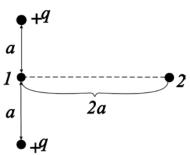
- 1. Частица массой 1 Mг, имеющая заряд 1 HКn, начинает двигаться со скоростью 1 M/c к центру заряженного шара. При каком минимальном значении радиуса шара частица достигнет его поверхности, если шар заряжен зарядом 3 HКn?
- 2. Найти работу по перемещению электрона из центра полукольца радиуса R, заряженного равномерно с линейной плотностью $\tau = 0,4$ мкКл/м в бесконечность.
- 3. Два шарика с зарядами $q_1 = 20$ мкКл и $q_2 = 40$ мкКл находятся на расстоянии $r_1 = 40$ см. Какую надо совершить работу, чтобы сблизить их до расстояния $r_2 = 25$ см.
- 4. Конденсатор ёмкостью в 20 мкФ заряжен до потенциала 100 В. Найти энергию этого конденсатора.
- 5. Расстояние между пластинами плоского конденсатора 4 *см*. Электрон начинает двигаться от отрицательной пластины в тот момент, когда от положительной пластины начинает двигаться протон. На каком расстоянии от положительной пластины встретятся электрон и протон.

- 1. До какого расстояния могут сблизиться два электрона, если они движутся с большого расстояния навстречу друг другу с относительной скоростью $10^6 \ m/c$?
- 2. Какая работа совершается при перенесении точечного заряда 20 nKn из бесконечности в точку, находящуюся на расстоянии 1 cm от поверхности шара радиусом 1 cm, заряженного с поверхностной плотностью заряда $10 \ m\kappa Kn/m^2$?
- 3. Определить работу сил поля по перемещению электрона от одной пластины плоского конденсатора до другой, если расстояние между пластинами 5 мм, а напряжённость электрического поля 1 кВ/м.
- 4. Найти объёмную плотность энергии электрического поля в точке, находящейся на расстоянии 2 см от поверхности заряженного шара радиусом 1 см. Поверхностная плотность заряда на шаре равна 1,67⋅10⁻⁵ Кл/м².
- 5. Расстояние между пластинами плоского конденсатора равно 1 *см*. От одной из пластин одновременно начинают двигаться протон и альфа частица. Какое расстояние пройдет альфа частица за то время, в течение которого протон пройдет весь путь от одной пластины до другой?

- 1. Разность потенциалов между катодом и анодом электронной лампы равна 90 *B*. Какова скорость электрона в момент удара об анод?
- 2. Два шарика с зарядами $6,66 \, нKл$ и $13.33 \, nKл$ находятся на расстоянии $40 \, cm$. Какую работу нужно совершить, чтобы сблизить их до расстояния $25 \, cm$?
- 3. Имеется бесконечно длинная прямая нить, заряженная равномерно с линейной плотностью $\tau = 0,4$ мкКл/м. Вычислить работу по перемещению заряда q = 1 мКл из точки, 1 в точку 2, если точка 2 находится в 2 раза дальше от нити, чем точка 1.
- 4. Сила притяжения между пластинами плоского воздушного конденсатора равна 50 мН. Площадь пластин /каждой/ равна 200 см ². Найти плотность энергии поля конденсатора.
- 5. Электрон, пройдя в плоском конденсаторе путь от одной пластины до другой, приобрел скорость $10^6 \ m/c$. Расстояние между пластинами 5 m. Найти разность потенциалов между пластинами и напряженность электрического поля.

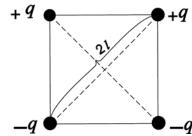
- 1. Три электрона, находящиеся неподвижно на одинаковых расстояниях 10 *нм* друг от друга, начинают разлетаться под действием сил отталкивания. Какими будут скорости электронов на большом расстоянии друг от друга?
- 2. Найти работу по перемещению заряда 1 *нКл* из точки 1 в центр квадрата, если поле создано тремя зарядами, по абсолютной величине равными заряду электрона и расположенными как показано на рисунке.

- 3. Найти скорость электрона, прошедшего разность потенциалов, равную 100 В.
- 4. Найти объёмную плотность энергии электростатического поля в точке, находящейся на расстоянии 2 см от бесконечно длинной заряженной нити. Линейная плотность заряда на нити равна 1,67·10⁻⁷ К/м.
- 5. Электрон в однородном электрическом поле получает ускорение $10^{12} \ m/c^2$. Найти напряженность электрического поля, скорость, которую получит электрон за время $1 \ mc$ своего движения, работу сил электрического поля за это время, разность потенциалов, пройденную электроном. Начальная скорость равна нулю.


- 1. Кольцо радиусом 1 cм имеет равномерно распределенный отрицательный заряд Q=-1 nKn. Какую скорость приобретет электрон, удаляясь без начальной скорости из центра кольца в бесконечность?
- 2. Равномерно заряженная бесконечно длинная нить, на единицу длины которой приходится заряд т, имеет конфигурацию, показанную на рисунке. Найти работу по перемещению электрона из точки О в бесконечность. Радиус закругления R.
- 3. Какая совершается работа при перенесении точечного заряда в $2\cdot10^{-8}$ Кл из бесконечности в точку, находящуюся на расстоянии 1 см от поверхности шара радиусом 1 см, заряженного с поверхностной плотностью заряда $\sigma = 10^{-9}$ Кл/см².
- 4. Шар радиусом в 1 м заряжен до потенциала 30000 В. Найти энергию заряженного шара.
- 5. Электрон летит от одной пластины конденсатора до другой. Разность потенциалов между пластинами 4 кВ, расстояние между пластинами 5 мм. Найти силу, действующую на электрон, ускорение электрона, скорость, с которой электрон приходит ко второй пластине.

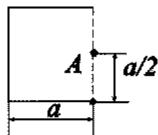
- 1. Заряженная частица, пройдя ускоряющую разность потенциалов 600~B, приобрела скорость $5,4\cdot10^6~m/c$. Определите удельный заряд частицы.
- 2. Найти работу по перемещению протона из центра полукольца радиуса 20 *см*, заряженного равномерно с линейной плотностью τ = 0,4 мкКл/м в точку, находящуюся на перпендикуляре к плоскости полукольца на расстоянии 20 *см* от центра.
- 3. Два шарика с зарядами $q_1 = 20$ мкКл и $q_2 = 40$ мкКл находятся на расстоянии $r_1 = 40$ см. Какую надо совершить работу, чтобы сблизить их до расстояния $r_2 = 25$ см.
- 4. Конденсатор ёмкостью в 20 мкФ заряжен до потенциала 100 В. Найти энергию этого конденсатора.
- 5. Электрон с некоторой начальной скоростью влетает в плоский горизонтальный конденсатор параллельно пластинам на равном расстоянии от них. Разность потенциалов между пластинами 300 В, расстояние между пластинами 2 *см*, длина конденсатора 10 *см*. Какова должна быть предельная начальная скорость электрона, чтобы электрон не вылетел из конденсатора?

- 1. При бомбардировке неподвижного ядра натрия альфа частицей сила отталкивания между ними достигает значения 140 *H*. На какое наименьшее расстояние приблизилась альфа частица к ядру атома натрия? Какую начальную скорость имела альфа частица?
- 2. По тонкому кольцу радиуса $10 \, cm$ равномерно распределён заряд $20 \, nKn$. Найдите работу по перемещению заряда $1 \, nKn$ из центра кольца в точку, расположенную на оси перпендикулярной плоскости кольца на расстоянии $20 \, cm$ от центра.
- 3. Заряд Q=1 нКл расположен на высоте 5 см от бесконечной равномерно заряженной плоскости с поверхностной плотностью заряда $\sigma=2$ мкКл/м². Определить величину работы, которая бы потребовалась для переноса этого заряда в бесконечность.
- 4. Шар погружённый в керосин, имеет потенциал 4500 В и поверхностную плотность заряда 3,4 мКл/см². Найти энергию шара.
- 5. Альфа частица с некоторой начальной скоростью влетает в плоский горизонтальный конденсатор параллельно пластинам на равном расстоянии от них. Разность потенциалов между пластинами $300\ B$, расстояние между пластинами $2\ cm$, длина конденсатора $10\ cm$. Какова должна быть предельная начальная скорость альфа частицы, чтобы она не вылетела из конденсатора?


- 1. Бесконечная плоскость заряжена отрицательно с поверхностной плотностью σ =-35,4 nKn/m^2 . По направлению силовой линии поля, созданного плоскостью, летит электрон. Определить минимальное расстояние, на которое может приблизиться электрон к плоскости, если на расстоянии 5 cm от плоскости он имел кинетическую энергию 80 эB.
- 2. Электрический заряд +q равномерно распределен по тонкому кольцу радиуса R. Центр кольца совпадает с началом координат, а плоскость кольца совпадает с плоскостью yz. В начале координат помещён заряд -q. Найти работу по перемещению заряда -q начала координат в точку, расположенную по оси x на расстоянии a от начала координат.
- 3. На расстоянии 4 см от бесконечно длинной заряженной нити находится точечный заряд 2 мкКл. Под действием поля заряд перемещается до расстояния 2 см. При этом совершается работа 0,5 Дж. Найти линейную плотность заряда нити.
- 4. Сплошной парафиновый шар радиусом R = 10 см заряжен равномерно по объему с объёмной плотностью $\rho = 10$ нКл/м³. Определить энергию электрического поля, сосредоточенную в самом шаре.
- 5. Электрон влетает в плоский горизонтальный конденсатор параллельно пластинам со скоростью $9 \cdot 10^6$ м/c. Разность потенциалов между пластинами 100 B, расстояние между пластинами 1 см. Найти полное, нормальное и тангенциальное ускорение электрона через 10 нc после начала его движения в конденсаторе.

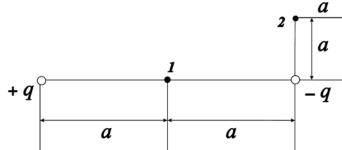
- 1. Протон, начальная скорость которого $100 \ \kappa m/c$, влетел в однородное электрическое поле так, что вектор скорости совпадает с направлением линий напряженности поля. Какое расстояние должен пролететь протон в этом поле, чтобы его скорость удвоилась? Напряженность поля $300 \ B/cm$.
- 2. На расстоянии 4 c_M от бесконечно длинной заряженной нити находится точечный заряд 0,6 nK_{1} . Под действием сил поля заряд приближается к нити на расстояние 2 nK_{2} при этом совершается работа 50 nK_{2} . Найти линейную плотность зарядов на нити.
- 3. Определить работу по перемещению заряда $q_1 = 20 \ m\kappa K \pi$ из точки 1 в точку 2 в поле, созданном двумя зарядами, модуль которых равен $100 \ m\kappa K \pi$ и $a=0,1 \ m$.

- 4. Разность потенциалов между пластинами плоского конденсатора площадью 100 см^2 каждая равна 280 B. Поверхностная плотность заряда на пластинах $4,95\cdot10^{-11} \text{ Kn/cm}^2$. Найти энергию конденсатора.
- 5. Пучок электронов, ускоренных разностью потенциалов 300 *В* при прохождении через незаряженный плоский горизонтальный конденсатор параллельно его пластинам дает светящееся пятно на экране, расположенном на расстоянии 12 *см* от конца конденсатора. При зарядке конденсатора пятно на экране смещается на расстояние 3 *см* по вертикали. Расстояние между пластинами 1,5 *см*, длина конденсатора 6 *см*. Найти разность потенциалов, приложенную к пластинам конденсатора.


- 1. Определите начальную скорость сближения протонов, находящихся на достаточно большом расстоянии друг от друга, если минимальное расстояние, на которое они могут сблизиться в вакууме равно 10^{-11} см.
- 2. В вершинах квадрата с диагональю 2l находятся точечные заряды q и -q, как показано на рисунке. Найти работу по перемещению заряда 2q из центра квадрата в точку, отстоящую на расстояние l от центра квадрата и расположенную симметрично относительно вершин квадрата.

- 3. Какую работу надо совершить, чтобы приблизить протон к поверхности заряженного до потенциала 400 B металлического шара. Первоначально протон находился на расстоянии 3 R от поверхности шара. R радиус шара.
- 4. Площадь пластин плоского воздушного конденсатора 100 cm^2 и расстояние между ними 5 мм. Найти, какая разность потенциалов была приложена к пластинам конденсатора, если известно, что при разряде конденсатора выделилось $4,19\cdot10^{-3}$ Дж тепла.
- 5. Электрон движется в плоском горизонтальном конденсаторе параллельно пластинам со скоростью $3,6\cdot 10^7$ м/c. Напряженность поля в конденсаторе 3,7 $\kappa B/\text{м}$, длина пластин 20 см. На какое расстояние сместится электрон в вертикальном направлении под действием электрического поля за время его движения в конденсаторе?

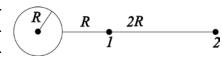
- 1. Вдоль линии напряженности однородного электрического поля движется протон. В точке поля с потенциалом ϕ_1 =445 B протон имел скорость 100 $\kappa m/c$. Определить потенциал ϕ_2 точки поля, в которой скорость протона возрастет в два раза.
- 2. Четверть тонкого кольца радиуса $R = 20 \, cM$ заряжена равномерно зарядом $q = 0.7 \, nK\pi$. Найти работу по перемещению протона из центра кольца в бесконечность.
- 3. Бесконечная плоскость заряжена отрицательно с поверхностной плотностью $\sigma = 35,4 \text{ нКл/м}^2$. По направлению силовой линии поля, созданного плоскостью, летит электрон. Определить минимальное расстояние, на которое может подойти к плоскости электрон, если на расстоянии 5 см он имел кинетическую энергию 80 эВ.
- 4. Пластины плоского конденсатора площадью 100 cm^2 каждая притягиваются друг к другу с силой в $3 \cdot 10^{-3} \text{ H}$. Пространство между пластинами заполнено слюдой, диэлектрическая проницаемость слюды 5. Найти энергию в единице объёма поля.
- 5. Расстояние между пластинами плоского конденсатора 4 см. Электрон начинает двигаться от отрицательной пластины в тот момент, когда от положительной пластины начинает двигаться альфа частица. На каком расстоянии от положительной пластины встретятся частицы.


- **1.** От поверхности отрицательно заряженного шара отделяется без начальной скорости электрон. Какой будет его скорость на большом расстоянии от шара, если радиус шара 1 cM, заряд шара Q=-1 HKn?
- 2. Электрическое поле создано зарядом тонкого равномерно заряженного стержня, изогнутого по трём сторонам квадрата. Длина a стороны квадрата равна 10 см. Линейная плотность зарядов равна $500 \, \mu K_{D}/M$. Найти работу по перемещению заряда $1 \, \mu K_{D}$ из точки A в центр квадрата.

- 3. Напряжённость поля в некоторой области простран- † ства зависит от координаты x как E=kx. В этом поле из точки $x_1=2$ cm в точку $x_2=1$ cm движется заряд q=10 n n0. Определить работу сил поля по перемещению заряда.
- 4. Площадь пластин плоского воздушного конденсатора 200 cm^2 и расстояние между ними 4 мм. Найти, какая разность потенциалов была приложена к пластинам конденсатора, если известно, что при разряде конденсатора выделилось $8 \cdot 10^{-3} \text{ Дж}$ тепла.
- 5. Расстояние между пластинами плоского конденсатора равно 4 *см*. От одной из пластин одновременно начинают двигаться протон и альфа частица. Какое расстояние пройдет альфа частица за то время, в течение которого протон пройдет весь путь от одной пластины до другой?

- 1. Протон, летящий по направлению к ядру двукратно ионизированного неподвижного атома гелия, в некоторой точке поля с напряженностью $10 \ \kappa B/c M$ имеет скорость $1 \ \kappa M/c$. На какое расстояние протон сможет приблизиться к ядру?
- 2. Определить работу по перемещению электрона из центра кольца радиусом R=10~cM, по которому равномерно распределён заряд линейной плотностью $\tau=10~\mu K$ л/м в бесконеч-
- 3. Определить работу по перемещению заряда $q = 50 \, \mu K \pi$ из точки 1 в точку 2 в поле, созданном двумя зарядами, модуль которых равен 1 $\mu \kappa K \pi$ и $a = 0,1 \, \mu$.

ность.


- 4. Найти энергию уединённой сферы радиусом R=4 c_M , заряженной до потенциала $\varphi=500$ B.
- 5. Электрон, пройдя в плоском конденсаторе путь от одной пластины до другой, приобрел скорость $10^6 \ m/c$. Расстояние между пластинами 4 mm. Найти разность потенциалов между пластинами и напряженность электрического поля.

- 1. Какая ускоряющая разность потенциалов требуется, чтобы сообщить электрону скорость $30 \, Mm/c$?
- 2. Определить работу по перемещению заряда $10 \, nKn$ из точки, лежащей на оси кольца, на расстоянии $10 \, cm$ от центра в центр кольца. Радиус кольца $R = 20 \, cm$. Заряд равномерно распределён по кольцу с линейной плотностью $\tau = 10 \, nKn/m$.
- 3. Электрическое поле создано двумя одинаковыми, поражительными точечными зарядами q. Найти работу сил поля по перемещению заряда $q_1 = 5 \, HK\pi$ из точки 1 с потенциалом $\varphi_1 = 300 \, B$ в точку 2.
- 4. Расстояние между пластинами плоского конденсатора равно 2,5 *см*, разность потенциалов $U=5~\kappa B$. Заряд каждой пластины равен 10 μ Kл. Определить энергию поля конденсатора.
- 5. Протон в однородном электрическом поле получает ускорение $10^{12} \ m/c^2$. Найти напряженность электрического поля, скорость, которую получит протон за время $1 \ mkc$ своего движения, работу сил электрического поля за это время, разность потенциалов, пройденную протоном . Начальная скорость равна нулю.

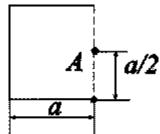
- 1. Два электрона, находясь на расстоянии 0,1 мм друг от друга, начинают двигаться под действием сил отталкивания. Какую максимальную скорость они приобретут?
- 2. Поле создано тонким равномерно заряженным стержнем длиной l с линейной плотностью заряда $\tau = 10 \ nK$ м. Вычислить работу по перемещению точечного заряда $10 \ nK$ из точки, расположенной на оси стержня и удалённой от ближайшего конца стержня на расстояние l, в точку расположенную на оси стержня и удалённую от ближайшего конца стержня на расстояние, равное 2l.
- 3. Электрическое поле создано равномерно заряженной плоскостью с поверхностной плотностью заряда $\sigma = 1 \ m\kappa K n/m^2$. В этом поле вдоль прямой, составляющей угол $\alpha = 60^\circ$ с плоскостью, из точки 1 в точку 2 перемещается точечный заряд $q = 10 \ nk$. Расстояние между точками $l = 10 \ nk$. Определить работу сил поля по перемещению заряда.
- 4. Какое количество теплоты выделится при разряде плоского конденсатора, если разность потенциалов между пластинами равно 15 κB , расстояние d=1 m, диэлектрик слюда и площадь каждой пластины равна 200 cm^2 ?
- 5. Электрон летит от одной пластины конденсатора до другой. Разность потенциалов между пластинами 3 κB , расстояние между пластинами 6 mm. Найти силу, действующую на электрон, ускорение электрона, скорость, с которой электрон приходит ко второй пластине.

- 1. Какая энергия выделится при неупругом ударе электрона о положительно заряженный закрепленный шар радиусом 1 cm, если на бесконечно большом расстоянии от центра шара скорость электрона была направлена к центру шара и равна $1000 \ \kappa m/c$. Заряд шара $Q=1 \ nKn$.
- 2. Электрическое поле образовано положительно заряженной бесконечно длинной нитью. Двигаясь под действием поля от точки, находящейся на расстоянии 1 cm от нити, до точки, находящейся на расстоянии 4 cm от нити, альфа частица изменила свою скорость от $2 \cdot 10^5 \ m/c$ до $3 \cdot 10^6 \ m/c$. Найти линейную плотность заряда на нити.
- 3. Какую работу надо совершить, чтобы перенести заряд $q = 5 \, hKn$ из центра равномерно заряженного кольца радиусом $R = 10 \, cm$, с линейной плотностью $\tau = 200 \, hKn/m$ в точку, расположенную на оси кольца на расстоянии $20 \, cm$ от его центра?
- 4. Пластины плоского конденсатора площадью $100 \, cm^2$ каждая притягиваются друг к другу с силой в $3 \cdot 10^{-3} \, H$. Пространство между пластинами заполнено слюдой, диэлектрическая проницаемость слюды 5. Найти энергию в единице объёма поля.
- 5. Электрон с некоторой начальной скоростью влетает в плоский горизонтальный конденсатор параллельно пластинам на равном расстоянии от них. Разность потенциалов между пластинами $100\ B$, расстояние между пластинами $4\ cm$, длина конденсатора $20\ cm$. Какова должна быть предельная начальная скорость электрона, чтобы электрон не вылетел из конденсатора?

- **1.** В однородное электрическое поле напряженностью $1 \ \kappa B/m$ влетает вдоль силовых линий напряженности электрон со скоростью $1 \ Mm/c$. Определить расстояние, пройденное электроном до точки, в которой его скорость будет равна половине начальной.
- 2. Тонкие стержни образуют квадрат со стороной длиной 5 см. стержни заряжены с линейной плотностью $\tau = 1,33$ нКл/м. Найти работу по перемещению протона из центра квадрата в бесконечность.
- 3. Определить работу сил поля по перемещению заряда q=1*мкКл* из точки 1 в точку 2 поля, создаваемого заряженным проводящим шаром. Потенциал шара равен 1 κB .

- 4. Вычислить энергию электростатического поля металлического шара, которому сообщен заряд $Q = 100 \ HK$ л, если диаметр шара равен $20 \ cm$.
- 5. Пучок электронов, ускоренных разностью потенциалов 300 *В* при прохождении через незаряженный плоский горизонтальный конденсатор параллельно его пластинам дает светящееся пятно на экране, расположенном на расстоянии 12 *см* от конца конденсатора. При зарядке конденсатора пятно на экране смещается на расстояние 3 *см* по вертикали. Расстояние между пластинами 1,5 *см*, длина конденсатора 6 *см*. Найти разность потенциалов, приложенную к пластинам конденсатора.

- 1. Четыре пылинки с массами 0,1 M2 каждая расположены в вершинах квадрата со стороной 1 cm. Пылинкам сообщили одинаковые заряды Q=1 HKn и предоставили возможность разлетаться под действием сил отталкивания. Определите скорость пылинок на большом расстоянии друг от друга.
- 2. Заряд диполя -q и +q помещены соответственно в точках A и B. Какую работу нужно совершить, чтобы переместить заряд, равный 2q из точки O в точку C, если расстояние BC равно плечу диполя: l=10 μ M.
- 3. Какую работу необходимо совершить, чтобы увеличить расстояние между пластинами плоского вакуумного конденсатора площадью 100 cm^2 от 0,03 до 0,1 m? Напряжение между пластинами конденсатора постоянно и равно 220 B.
- 4. Две концентрические сферические поверхности, находящиеся в вакууме, заряжены одинаковым количеством электричества
- $q=3\cdot 10^{-6}~$ $K_{\rm Л}$. Радиусы этих поверхностей $R_1=1~$ M и $R_2=2~$ M. Найти энергию электрического поля, заключённого между этими сферами.
- 5. Альфа частица с некоторой начальной скоростью влетает в плоский горизонтальный конденсатор параллельно пластинам на равном расстоянии от них. Разность потенциалов между пластинами $500\ B$, расстояние между пластинами $4\ cm$, длина конденсатора $10\ cm$. Какова должна быть предельная начальная скорость альфа частицы, чтобы она не вылетела из конденсатора?


- 1. Пылинка массой 1 M2, несущая на себе 5 электронов, прошла без начальной скорости ускоряющую разность потенциалов 3 MB. Какую скорость приобретет пылинка?
- 2. Какая работа совершается при перенесении заряда 20 $nK\pi$ из бесконечности в точку, находящуюся на расстоянии 5 cm от поверхности шара радиусом 1 cm, заряженного с поверхностной плотностью 10 $m\kappa K\pi/m^2$.
- 3. Какую работу надо совершить, чтобы развести точечные заряды, находящиеся в вершинах треугольника ABC: $q_A = 3 \cdot 10^{-6} \ K\pi$, $q_B = 5 \cdot 10^{-6} \ K\pi$, $q_C = -6 \cdot 10^{-6} \ K\pi$, $AB = 0.3 \ M$, $BC = 0.5 \ M$, $AC = 0.6 \ M$, на такое расстояние, чтобы силы их взаимодействия можно было считать равными нулю. Заряды находятся в керосине.
- 4. Конденсатору, электроёмкость которого равна $10\pi\Phi$, сообщён заряд $Q=1\pi K\pi$. Определить энергию конденсатора.
- 5. Электрон влетает в плоский горизонтальный конденсатор параллельно пластинам со скоростью $9 \cdot 10^6$ m/c. Разность потенциалов между пластинами 200~B, расстояние между пластинами 1~cm. Найти полное, нормальное и тангенциальное ускорение электрона через 10~nc после начала его движения в конденсаторе.

- 1. При облучении шара ультрафиолетовыми лучами с его поверхности вырываются электроны с начальной скоростью $10^6 \ \text{м/c}$. В результате шар приобретает положительный заряд. Определите предельный заряд шара. Радиус шара $1 \ \text{cm}$.
- 2. Определить работу по перемещению альфа частицы из точки, лежащей на оси кольца, на расстоянии 10~cm от центра в центр кольца. Радиус кольца R=20~cm. Заряд равномерно распределён по кольцу с линейной плотностью $\tau=10~nm$.
- 3. Электрическое поле создано двумя одинаковыми, положительными точечными зарядами q. Найти работу сил поля по перемещению заряда $q_1 = 5 \ \text{hKn}$ из точки 1 с потенциалом $\phi_1 = 400 \ \text{B}$ в точку 2.
- 4. Расстояние между пластинами плоского конденсатора равно 2,5 *см*, разность потенциалов $U = 5 \kappa B$. Заряд каждой пластины равен 10 *нКл*. Определить энергию поля конденсатора.
- 5. Электрон с некоторой начальной скоростью влетает в плоский горизонтальный конденсатор параллельно пластинам на равном расстоянии от них. Разность потенциалов между пластинами 200 В, расстояние между пластинами 4 *см*, длина конденсатора 10 *см*. Какова должна быть предельная начальная скорость электрона, чтобы электрон не вылетел из конденсатора?

- 1. Электрон движется вдоль силовых линий однородного электрического поля. В некоторой точке с потенциалом ϕ_1 =100 B электрон имел скорость 6 Mm/c. Определите потенциал точки поля, в которой скорость электрона будет в два раза меньше первоначальной.
- 2. Тонкий стержень согнут в полукольцо. Стержень заряжен с линейной плотностью $\tau = 133 \ nKn/m$. Какую работу надо совершить, чтобы перенести заряд $q = 6.7 \ nKn$ из центра полукольца в бесконечность.
- 3. Два шарика с зарядами $q_1 = 20 \ \text{мк} \text{Кл}$ и $q_2 = 10 \ \text{мк} \text{Кл}$ находятся на расстоянии $r_1 = 50 \ \text{см}$. Какую надо совершить работу, чтобы сблизить их до расстояния $r_2 = 15 \ \text{см}$.
- 4. Найти объёмную плотность энергии электростатического поля в точке, находящейся на расстоянии 2 c_M от бесконечно длинной заряженной нити. Линейная плотность заряда на нити равна $1,67\cdot10^{-7}$ K/M.
- 5. Электрон летит от одной пластины конденсатора до другой. Разность потенциалов между пластинами $2 \ \kappa B$, расстояние между пластинами $5 \ mm$. Найти силу, действующую на электрон, ускорение электрона, скорость, с которой электрон приходит ко второй пластине.

- 1. При радиоактивном распаде из ядра атома полония вылетает альфа частица со скоростью $1,6\cdot 10^7$ $\emph{m/c}$. Определить разность потенциалов электрического поля, в котором можно разогнать покоящуюся альфа частицу до такой же скорости.
- 2. Определить работу сил поля по перемещению электрона от одной пластины плоского конденсатора до другой, если расстояние между пластинами $4 \, m$, а напряжённость электрического поля $1 \, \kappa B/m$.
- 3. Электрическое поле образовано положительно заряженной длинной нитью с линейной плотностью заряда $0,2~m\kappa Kn/m$. Какую скорость получит электрон под действием поля приблизившись к нити с расстояния 1~cm до расстояния 0,5~cm?
- 4. Найти объёмную плотность энергии электрического поля в точке, находящейся на расстоянии 2 см от поверхности заряженного шара радиусом 1 см. Поверхностная плотность заряда на шаре равна 1,67·10⁻⁵ Кл/м².
- 5. Электрон в однородном электрическом поле получает ускорение 10^{12} M/c^2 . Найти напряженность электрического поля, скорость, которую получит электрон за время 2 M своего движения, работу сил электрического поля за это время, разность потенциалов, пройденную электроном. Начальная скорость равна нулю.

- 1. Протон движется по направлению к центру равномерно заряженного до потенциала $400\ B$ шара. Какой минимальной скоростью должен обладать протон, находясь на расстоянии, равном четырем радиусам шара от его центра, чтобы достигнуть поверхности шара?
- 2. Электрическое поле создано зарядом тонкого равномерно заряженного стержня, изогнутого по трём сторонам квадрата. Длина a стороны квадрата равна 10~cm. Линейная плотность зарядов равна 5~nKn/m. Найти работу по перемещению элементарного заряда из точки A в бесконечность.

- 3. Напряжённость поля в некоторой области простран- 1 ства зависит от координаты x как E=kx. В этом поле из точки $x_1=5$ cm в точку $x_2=2$ cm движется заряд q=1 n. Определить работу сил поля по перемещению заряда.
- 4. Площадь пластин плоского воздушного конденсатора $0,01~m^2$, расстояние между пластинами 2~cm. К пластинам приложена разность потенциалов $3~\kappa B$. Пластины конденсатора не отключая от источника раздвинули до расстояния 5~cm. Найти энергию конденсатора до и после раздвижения пластин.
- 5. Протон, пройдя в плоском конденсаторе путь от одной пластины до другой, приобрел скорость $10^6 \ m/c$. Расстояние между пластинами 5 m. Найти разность потенциалов между пластинами и напряженность электрического поля.

- 1. Электрон, пройдя в плоском конденсаторе от одной пластины до другой, приобрел скорость $10^6 \ \text{м/c}$. Определить разность потенциалов между пластинами.
- 2. Электрическое поле образовано положительно заряженной длинной нитью с линейной плотностью заряда $0,2 \ \text{мк} \text{К} \text{л}/\text{м}$. Какую скорость получит протон под действием поля, удалившись от нити с расстояния $1 \ \text{cm}$ до расстояния $4 \ \text{cm}$?
- 3. Полукольцо радиуса $R = 20 \, cM$ заряжена равномерно зарядом $q = 0.7 \, HK\pi$. Найти работу по перемещению протона из центра кривизны полукольца в бесконечность.
- 4. Пластины плоского конденсатора площадью 300 cm^2 каждая притягиваются друг к другу с силой в $5 \cdot 10^{-3} \text{ H}$. Пространство между пластинами заполнено воздухом. Найти энергию в единице объёма поля.
- 5. Расстояние между пластинами плоского конденсатора равно 2 *см*. От одной из пластин одновременно начинают двигаться протон и альфа частица. Какое расстояние пройдет альфа частица за то время, в течение которого протон пройдет весь путь от одной пластины до другой?

- 1. Электрон вылетает из точки, потенциал которой 450 B, со скоростью $190 \ \kappa m/c$. Какую скорость он будет иметь в точке с потенциалом 475 B?
- 2. Тонкий стержень согнут в полукольцо. Стержень заряжен с линейной плотностью $\tau = 10 \ \text{нКл/м}$. Какую работу надо совершить, чтобы перенести заряд $q = 3 \ \text{нКл}$ из центра полукольца в бесконечность.
- 3. Напряжённость однородного электрического поля в некоторой точке равна $600 \, B/m$. Вычислить работу по перемещению заряда $q=1 \, HKn$ из этой точки в точку, лежащую на прямой, составляющей угол $\alpha=30^{\circ}$ с направлением вектора напряжённости. Расстояние между точками равно $5 \, mm$.
- 4. Сила притяжения между пластинами плоского воздушного конденсатора равна 50 мН. Площадь пластин /каждой/ равна 200 см ². Найти плотность энергии поля конденсатора.
- 5. Расстояние между пластинами плоского конденсатора 4 *см*. Электрон начинает двигаться от отрицательной пластины в тот момент, когда от положительной пластины начинает двигаться протон. На каком расстоянии от положительной пластины встретятся электрон и протон.