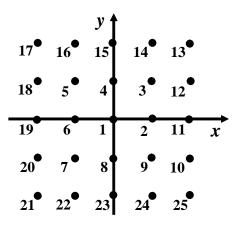

1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0=6\ nKn$ , помещенный в точку 13. Сделайте схематический рисунок

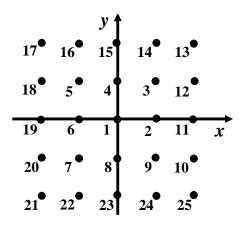



линий напряженности электрического поля данной системы зарядов и сил, действующих на заряд  $Q_0$  .

| Величины зарядов (нКл)     |     |    |  |  |  |  |  |  |    |
|----------------------------|-----|----|--|--|--|--|--|--|----|
| $Q_{16}$ $Q_{17}$ $Q_{18}$ |     |    |  |  |  |  |  |  |    |
| +2                         | - 4 | +6 |  |  |  |  |  |  | 25 |

- 2. Проводящий шарик, заряд которого  $2*10^{-8}$  Kn, привели в соприкосновение с такими же двумя шариками, один из которых не заряжен, а второй имел заряд (-  $0.5*10^{-8}$  Kn. Определить заряды шариков после соприкосновения. Сравнить силы взаимодействия шариков на расстоянии 10 cm до и после соприкосновения.
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды 3q, -2q, 3q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. Три одноименных заряда  $q_1 = 1$ нKл,  $q_2 = 2$ нKл,  $q_3 = 0.8$ нKл связаны горизонтальными нитями длиной 50 cм и находятся в равновесии. Найти силы натяжения нитей.

1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0=6\ nKn$ , помещенный в точку 13. Сделайте схематический рисунок линий

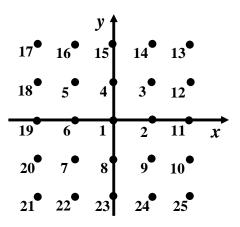



напряженности электрического поля данной системы зарядов и сил, действующих на заряд  $Q_0$ .

|          | Величины зарядов ( $\mu K \pi$ ) |  |  |  |  |  |  |  |  |  |  |
|----------|----------------------------------|--|--|--|--|--|--|--|--|--|--|
| $Q_{17}$ |                                  |  |  |  |  |  |  |  |  |  |  |
| - 4      | 4   61   12                      |  |  |  |  |  |  |  |  |  |  |

- 2. Два маленьких проводящих шарика, подвешенные на нитях одинаковой длины к одному крючку, заряжены одинаковыми зарядами и находятся на расстоянии 10*см* друг от друга. Один из шариков разрядили. Определить новое расстояние между шариками.
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды 3q, -2q, 3q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. В вершинах равностороннего треугольника со стороной  $10 \, cm$  расположены точечные заряды  $10 \, nK$ л,  $-20 \, nK$ л,  $30 \, nK$ л. Определить напряженность поля в точке пересечения биссектрис углов треугольника.

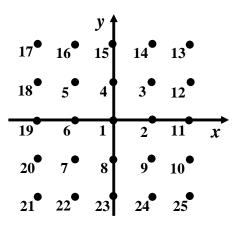
1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0=6\ nKn$ , помещенный в точку 13. Сделайте схематический рисунок линий




напряженности электрического поля данной системы зарядов и сил, действующих на заряд  $Q_0$ .

|          | Величины зарядов (нКл) |          |       |  |  |  |  |  |       |  |  |
|----------|------------------------|----------|-------|--|--|--|--|--|-------|--|--|
| $Q_{16}$ | $Q_{17}$               | $Q_{18}$ | $Q_5$ |  |  |  |  |  | точки |  |  |
| +2       | +2 -4 +6 +1            |          |       |  |  |  |  |  |       |  |  |

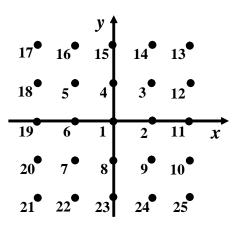
- 2. Одинаковые заряженные шарики, подвешенные на нитях одинаковой длины в одной точке, перенесли из воздуха в жидкий диэлектрик, диэлектрическая проницаемость которого равна 2., а плотность вдвое меньше плотности материала шариков. Во сколько раз изменится угол между нитями?
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды q, -2q, 3q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. Три одноименных заряда q, 2q, 0.8q связаны горизонтальными нитями одинаковой длины и находятся в равновесии. Во сколько раз отличаются силы натяжения нитей между зарядами?


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0 = 6\ nKn$ , помещенный в точку 13. Сде-



|          | Величины зарядов (нКл) |          |       |  |  |  |  |  |       |  |  |
|----------|------------------------|----------|-------|--|--|--|--|--|-------|--|--|
| $Q_{16}$ | $Q_{17}$               | $Q_{18}$ | $Q_5$ |  |  |  |  |  | точки |  |  |
| +5       | +5 -4 +8 -3            |          |       |  |  |  |  |  |       |  |  |

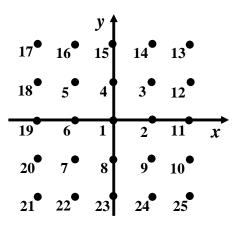
- 2. Два свободных отрицательных заряда 4q и q находятся на расстоянии a друг от друга. Какой нужен заряд, чтобы вся система находилась в равновесии? Где его нужно поместить?
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды q, -3q, q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. В вершинах равностороннего треугольника со стороной 10 *см* расположены точечные заряды 3 *нКл*, -5 *нКл*, 3 *нКл*. Определить напряженность поля в точке пересечения биссектрис углов треугольника.


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0 = 6\ nKn$ , помещенный в точку 7. Сде-



|          | Величины зарядов (нКл)              |  |  |  |  |  |  |  |  |  |
|----------|-------------------------------------|--|--|--|--|--|--|--|--|--|
| $Q_{12}$ | $Q_{12}$ $Q_{13}$ $Q_{14}$ $Q_{16}$ |  |  |  |  |  |  |  |  |  |
| +5       | +5 -2 -6 +3                         |  |  |  |  |  |  |  |  |  |

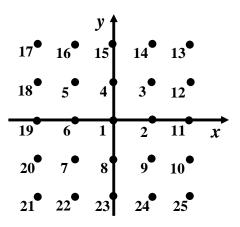
- 2. В вершинах квадрата расположены одинаковые заряды q. Определить силу, действующую на каждый заряд, если сторона квадрата a. Какой заряд нужно поместить в центре квадрата, чтобы система зарядов находилась в равновесии?
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды 2q, -q, 2q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. Шарик массой 0,2 г висит на тонкой шелковой нити. Заряд шарика 8 *нКл*. Снизу к нему поднесли второй шарик на расстояние 2,36 *см*, в результате чего натяжение нити уменьшилось в три раза. Определить заряд второго шарика.


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0 = 6\ nKn$ , помещенный в точку 19. Сде-



|          | Величины зарядов (нКл) |          |  |  |  |  |  |  |       |  |  |
|----------|------------------------|----------|--|--|--|--|--|--|-------|--|--|
| $Q_{11}$ | $Q_{12}$               | $Q_{13}$ |  |  |  |  |  |  | точки |  |  |
| +4       | +4 +1 -5               |          |  |  |  |  |  |  |       |  |  |

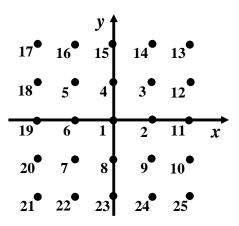
- 2. В вершинах ромба расположены точечные заряды  $q_1$ ,  $q_2$ ,  $q_3$ ,  $q_4$ . Определить напряженность в центре ромба, если его большая диагональ равна l, а малая диагональ равна l/3.
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды 3q, -2q, 2q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. Расстояние между двумя точечными зарядами  $3 \mu K n$  и -5  $\mu K n$ , находящимися в вакууме, равно 35  $\mu c m$ . Определить напряженность поля в точке, находящейся на расстоянии 25  $\mu c m$  от первого заряда и на расстоянии 20  $\mu c m$  от второго заряда.


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0 = 6\ nKn$ , помещенный в точку 19. Сде-



|          | Величины зарядов (нКл)             |  |  |  |  |  |  |  |  |  |  |
|----------|------------------------------------|--|--|--|--|--|--|--|--|--|--|
| $Q_{12}$ | $Q_{12}$ $Q_{13}$ $Q_{14}$ $Q_{3}$ |  |  |  |  |  |  |  |  |  |  |
| - 6      | 6 14 11 2                          |  |  |  |  |  |  |  |  |  |  |

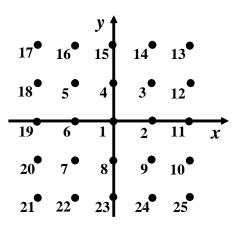
- 2. В трех вершинах квадрата со стороной a расположены заряды q, 2q, -2q. Определить напряженность поля, созданного этими зарядами в четвертой вершине квадрата.
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды q, -3q, 2q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. Два точечных заряда 12 *нКл* и 24 *нКл* находятся в вакууме на расстоянии 9 *см* друг от друга. Определить силу, действующую на точечный заряд 3 *нКл*, помещенный между зарядами на расстоянии 3 *см* от меньшего заряда.


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0 = 6\ nKn$ , помещенный в точку 24. Сде-



|          | Величины зарядов (нКл)             |  |  |  |  |  |  |  |  |  |  |
|----------|------------------------------------|--|--|--|--|--|--|--|--|--|--|
| $Q_{14}$ | $Q_{14}$ $Q_{13}$ $Q_{15}$ $Q_{3}$ |  |  |  |  |  |  |  |  |  |  |
| +3       | +3 -3 +6 -1                        |  |  |  |  |  |  |  |  |  |  |

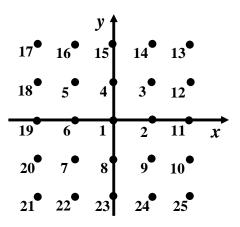
- 2. В трех вершинах квадрата со стороной 30 *см* находятся одинаковые положительные заряды по 3 *нКл* каждый. Определить напряженность поля в четвертой вершине.
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды 5q, -2q, 5q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. Два одинаково заряженных шарика, имеющих массу по 0,5  $\varepsilon$  каждый и подвешенные на нитях длиной по 1 M, разошлись на 4 CM друг от друга. Найти заряд каждого шарика.


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0 = 6\ nKn$ , помещенный в точку 10. Сде-



|          | Величины зарядов (нКл)     |  |  |  |  |  |  |  |  |  |  |
|----------|----------------------------|--|--|--|--|--|--|--|--|--|--|
| $Q_{21}$ | $Q_{21}$ $Q_{20}$ $Q_{22}$ |  |  |  |  |  |  |  |  |  |  |
| +2       | +2 -3 +5                   |  |  |  |  |  |  |  |  |  |  |

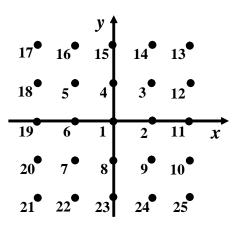
- 2. Два заряда 10 *нКл* и -8 *нКл* расположены на прямой. Расстояние между зарядами 20 *см*. Определить напряженность поля в точке, находящейся на расстоянии 8 *см* от отрицательного заряда.
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды 3q, -5q, 2q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. В вершинах квадрата находятся одинаковые заряды по  $0.3 \, HKn$  каждый. Какой заряд нужно поместить в центр квадрата, чтобы вся система находилась в равновесии.


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0=6\ nm$ , помещенный в точку 11. Сде-



|          | Величины зарядов (нКл)     |  |  |  |  |  |  |  |  |  |  |
|----------|----------------------------|--|--|--|--|--|--|--|--|--|--|
| $Q_{19}$ | $Q_{19}$ $Q_{20}$ $Q_{21}$ |  |  |  |  |  |  |  |  |  |  |
| - 2      | 2 14 5                     |  |  |  |  |  |  |  |  |  |  |

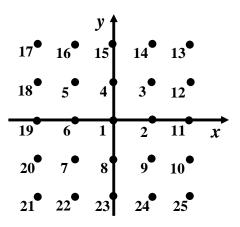
- 2. Стальной шарик ( $\rho$ =7,8  $c/cm^3$ ) радиусом 0,4 cm, погруженный в керосин ( $\rho$ =0,8  $c/cm^3$ ), находится в однородном электрическом поле напряженностью 4  $\kappa B/cm$ . Определить заряд шарика, если он находится во взвешенном состоянии. Вектор напряженности электростатического поля направлен вертикально вверх.
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды 3q, -q, 2q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. Три отрицательных точечных заряда по 27 *нКл* каждый расположены в вершинах равнобедренного прямоугольного треугольника. Определить напряженность поля в точке посередине гипотенузы длиной 10 *см*.


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0=6\ nm$ , помещенный в точку 15. Сде-



|          | Величины зарядов (нКл)     |  |  |  |  |  |  |  |  |  |  |
|----------|----------------------------|--|--|--|--|--|--|--|--|--|--|
| $Q_{21}$ | $Q_{21}$ $Q_{22}$ $Q_{23}$ |  |  |  |  |  |  |  |  |  |  |
| +1       | +1 +4 -6                   |  |  |  |  |  |  |  |  |  |  |

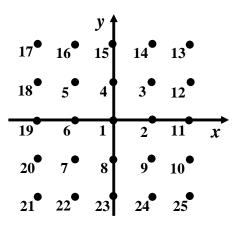
- 2. В трех вершинах квадрата со стороной 20 *см* расположены одинаковые по величине и знаку точечные заряды по 20 *нКл* каждый. Определить напряженность в свободной вершине квадрата.
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды q, -5q, 2q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. С какой силой будут притягиваться два одинаковых свинцовых шарика радиусом 1  $c_M$ , расположенных на расстоянии 1 m друг от друга, если у каждого атома первого шарика отнять по одному электрону и все эти электроны перенести на второй шарик. Атомный вес свинца 207, плотность 11,3  $\epsilon/c_M$ <sup>3</sup>.


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0=6\ nm$ , помещенный в точку 17. Сде-



| Величины зарядов (нКл) |                   |  |  |  |  |  |  |  |  |  |  |
|------------------------|-------------------|--|--|--|--|--|--|--|--|--|--|
| $Q_7$                  | $Q_7$ $Q_8$ $Q_9$ |  |  |  |  |  |  |  |  |  |  |
| - 5                    | 5   12   14       |  |  |  |  |  |  |  |  |  |  |

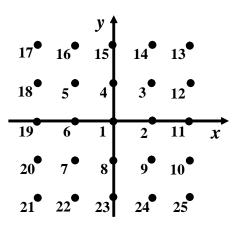
- 2. В вершинах шестиугольника со стороной 10 *см* расположены одинаковые по величине точечные заряды по 0,1 *нКл*. Один из зарядов отрицательный. Определить силу, действующую на точечный заряд 1 *нКл*, находящийся в плоскости шестиугольника и равноудаленный от его вершин.
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды 2q, -5q, 2q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. Три точечных заряда, попарно помещенные на расстоянии  $10 \, cM$  друг от друга, взаимодействуют с силами:  $0,05 \, H, \, 0,08 \, H, \, 0,12 \, H$ . Найти величины зарядов.


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0=6\ nKn$ , помещенный в точку 25. Сде-



|          | Величины зарядов (нКл) |    |    |  |  |  |  |  |    |  |
|----------|------------------------|----|----|--|--|--|--|--|----|--|
| $Q_{19}$ |                        |    |    |  |  |  |  |  |    |  |
| +1       | +3                     | -5 | -3 |  |  |  |  |  | 13 |  |

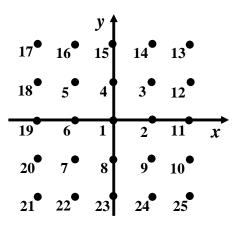
- 2. Два одинаковых заряженных шарика притягиваются друг к другу. После того как шарики привели в соприкосновение и раздвинули на расстояние в 2 раза большее, чем прежде, сила взаимодействия уменьшилась в 12 раз. Каков заряд первого шарика до соприкосновения, если заряд второго шарика равен с силой 2 *нКл*.
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды 3q, -5q, 5q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. По кольцу могут свободно перемещаться три шарика, несущие заряды:  $+q_1$  на одном шарике и  $+q_2$  на каждом из двух других. Чему равно отношение зарядов  $q_1$  и  $q_2$ , если при равновесии дуга между зарядами  $q_2$  составляет  $60^\circ$ .


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0 = 6\ nKn$ , помещенный в точку 17. Сде-



|          | Величины зарядов ( $HKn$ )         |    |    |  |  |  |  |  |    |  |
|----------|------------------------------------|----|----|--|--|--|--|--|----|--|
| $Q_{20}$ | $Q_{20}$ $Q_{21}$ $Q_{22}$ $Q_{7}$ |    |    |  |  |  |  |  |    |  |
| +2       | - 3                                | +1 | +4 |  |  |  |  |  | 13 |  |

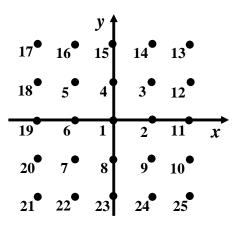
- 2. Шарик массой 20 Mг, имеющий заряд 0.2 HКл подвешен на нити и помещен в электростатическое поле, направленное горизонтально. Определите угол, на который нить отклонится от вертикали, если напряженность поля равна  $8*10^3$  B/M.
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды 2q, -2q, 2q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. На двух одинаковых капельках воды находится по одному лишнему электрону, причем сила электрического отталкивания уравновешивает силу их взаимного тяготения. Каковы радиусы капелек?


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0=6\ nm$ , помещенный в точку 13. Сде-



|          |                          | F   | Величин | ы заряд | цов (нКл | <u>(</u> ) |  |  | Номер |  |
|----------|--------------------------|-----|---------|---------|----------|------------|--|--|-------|--|
| $Q_{24}$ | $Q_{24}  Q_{25}  Q_{10}$ |     |         |         |          |            |  |  |       |  |
| +6       | +1                       | - 3 |         |         |          |            |  |  | 17    |  |

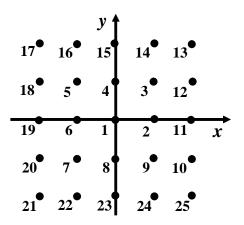
- 2. Два шарика равной массы, одинаково заряженных, подвешены в одной точке на нитях одинаковой длины. При погружении шариков в масло плотностью 800 г/см<sup>3</sup> угол расхождения нитей не изменился. Определить диэлектрическую проницаемость масла.
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды 3q, -3q, 2q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. Вокруг неподвижного точечного заряда 3 *нКл*, равномерно вращается под действием сил притяжения маленький шарик, заряженный отрицательно. Чему равно отношение заряда шарика к массе, если радиус орбиты 2 *см*, а угловая скорость вращения 3 *рад/сек*.


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0=6\ nKn$ , помещенный в точку 13. Сде-



|          |                            | F  | Величин | ы заряд | цов (нКл | 2) |  |  | Номер |  |
|----------|----------------------------|----|---------|---------|----------|----|--|--|-------|--|
| $Q_{23}$ | $Q_{23}$ $Q_{24}$ $Q_{25}$ |    |         |         |          |    |  |  |       |  |
| - 3      | +5                         | +8 |         |         |          |    |  |  | 17    |  |

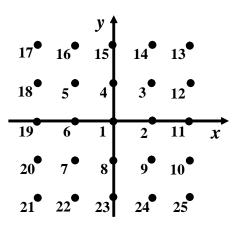
- 2. Маленький шарик массой 200 *мг* и зарядом 26,7 *нКл* подвешен на нити. На какое расстояние надо поднести к нему снизу одноименный и равный ему заряд, чтобы сила натяжения нити уменьшилась в три раза?
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды 3q, -q, 2q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. Три маленьких шарика массой 10 г каждый подвешены на нитях одинаковой длины длиной по 1 м. сходящихся наверху в одном узле. Шарики одинаково заряжены и висят в вершинах равностороннего треугольника со стороной 10см. Каков заряд каждого шарика?


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0=6\ nm$ , помещенный в точку 13. Сде-



|          | Величины зарядов ( $HK\pi$ ) |    |  |  |  |  |  |  |    |  |
|----------|------------------------------|----|--|--|--|--|--|--|----|--|
| $Q_{10}$ | $Q_{10}  Q_{11}  Q_{25}$     |    |  |  |  |  |  |  |    |  |
| +2       | -5                           | +3 |  |  |  |  |  |  | 17 |  |

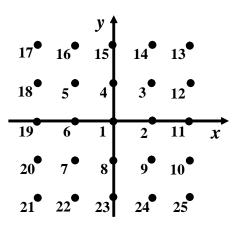
- 2. Два одинаковых заряженных шарика притягиваются друг к другу. После того как шарики привели в соприкосновение и раздвинули на расстояние в 2 раза большее, чем прежде, сила взаимодействия уменьшилась в 8 раз. Каков заряд первого шарика до соприкосновения, если заряд второго шарика равен с силой 1 нКл.
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды 3q, -3q, 3q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. Заряды +Q, Q и +q расположены в углах правильного треугольника со стороной a . Каково направление и величина силы, действующей на заряд +q?


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной a=10 см. В некоторых узлах решетки расположены точечные заряды  $Q_1, Q_2, ..., Q_n$ , величины которых с размерностью нКл указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) опреде-ЛИТЬ силу, действующую на заряд  $Q_0 = 6 \, \text{нКл}$ , помещенный в точку 13. Сде-



|       |                    | I        | Величин  | ы заряд | ов (нКл | !) |  |  | Номер |  |
|-------|--------------------|----------|----------|---------|---------|----|--|--|-------|--|
| $Q_9$ | $Q_{10}$           | $Q_{24}$ | $Q_{25}$ |         |         |    |  |  | точки |  |
| - 3   | - 3   +2   -1   +5 |          |          |         |         |    |  |  |       |  |

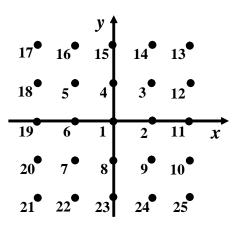
- 2. Шарик массой  $0.4 \ \varepsilon$ , имеющий заряд  $4.0*10^{-7} \ Kn$  подвешен на нити и помещен в электростатическое поле, направленное горизонтально. Определите угол, на который нить отклонится от вертикали, если напряженность поля равна  $8*10^3 \ B/m$ .
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды 4q, -5q, 4q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. На стоящем вертикально кольце радиуса R закреплены два шарика A и B так, что прямая AB горизонтальна, а угол AOB равен  $90^{\circ}$ . Два других шарика C и  $\mathcal{I}$ , имеющие одинаковые заряды q и массы m, могут перемещаться по кольцу без трения. Какие заряды необходимо сообщить шарикам A и B ,чтобы все четыре шарика расположились в вершинах квадрата.


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0=6\ nm$ , помещенный в точку 13. Сде-



|          | Величины зарядов (нКл) |     |    |  |  |  |  |  |    |  |
|----------|------------------------|-----|----|--|--|--|--|--|----|--|
| $Q_{10}$ |                        |     |    |  |  |  |  |  |    |  |
| +1       | +5                     | - 3 | +1 |  |  |  |  |  | 17 |  |

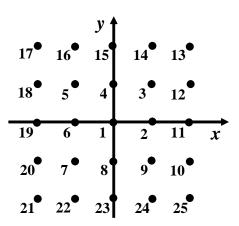
- 2. В однородном электрическом поле с напряженностью  $50 \ \kappa B/m$ , равномерно вращается шарик массой  $10\varepsilon$ . Шарик заряжен положительным зарядом  $2,5*10^{-6}\ Kn$ . Шарик подвешен на нити длиной l. Угол отклонения нити от вертикали  $60^\circ$ . Найти силу натяжения нити, если напряженность поля направлена вертикально вниз.
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды 4q, -2q, 4q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. Четыре одинаковых заряда по  $10 \, nKn$  расположены на равных расстояниях друг от друга  $a=10 \, cm$ . Какую силу и в каком направлении надо приложить к каждому заряду, чтобы эту систему удержать в равновесии?


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0=6\ nm$ , помещенный в точку 13. Сде-



|          |                            | H  | Величин | ы заряд | цов (нКл | <i>!</i> ) |  |  | Номер |  |
|----------|----------------------------|----|---------|---------|----------|------------|--|--|-------|--|
| $Q_{15}$ | $Q_{15}$ $Q_{16}$ $Q_{17}$ |    |         |         |          |            |  |  |       |  |
| +8       | +4                         | -1 |         |         |          |            |  |  | 25    |  |

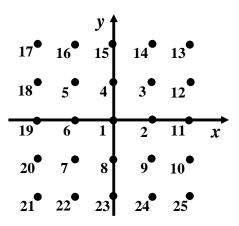
- 2. Четыре одинаковых положительных точечных заряда  $3*10^{-9}$   $K_{\pi}$  находятся в вершинах квадрата. Найти величину заряда, помещенного в центр квадрата, при котором система находится в равновесии.
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды q, -4q, 2q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. Заряженные шарики, находящиеся на расстоянии 2 M друг от друга, отталкиваются с силой 1 H. Общий заряд шариков  $5*10^{-5}$  Kn. Как распределен заряд между шариками?


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0=6\ nm$ , помещенный в точку 13. Сде-



|          | Величины зарядов (нКл)              |     |    |  |  |  |  |  |    |  |
|----------|-------------------------------------|-----|----|--|--|--|--|--|----|--|
| $Q_{16}$ | $O_{16}$ $O_{19}$ $O_{19}$ $O_{19}$ |     |    |  |  |  |  |  |    |  |
| +3       | +2                                  | - 5 | +2 |  |  |  |  |  | 25 |  |

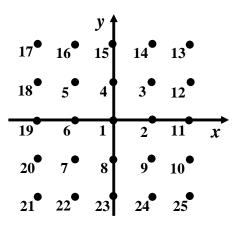
- 2. Два одинаковых заряженных шарика отталкиваются друг от друга. После того как шарики привели в соприкосновение и раздвинули на расстояние в 2 раза большее, чем прежде, сила взаимодействия уменьшилась в 6 раз. Каков заряд первого шарика до соприкосновения, если заряд второго шарика равен с силой 2 нКл.
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды 2q, -4q, q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. Три одинаковых заряда по 1 *нКл* каждый расположены в вершинах прямоугольного треугольника с катетами 40 *см* и 30 *см*. Найти напряженность поля, созданного всеми зарядами в точке пересечения гипотенузы с перпендикуляром, опущенным из прямого угла.


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0=6\ nm$ , помещенный в точку 13. Сде-



|          |     | I  | Величин | ы заряд | цов (нКл | <u>!</u> ) |  |  | Номер |  |
|----------|-----|----|---------|---------|----------|------------|--|--|-------|--|
| $Q_{17}$ |     |    |         |         |          |            |  |  |       |  |
| +2       | - 4 | -1 | +4      |         |          |            |  |  | 25    |  |

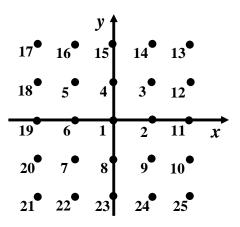
- 2. В вершинах правильного шестиугольника со стороной  $10\ cm$  расположены точечные заряды  $q,\ 2q,\ 3q,\ 4q,\ 5q,\ 6q\ (q=0,1\ mкKл)$ . Найти силу взаимодействия седьмого точечного заряда q с остальными. Седьмой заряд находится в центре шестиугольника.
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды q, -q, q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. Два одинаковых заряженных шарика, находящиеся на расстоянии 0,2 M, притягиваются с силой  $4*10^{-3}H$ . После того как шарики были приведены в соприкосновение и разведены на прежнее расстояние, они стали притягиваться с силой  $2,25*10^{-3}H$ . Определить первоначальные заряды шариков.


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0 = 6\ nKn$ , помещенный в точку 17. Сде-



|          | Величины зарядов (нКл)     |    |  |  |  |  |  |  |    |  |
|----------|----------------------------|----|--|--|--|--|--|--|----|--|
| $Q_{13}$ | $Q_{13}$ $Q_{14}$ $Q_{15}$ |    |  |  |  |  |  |  |    |  |
| +3       | -2                         | +8 |  |  |  |  |  |  | 21 |  |

- 2. Два одинаковых шарика подвешены в одной точке на нитях одинаковой длины по 20~cm каждая и находятся в вакууме. После сообщения шарикам одинаковых зарядов по  $4*10^{-8}~Kn$ , нити разошлись на угол  $60^{\circ}$ . Определить массу шариков.
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды 5q, -5q, q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. Четыре одноименных заряда q расположены в вершинах квадрата со стороной a. Какова будет напряженность поля на расстоянии 2a от центра квадрата на продолжении диагонали.


1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0 = 6\ nKn$ , помещенный в точку 17. Сде-



|          |                                    | F  | Зеличин | ы заряд | цов (нКл | <u>!</u> ) |  |  | Номер |  |
|----------|------------------------------------|----|---------|---------|----------|------------|--|--|-------|--|
| $Q_{13}$ | $Q_{13}$ $Q_{14}$ $Q_{15}$ $Q_{3}$ |    |         |         |          |            |  |  |       |  |
| +2       | +4                                 | -1 | +6      |         |          |            |  |  | 21    |  |

- 2. Маленький шарик массой 100 *мг* и зарядом 16,7 *нКл* подвешен на нити. На какое расстояние надо поднести к нему снизу одноименный и равный ему заряд, чтобы сила натяжения нити уменьшилась в три раза?
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды q, -5q, 2q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. Четыре одноименных заряда q расположены в вершинах квадрата со стороной a. Какова будет напряженность поля на расстоянии 2a от центра квадрата на прямой, проходящей через центр квадрата и параллельной сторонам?

1. На рисунке показаны точки, расположенные в узлах решетки с ячейкой в форме квадрата со стороной  $a=10\ cm$ . В некоторых узлах решетки расположены точечные заряды  $Q_1,Q_2,...Q_n$ , величины которых с размерностью nKn указаны в таблице. Определить: а) напряженность электрического поля в точке, указанной в последнем столбике таблицы; б) определить силу, действующую на заряд  $Q_0=6\ nKn$ , помещенный в точку 13. Сде-



| Величины зарядов (нКл) |          |          |          |          |  |  |  |  | Номер |
|------------------------|----------|----------|----------|----------|--|--|--|--|-------|
| $Q_{17}$               | $Q_{18}$ | $Q_{19}$ | $Q_{20}$ | $Q_{21}$ |  |  |  |  | точки |
| +3                     | +5       | -1       | - 3      | +2       |  |  |  |  | 11    |

- 2. Два одинаковых заряженных шарика отталкиваются друг к друга. После того как шарики привели в соприкосновение и раздвинули на расстояние в 3 раза большее, чем прежде, сила взаимодействия уменьшилась в 10 раз. Каков заряд первого шарика до соприкосновения, если заряд второго шарика равен с силой 3 *нКл*.
- 3. Три проводящих шарика радиусами r, 2r, 3r, на которых находятся заряды q, -5q, q, расположены в вершинах тетраэдра с ребром R >> r. Определить напряженность поля в четвертой вершине тетраэдра.
- 4. Четыре одноименных заряда q расположены в вершинах квадрата со стороной a. Какова будет напряженность поля в точке, расположенной на перпендикуляре на расстоянии 2a от центра квадрата.