v2 = 0 ) with mass m2, 

the law of conversation of momentum holds: 

                  m1 v1= m1 u1 + m2 u2 ,                                         (1) 

where u1 and u2 are the velocities of the balls after impact. 

     The balls are hung like pendulums (Fig.1) and collide when they are in the 

lowest position. The velocities can be determined if the angles of deviation are 

known. Obviously,   

                                                  hgv 2 ,                                                   (2)   

                                         cos1lh       or                          
2

sin2 2  lh .                     (3) 

So,     
2

sin21


 lgv ,       

2
sin2

1

1


 lgu ,          

2
sin22


 lgu .        (4)  

 

Figure 1. Before impact (A) and after it (B). 

Using Eq. (4), we can rewrite Eq. (2) in the form 

                          
2

sin
2

sin
2

sin 211








mmm .                                       (5) 
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This equation can be checked experimentally. 

  The value of K can be expressed as follows: 

                          

2
sin

2
sin

2
sin

2
1

2
2

1
2

1










m

mm

K .                                           (6) 

 

Work order 
 

1.  Measure masses of the balls with a scales. 

2.  Hang the balls in such a way that the collision is central. 

3.  Push the right ball to an electromagnet and measure the angle . 

4.  With the help of a cutout switch, break the electric current and measure the 

angles 
1
 and  . Do it at least five times. 

5.  Check Eq. (5) and calculate the value of K.  

6.  Repeat the experiment  for the next pair. 

7.  The measurement error can be evaluated from the formula 

            
54

)(...)(
78.2

2
5

2
1 KKKK

K


 , n5 .                          (7) 

 

                    Ball (right) material        Ball (left) material 

 No.             
1
               K  

 1 

 2 

 3 

 4 

 5 

    m1 =               (right) 

m2 =               (left) 

K = 

left side of Eq. (5) 

right side of Eq. (5) 

 

             
1               K  

Note: To check Eq. (5), use the average values of angles. 
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Experiment 6. Studying dynamics laws with Atwood’s 
machine 
 

Objective: Checking Newton’s second law with the help of Athwood’s machine. 

 

Devices and Instruments:   Athwood’s machine, main weights, additional weights, 

and an electrical stop-watch. 

 

 

 

MR

EM

EM

B

m

m+m0

A

C
ESW

ESW
~ 220 V

+10 V  
Figure 1.  
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Figure 2.                                                              Figure 3. 
 

 

Experimental device and basic theoretical principles 
 

   Atwood’s machine (Figure 1) consists of a vertical bar equipped with a balance 

and a light pulley that can rotate in the vertical plane. Two identical main weights A 

and B (the mass of each weight is m) are connected by a thin thread. The weight A 

can be fixed in the upper position by an electromagnet EM. In the lower part of the 

machine there is a special platform C with a control plate. The control plate is 

electrically connected to a stop-watch. When the weight A strikes the platform, the 

stop-watch is switched off. 

   The work consists of two parts. 

 

Part 1 
 

   The total force acting on the pulley (in the vertical direction) is zero. The pulley 

does not move in the vertical direction. So (see Figure 2) we can write 

                                             21 TTgMN p                                                    (1) 

Here N is the normal reaction. The force of friction is NF kfr  , so we can write the 

expression for the frictional torque in the form: 

                                     M k M g T T rf p  ( )1 2 .                                      (2) 

The friction coefficient k can be found from rather simple considerations. 
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Let us assume that there is a mass m0 additional to the right mass m, and its value is 

such that the total system moves at a constant speed (if A is pushed slightly 

downwards). This means that RmR gTT 021 )(  , gT )( 01 mm  , and gT m2 . 

The first equation shows that the friction torque and the torque produced by 

external forces are equal. The second and the third equations hold, because the 

speed is constant. Using these equations, we can rewrite Eq. (2) in the form: 

                                    
0

21
0

2 mmM

TTgM
RmM

p

p
f




 ,                                         (3) 

                                 
rmmM

Rm
k

p )2( 0

0


 .                                                (4) 

 

  If there is a mass m1 additional to the right weight A, the system moves with an 

acceleration a (see Figure 3). Thus, tension in the thread can be given as follows: 

                    T m g a2  ( ) ,            T m m m g a1 1 0   ( )( ) .                     (5) 

The resultant torque (taking into consideration that a g ) can be expressed as 

follows: 

                                     M m m g ma R  ( )1 0 ,                                        (6) 

and the frictional torque is 

                                                M m g Rf  0 .                                                  (7) 

In accordance with the basic law of motion in rotation, we have  

                                                 JMM f .                                                 (8) 

Here J
M Rp


 2

2
 is the rotary inertia of the pulley, and 

R

a
  is the angular 

acceleration of the pulley. 

Using Eqs. (6) and (7), we have 

                                                   a
m g

m
M p





1

2
2

.                                               (9) 

Form formula (9) a very interesting fact can be seen: there are neither m0 nor k. 

Formula (9) gives the acceleration of a system without friction (the mass m0 

compensates for the friction force), and only the mass m1 acts. 

Note:    In this experimental arrangement the friction torque has already been 

compensated, and the weights are marked R for right and L for left ones. 

Task 1.  Checking formula (9).       

   It is well known that when consta , it can be found from the formula 

                                                  a
S

t


2
2

.                                                    (10) 

So, you have to compare the values given by Eqs. (9) and (10).  
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Work order 
1.  Place the weights A and B in the initial position, the tumbler switch in EM 

position. The  electric current will flow through the electromagnet coil and the 

weight A will be fixed in the upper position. 

2.  Put the additional weight m1 on the main weight A. Lift the platform C up. The 

electrical circuit of the timer will be ready for operation. Measure the distance S 

(S  40cm). The value of S is being given by the professor. 

3.  Switch the tumbler in ES position. At this moment, the electromagnet circuit is 

broken, and the timer begins to count. After the weight A strikes the platform, the 

timer is switched off. 

4.  For every additional weight, the experiment must be repeated 3 − 5 times. Then 

it is necessary to find the average time of weight motion and using formula (10), 

find the acceleration. 

5.  Compare the values of a given by formulas (9) and (10). 

6.  Note: All the data are to be written in Table 1.  

 

Table 1 

 
No.  

   m1 

   [g] 

   2m 

   [g] 

   Mp 

   [g] 

   S 

  [cm] 

    t 

   [s] 
   t  
   [s] 

a
S

t


2
2

      a  
 

 1  

 2  

 3  

 4  

 5  

        

 

Part 2 
 

From Newton’s second law we have:  

                                                
a

a

F

F

1

2

1

2

     (if the mass does not change).     (11) 

Task 2 is to check Eq. (11). 

If we put mass m2 on A and mass m1 (m m2 1 ) on B, then F m m g1 2 1 ( ) .  

If we put both masses on A, then F m m g2 1 2 ( ) . 

So,                                         
F

F

m m

m m

1

2

2 1

1 2





.                                               (12) 

But according to Eq. (11), we obtain 

                                              
F

F

a

a

t

t

1

2

1

2

2

2

1

2
  .                                              (13) 

So, in this experiment it is necessary to compare Eqs. (12) and (13). 

Note: All the data must be put in Table 2. 
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Work order: The same as in Part 1. 

Table 2 
No.     m1 

   [g] 

   2m 

   [g]   
F

F

1

2

 
   S 

  [m] 

    t1 

   [s] 

    t2 

   [s] 
a

a

1

2

 

 1  

 2  

 3  

 4  

 5  
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Experiment 7. Determining the free path and the effective 
diameter of a molecule 

 

Objective: Determining the free path and the effective diameter of air   molecules.  

 

Devices and instruments: A special arrangement with a burette and a capillary pipe 

(see Fig. 2), a glass, a timer, a capillary slide, a microscope, a ruler, 

and a graduated glass beaker. 

 

Theoretical principles      

   In accordance with the molecular kinetic theory, the chaotic motion of molecules 

is the cause of the so-called transport phenomena: thermal conduction, diffusion, 

and viscous friction. In spite of the very high values of molecular velocities          

(1 km/s), the transport phenomena are rather slow, because there are very many 

collisions per second and molecular paths are not straight but broken. 

   Forces acting between molecules are of considerable values only when the 

distance between molecules is small (one-two molecular diameter). Just because of 

this we can consider the paths of molecules between collisions to be straight and 

the speed to be constant. Only when a molecule strikes another molecules, its path 

is broken. 

In the theory, the concept of the effective molecular 

diameter effD  is very important. It is the distance 

between the centers of molecules when the van der 

Waals force is zero (Fig. 1). The distance between two 

collisions is called the free path . The mean value of  

can be expressed in the form: 

                 
2

π2

1
λ

effnD
 .                                        (1) 

Here, n is the number of molecules in the unit volume. 

The values of   and effD  can be measured. In this 

laboratory work,   and effD  are being determined with 

the help of a viscous transport process study. It is well known that the intrinsic 

viscous coefficient can be expressed in the form: 

                            v
3

1
                                             (2) 

Here  is the intrinsic friction coefficient,  is the gas density (in our case, the air 

density),   is the molecular mean free path, and v  is the average speed. So,      

                                                
vρ

3η
λ                                                        (3)  

The values on the right side of this equation can be measured experimentally. 

1. Determining  

Def

r

U

Fig. 1
 

Figure 1.  
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   In accordance with the molecular-kinetic theory, the velocity of the gas flow 

through a capillary pipe (r is its radius and l is its length) can be expressed as 

follows: 

                                            
l

p

V

r
u







2

,                                                    (4)  

where p is the pressure difference along the pipe. So, the volume of a gas passing 

through the capillary pipe during time t, can be written as 

                                           tp
l

r
V 






8

4

,                                                  (5) 

and we have                    
lV

tpr

8

4 
 .                                                 (6) 

2. Determining  . 

From the Mendeleev-Klapeyron equation we obtain 

                                                   
RT

p
 .                                                     (7) 

     3. Determining v . 

    It is well known that                  



RT

v
8

.                                                     (8) 

    So,                           





216

3 4

plV

RTtpr
.                                            (9) 

Here r is the capillary radius, p is the pressure difference along the capillary pipe, 

t is time, T is the temperature, V is the gas volume, p is the gas pressure, l is the 

length of the capillary pipe,  is the molar mass, and R is the gas constant per mole. 

It is well known that  

                                              
effnDπ2

1
λ  .                                              (10) 

Using p nkT  (k is the Boltzmann constant), we obtain                         

                                     
p

kT
Deff




2
.                                               (11) 

 Equipment 
 

The experimental arrangement is shown in Figure 2. The burette 1 is filled with 

water. The upper end of the burette is closed by the rubber plug 2; inside the plug 

there is a capillary pipe. If the faucet 4 is open, the water flaws down at first by a 

jet, and them by drops. The air penetrates in the burette through the capillary pipe 

and the pressure difference is provided 

                 p gh  , h
h h


1 2

2
.             (12) 
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Here, h1  and h2  are the water levels in the initial and final stages of the 

experiment. It is very important to understand why p can be substituted by 








 


2

21 hh
g . Indeed, in formula (9) there is a combination 

p t

V


; actually, it must 

be 
dV

dthg
, but 

dt

dV
v 0  is the speed of gas flow 

through the capillary, and 
dV

dt
~h. So h

dV

dt
/  is 

constant, and we can calculate its value in the center 

of the burette. So h
h h


1 2

2
, and just because 

hv ~0 , its value in the center can be expressed as 

V/t. So we have equation (9). 

 

Work order 
 

1.  Take the plug out and pour water inside the 

burette. Put the plug back. Do this procedure very 

cautiously in order not to break the glass. 

2.  Open the faucet (4) and when the water begins to 

drop, switch on the timer, and note the value h1. 

3.  When the water is at the level h2 

( h h1 2 10  cm), switch off the timer.      

4.  Using the graduated burette, calculate V. 

                  Figure 2.                      5.   Measure l, T, and p. 

5.  Note: 3103.8 R , 29 , an 231038.1 k  (SI). All the measured values are 

to be written  down in the table. 

6. Repeat the experiment 3−4 times (h1 and h2 are the same). 

3. Measure the capillary radius with a microscope. Make at least 5 

measurements in different directions of the capillary orifice and calculate the 

average value of r. 

4. Calculate   and effD . 

5. Calculate   and D from the formulas 
22

4 



















 






R

R
,                   








2

1

D

D
. 

 

Here: 
V

tp 
 , 

6

)(...)(
7.3

2
3

2
1 

 . 
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