
1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами ε=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ сфер, $c_{\it M}$									
$egin{array}{ c c c c c c c c c c c c c c c c c c c$									
9 1 1 11 0,5 12 1									

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

	Радиусы $R_{ m i}$ и толщины $d_{ m i}$ цилиндров, $c_{\it M}$									
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
9 1 11 0,5 12 1										

3. Найти емкость батареи конденсаторов, изображенных на рисунке. Ёмкость C=0,2 $\mu\Phi$. Определить заряды на конденсаторах, если U=200 B.

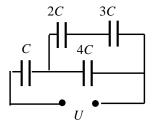


1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ сфер, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
9 1,5 13 1 16 0,5										

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

Радиусы $R_{ m i}$ и толщины $d_{ m i}$ цилиндров, $c_{\it M}$										
R_1	$egin{array}{ c c c c c c c c c c c c c c c c c c c$									
9	9 0,5 15 1 18 1									

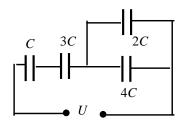

Вариант 3

1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

Радиусы R_i и толщины d_i сфер, $c M$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
9 1 11 1										

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

Радиусы R_i и толщины d_i цилиндров, c_M										
R_1	$egin{array}{ c c c c c c c c c c c c c c c c c c c$									
9	0,5			15	1					

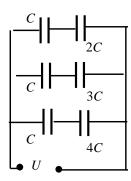


1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ сфер, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
9 0,5 10 2										

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

Радиусы R_i и толщины d_i цилиндров, c_M										
R_1	$egin{array}{ c c c c c c c c c c c c c c c c c c c$									
9	0,5			10	2					

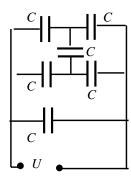

Вариант 5

1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

Радиусы R_i и толщины d_i сфер, $c M$									
R_1	$egin{array}{ c c c c c c c c c c c c c c c c c c c$								
9	9 0,5 10 2								

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

	Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ цилиндров, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$											
9 2 14 1											

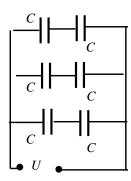

Вариант 6

1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами ε=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

Радиусы R_i и толщины d_i сфер, $c M$									
R_1	$egin{array}{ c c c c c c c c c c c c c c c c c c c$								
9	9 0,5 10 2								

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ цилиндров, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
9 2 14 1										


Вариант 7

1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

Радиусы R_i и толщины d_i сфер, c_M										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
9	1			14	1	16	0,5			

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

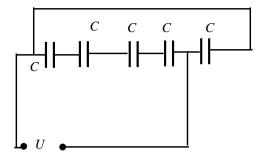
Радиусы $R_{ m i}$ и толщины $d_{ m i}$ цилиндров, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
9	9 2 14 1 18 0,2									

1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

	Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ сфер, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$											
9	9 0,5 10 2										

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ цилиндров, $c_{\it M}$										
R_1	$egin{array}{ c c c c c c c c c c c c c c c c c c c$									
9	2			13	1					

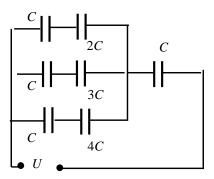


1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

	Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ сфер, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$											
9	0,5	10	0,5	13	1	15	2				

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

Радиусы R_i и толщины d_i цилиндров, c_M										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
9	2			14	1	16	0,5			

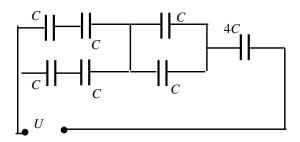


1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

	Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ сфер, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$											
9	9 0,5 10 2 14 2										

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

Радиусы $R_{ m i}$ и толщины $d_{ m i}$ цилиндров, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
9	2			14	1	16	0,5			

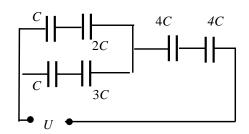


1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

	Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ сфер, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$											
9	0,5	10	0,5	11	2						

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

	Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ цилиндров, $c_{\it M}$										
R_1	$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
9	2	13	1			16	2				

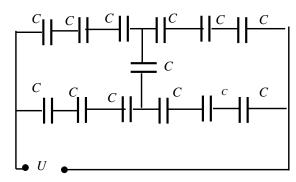


1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

Радиусы R_i и толщины d_i сфер, $c M$										
R_1	$egin{array}{ c c c c c c c c c c c c c c c c c c c$									
	8 0,5 10 2									

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

Радиусы $R_{ m i}$ и толщины $d_{ m i}$ цилиндров, $c_{\it M}$										
R_1	$egin{array}{ c c c c c c c c c c c c c c c c c c c$									
9	9 1 1 1 1 1 15 2									

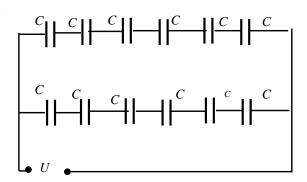


1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

	Радиусы R_i и толщины d_i сфер, $c M$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$											
9	9 0.5 10 0.5 12 0.5 15 0.5										

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ цилиндров, $c_{\it M}$										
R_1	$egin{array}{ c c c c c c c c c c c c c c c c c c c$									
9	0,5	11	2	14	1					



1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

	Радиусы R_i и толщины d_i сфер, c_M										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$											
6	6 0,5 8 2 11 1										

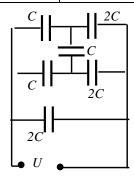
2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ цилиндров, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
5	2			10	0.5					

1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ сфер, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
2	2 0,5 6 1 10 2									

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

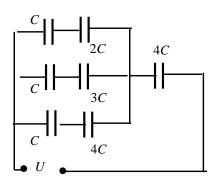

Радиусы $R_{ m i}$ и толщины $d_{ m i}$ цилиндров, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
5	2			8	1					

1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

Радиусы R_i и толщины d_i сфер, c_M										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
9	9 0,5 11 2									

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

	Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ цилиндров, $c_{\it M}$										
R_1	$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
9	2			15	1						

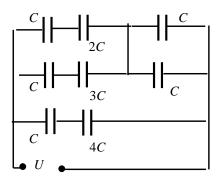


1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

	Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ сфер, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$											
6 0,5 10 2											

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

Радиусы R_i и толщины d_i цилиндров, $c M$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
5	2			11	1					

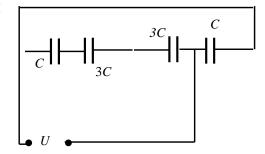


1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

	Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ сфер, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$											
4 0,5 10 2 14 1											

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

Радиусы R_i и толщины d_i цилиндров, c_M									
R_1	$egin{array}{ c c c c c c c c c c c c c c c c c c c$								
5	2			11	1				

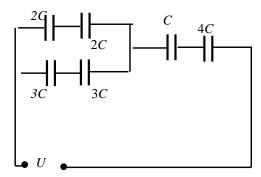


1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ сфер, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
6	6 0,5 10 2									

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

Радиусы $R_{ m i}$ и толщины $d_{ m i}$ цилиндров, $c_{\it M}$									
$egin{array}{ c c c c c c c c c c c c c c c c c c c$									
7	2			11	1				

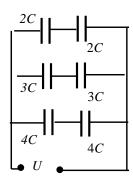


1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

Радиусы $R_{ m i}$ и толщины $d_{ m i}$ сфер, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
6	6 0,5 8 1 10 2									

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ цилиндров, $c_{\it M}$									
R_1	$egin{array}{ c c c c c c c c c c c c c c c c c c c$								
7	2			11	1				

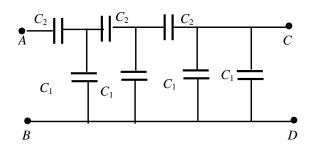


1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

Радиусы R_i и толщины d_i сфер, c_M										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
7	7 1 9 1 12 2									

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

Радиусы $R_{ m i}$ и толщины $d_{ m i}$ цилиндров, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
3	2			11	1					

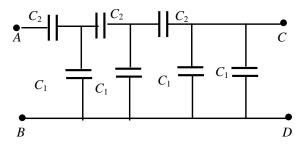

1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ сфер, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
2 0,5 5 1 10 2										

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ цилиндров, $c_{\it M}$										
R_1	$egin{array}{ c c c c c c c c c c c c c c c c c c c$									
6	2			10	1	14	1			

3. Конденсаторы C_1 =5 $m\kappa\Phi$, C_2 =10 $m\kappa\Phi$ образуют цепь, представленную на рисунке. Между точками A и B приложено напряжение 27 B. Определить напряжение между точками C D.

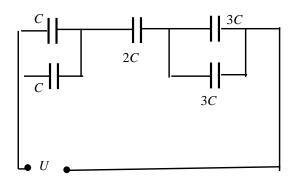

1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

Радиусы $R_{ m i}$ и толщины $d_{ m i}$ сфер, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
7	7 1 10 2 14 1									

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ цилиндров, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$										
9	9 2 11 2									

3. Конденсаторы C_1 =10 $m\kappa\Phi$, C_2 =5 $m\kappa\Phi$ образуют цепь, представленную на рисунке. Между точками A и B приложено напряжение 127 B. Определить напряжение между точками C D.

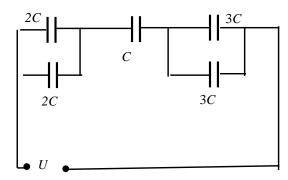


1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

	Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ сфер, $c_{\it M}$										
$egin{array}{ c c c c c c c c c c c c c c c c c c c$											
3	3 0,5 10 2 15 1										

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

	Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ цилиндров, $c_{\it M}$									
R_1	$egin{array}{ c c c c c c c c c c c c c c c c c c c$									
3	2			8	1					



1. Определить электроемкость системы металлических концентрических сфер, размеры внутренних радиусов и толщин сфер указаны в таблице. Диэлектрическая проницаемость среды в зазорах между сферами є=1. Определить заряд на каждом конденсаторе, считая, что электрической цепью соединены внутренняя и внешняя сферы и система конденсаторов подключена к источнику напряжения 220 В. Прочерк в ячейке таблицы означает отсутствие соответствующей сферы.

Радиусы $R_{\rm i}$ и толщины $d_{\rm i}$ сфер, $c_{\it M}$											
R_1	d_1	R_2	d_2	R_3	d_3	R_4	d_4				
5	0,5	8	1	10	2	15	1				

2. Определите электроемкость единицы длины системы металлических коаксиальных цилиндров, внутренние размеры и толщины цилиндров указаны в таблице. Диэлектрическая проницаемость среды в зазорах между цилиндрами ε=1. Считая, что электрической цепью соединены внутренний и внешний цилиндры, определить заряд на каждом цилиндре, если система подключена к источнику напряжения 200 В. Прочерк в ячейке таблицы означает отсутствие соответствующего цилиндра.

Радиусы $R_{ m i}$ и толщины $d_{ m i}$ цилиндров, $c_{\it M}$											
R_1	d_1	R_2	d_2	R_3	d_3	R_4	d_4				
3	2	8	1			12	1				

