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INTRODUCTION

Active development of the automatic control theory has begun with
electromachine systems and radio automatics systems. Later it has appeared
that methods of the automatic control theory allow to explain work of the
various physical nature objects: in the mechanic, power, radio and the electri-
cal engineer, that is everywhere where is feedback.

In the book the sections of the the automatic control theory, necessary
for term paper performance are considered. Questions of the mathematical
description of linear, nonlinear and pulse systems; algebraic and frequency
criteria for an estimation of stability of systems of automatic control; indica-
tors of quality of their process of regulation are considered. The concrete
numerical examples facilitating development of a material are resulted.

The primary goals of a term paper are:

- Drawing up on a function chart circuit diagram.

- Drawing up of mathematical model in the form of the block diagram.

- System research on stability.

- Construction of system transient process for regulation quality estimation.
- An estimation of regulation process accuracy.

For term paper performance it is necessary to choose a circuit diagram
of system and numerical values of parameters of its elements (the Appendix
1). Also it is possible to use additional information from books [1-10] in or-
der to carry out task.

Linear continuous ACS.

To give the short description of automatic control system (ACS).
To describe a principle of ACS regulation.

Using linear models of ACS elements (the Appendix 1) to make
on the base of system circuit diagram functional and structural
schemes.

To get openloop transfer function of system.

To find transfer functions of the closed-loop system on setting
influence and to the desturbance factor.

To write down differential equation of ACS.

To check upACS on stability on the of roots of the characteristic
equation of system.To check up ACS on stability, using criterion
of Mikhailov stability.To check up ACS on stability, using crite-
rion of Nyquist stability.

To define margins of system stability on amplitude and a phase.



To define by Gurvits stability criterion critical gain of open-loop
system.

Under zero conditions, to construct the transitive characteristic of
system and to define its quality indicators.

To define the full established error of system.

Nonlinear ACS.

To accept that the amplyfing unit in system is a nonlinear element
and to make the unit diagram of nonlinear ACS.

To reduse the block diagram of nonlinear ACS to typical and to
get transfer function of a linear part of system.

To receive the differential equation of harmoniously linearized
nonlinear system.

To estimate stability of harmoniously linearized nonlinear system
by Goldfarb method.

Using Popova V. M. absolute stability criterion to investigate sta-
bility of system balance position in general.

Linear pulse ACS.

To generate the scheme of pulse system.

To get transfer function of a continuous part of pulse system

To define, using the Kotelnikov theorem, the period of quantiza-
tion.

To find open-loop and closed-loop transfer functions of system.
To define stability of system on the base of roots of the character-
istic equation.

To define stability of system, using Mikhailov stability criterion
analog.

Under conditions zero, to construct the discrete transitive charac-
teristic of system and to define its quality indicators.

To define a regulation error on setting influence.



1 LINEAR AUTOMATIC CONTROL SYSTEM

1.1 Automatic Control System Functional Diagram Design According
to its Circuit Schematic

Any automatic control system (ACS) functional diagram includes plant
with controllable output value x(¢) and disturbance f, control unit (CU), that
provides output value stabilization with prescribed accuracy x that
1sx(t) = x, = const ; setting device (SD), which provides required x, value;
feedback; comparing summarizing unit (CSU) (fig. 1.1).

CU consists of amplifying element, execution unit and subsequent or
parallel correction.

SU —» CSU—» CU —>{ Plant >

L Feedbackfe———

Fig. 1.1. ACS functional diagram

Besides, the control system could be realized additional disturbance f
control or reference signal g control, or simultaneously disturbance and refer-
ence signal control (combined control).

CSU could be implemented on operational, magnetic or rotating ampli-
fier, or on measurement device.

Various sensors which transform output controlled value x, of the plant

into electrical signal present primary feedback.

Initial ACS circuit schematic divided into separate devices and nodes
with taking into account the functions performed. Also D and plant are
identified in circuit. In the following systems plant is a DC motor with the
reduction gear, and controlled value is rotation angle. It is necessary to re-
member that in the control system functional diagram, in the forward path of
reference signal g passing the first place takes SD, and plant takes the last.
(Fig. 1.1).



Example 1.1. Make the functional diagram according to the circuit
schematic of DC motor rotating frequency @ control system, represented in

fig. 1.2.
+ o+
0 Fe3

M
R—@ <
I_ \RSD
“FC

[, 1]

SD
Fig. 1.2. Circuit schematic of DC motor rotating frequency control system
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Setting device for this system is potentiometer R. It is placed on the first
place in the functional scheme. (fig. 1.2). According to the ACS tittle the
plant is a Direct Current Motor (DCM), and its controlled value is a rotating
frequency @. Therefore DC motor Uy, is placed on the last place in the for-
ward path. Uj;, voltage is compared with Ugg voltage and forwards the signal
by turns goes through electronic amplifier EA, servomotor SM, reducer RD,
direct current generator DCG and comes on DCM. Tacho-generator TG is a
sensor, which transforms frequency @ into voltage Ugp, measured on poten-
tiometer Rpp. Disturbance f in the given system is resistance (load) moment
M, (fig. 1.3).

M,
Usp l @
Rsp >CSU—> EA — M » Rd— G » DCM |+
7y
Rsp [« TG |«

Fig. 1.3. System

Automated control or stabilization system task provides the required
signal x, in the plant output. Deviation system control principle is in refer-
ence signal changing which acts on plant depending on difference between
the set value and real output value.

Let’s consider deviation control principle on the DCM rotation frequen-
cy system functional scheme as the following (example 1.1).



If the load on the DCM shaft increases, the disturbance M) increases
consequently too. This leads to @, and the decreased Upg. Therefore, positive

difference U, —U,, =+AU appears at the E4 input that in its turn leads to

the signal value magnitude, fed on servomotor, increasing, that means current
in the DC motor circuit coil also increases. Rotating frequency will increase
proportionally from +AU to «, .

Thus, any deviation of the output controlled value x(z) from the re-
quired value x, leads to the error: x(¢) —x, = *Ax.

This error +Ax is reduced to zero with the given accuracy by the system during
control process.

1.2 Automated Control System Unit Diagram Design

For the block diagram construction one should make the transfer func-
tions of the control system devices (appendix 1) and equipment on the base
of their differential equations. Herewith, differential equation disturbance f
component (Mc, I etc.) needs to be taken into account only for the plant.
That’s why the plant will have two transfer functions: reference signal

wi (s) and disturbance WP’;M (s). CSU also have some kinds of transfer

functions and their quantity determined by the quantity of inputs.
For the definition of transfer function expression according to the spe-
cific influence superposition principle is used.
Transfer function — relation between output and input signal in the La-
place transform, with zero initial conditions.
Example 1.2. Obtain transfer function for the direct current generator
Wpeg(s) -
Solution:
Direct current generator differential equation (look appendix 1) has a
view:
(T, - p+1)- AU (1) = K, - AU . (2). (1.1)
Applying Laplace transform to the equation (2.1) get
(T -s+1)-AUG(s) = K, - AU (s)
Then, according to the transfer function definition write
Wyols) = AUG(5) _ K .
AU (s) T,-s+1
Example 1.3. Obtain plant transfer functions of automated control system repre-
sented in fig. 1.3.

Solution
Lets write direct current generator differential equation:

(T, T,y - P>+ Ty, - p+DAGW) =K, -AU ()= K (T, - p+1)-AM,.(1.2)




Using superposition principle obtain direct currenct generator voltage anchor chain
UA vV

transfer function — W, (s) . For this, let’s equate M, = 0. Then equation (1.2) takes the
view:
2
(T, T, p +T,, - p+DAw(t) =K ,,,-AU ,, (1)
Let’s get direct current generator anchor chain transfer function:
Aw(s K

i) =—22)__ K |
AU, (s)  (TpTpys™ + Ty, -s+1)

Similarly get direct current generator resisting moment transfer function Wg([fG (s),
for this reason let’s equate AU ,,(¢) =0.

Aa(s) =K, (T, s+1)-
AM,(s) (T,-T,-s*+T,-s+1)

Let’s define the concept of the unit diagram.

Unit diagram — a graphical representation of the device differential equation,
when the transfer function expression is written inside the rectangle, input signal and out-
put signal are represented by arrows.

ACS unit diagram composed according to it’s functional diagram taking into ac-
count obtained transfer functions of devices and equipment included in this diagram. Unit

diagram represented on fig. 1.4 corresponds to the functional diagram represented on fig.
1.1.

Woi(s) =

Example 1.4. Make unit diagram according to the functional scheme of DCG rota-
tion frequency ADS, depicted on fig. 1.3.

Solution.

Let’s get ADS devices and equipment transfer functions:

Aaw(s) .
AU (s) I
AU (s) _ .
AU(s) ™
AU, (s) _

e Tachogenerator TGW,(s) =
e Resistence Rpg — W (s) =

e Electronic amplifier EA -W_ (s) =

Usi () _ Ko
Upi(s) (Tys+1)
e Reducer RD - W, (s)=K,,.

EA>

e Servomotor SM — W, (s) =

Unit diagram for this scheme is represented on fig. 1.4.
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Usp ®
Kea 2 Wui(s) 2 Wed(s) 1 Wo(8) Wui(s) =

Kip [« W5(s) |«
Fig. 1.4. Rotation frequency ADS unit diagram

Y

1.3 ACS Transfer Functions

Using structural transformation rules, bring obtained ADS unit diagram to the form

(fig. 1.5).
lf
f
W[’Izlm(s)
g - y X
—>| Wii(s) Wels) > Wo(s) >
U.J'-B
Wea(s) [€—1 Wis(s)
Fig. 1.5. ADS Unit diagram
Let’s consider some ACS transfer functions formation:
. open-loop system transfer function W, ¢ (s);
. reference signal closed-loop system transfer function WfLS (s);
. disturbance closed-loop system transfer function Wcﬁs (s);

control error closed-loop system transfer function WCELS (s).

For the formation of the open-loop system W, (s) transfer function construct
open-loop ACS unit diagram (see fig. 1.6.):

o all the impacts and blocks, which are not the parts of the main control loop not
taking into account;
. the primary feedback is broken, and it’s circuit is considered as an extension of

the forward path of reference signal g passing (see fig. 1.6.)

Ax Yy Urs Uour

—> W) | Wi(s) > Wisl(s) —>| Wo(s) —>

Fig. 1.6. Open-loop ACS unit diagram
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Then we can write an equation for the open-loop system transfer function

FB
Wors(8) =Wey () Wy (8) - Wip(8) - Wegyy (5)- (1.3)
Let’s use superposition principle for any influence closed-loop ACS transfer func-

tion obtaining. Unit diagram for reference-signal control closed-loop system obtaining is
represented on fig. 1.7.

y %
—> Wib(s) W(_U(S) —> Wlimt(s)
U;,‘,q
Wealls) [ Wasls)

Fig. 1.7. Reference signal control ACS unit diagram

System transfer function has form

W, (s)-W.,(s) WS, (s
Wers(s) = cw(8) Wie($) Wesy )FB : (1.4)
L+ Wy () Wiy (SOW g (8) - Wy (5)
Analyzing equation obtaining (1.4), one can note, that transfer function
numerator is a transferfunction W (s) is a part of system between the system

input and output point. Therefore expression (1.4) could be represented in the
form:

g __W(s)
Weps(s) = L+, (s) (1.5)

Unit diagram for closed-loop system transfer function in the disturbance is repre-

sented in fig. 1.8.
f X

— W.:I.um(s) —> >
Wfsf(s) < Wl-‘ls(s) < -1 [« Wlﬁuur(s) < “{'u(s) <
Fig. 1.8. Unit diagram of disturbance ACS
Then transfer function expression has form:
f WP};ant (S)
Wers(s) = B FB [~
L=Wo, () - Wi () (=1) - W (s) - Wegy (5)
Or
Wi (s
VTG"’C(S)=—”P( ) : (1.6)
1+ Wy (s)

where WSJ; (s) — transfer function of the disturbance signal straight passing.

Unit diagram for the closed-loop system transfer function WCELS (s) for the control
error is represented in fig. 1.9.

12



I Wi[(s) >
W) [ Wia(s) [ Witau(s) [ Weul(s) [«
Fig. 1.9. ACS unit diagram for the control error
Wi, (s We(s
Wes(s)= csu() LG (1.7)

FB - >
L+ Wey (8) Wy ($)Wip(8) Wegy (5) - 1+ W, 5(5)
Analyzing equations (1.5)-(1.7), could be made the conclusion that closed-loop
transfer function for any influence z equals to

Weis(s) = WSI; (5)

1+ W5(5) ’

Where WSZT () is transfer function between the error signal f* input and output of

(1.8)

system.
Obtaining system transfer functions expressions, it is necessary to reduce them to a
simple fraction.
Example 1.5. Get all the direct current motor rotation frequency ACS transfer func-
tions, make unit diagram (fig. 1.3)
Solution
Let’s make open-loop ACS unit diagram, breaking feedbacks, loping off reference
signal U, and disturbance M,
[]r'u UO{,-"T
_>| KA |_"| Wsu(s) |_>| Wip(s) |_"| Wai(s) |_"| Wii(s) |_>| Wi (s) |_>| Kip |_>

Fig. 1.10. Open-loop ACS unit diagram

KEA 'KSM 'KRD 'KGl 'KM1 'KTG 'KFB _
(T s +1)- (Lo + 1) - (T, Ty, 5% + Tpyys +1)

Let’s use superposition principle, equal M, =0 and make closed-loop ACS unit

Wors(s) =

diagram for reference signal U, .
Usp ®
Kix 2 Wsu(s) > Weo(8) Wai(s) > Wui(s)

Y

Y

KFB < W’I'(E(S) <
Fig. 1.11. ACS unit diagram for reference signal

Let’s get closed-loop ACS transfer function for reference signal U, :

13



K e K sy KK Ky
W (5) = Wer(s) (TS +D)-(Tgs + 1) - (TpTps” + Tpys +1)
L+ Wos(s) 1+ KK K rp Ko Ky Ky K g
(TS + 1) (Tys + 1) - (T, T, 8” + Tpyys +1)
_ KoK s KppK g Ky
(Tgs + 1) (Ts +1) - (TETEMS2 + Ty + 1) + K K Koy K Ky K K g ‘

Let’s equal U, =0 and make closed-loop ACS unit diagram for disturbance M,

R '

>
>

M,

Ko J— Wi (8) o] Wi (8) fe—] We(s) Je— Waa(s) J—{-1] Wi(s)
Fig. 1.12. ACS unit diagram for disturbance f

Now represent closed-loop ACS transfer function for disturbance as:

_KMZ
Wl (s) = WSAT4L (s) (TETEMS2 + Ty +1) —
s 1+W,,(s) 14 KK sy Kpp K Ky 1 KK g

(Tyyys +1) - (Tps +1) - (T, T, 5° + Ty s +1)
_ _KMz(TSMS+1)'(TGS+1)' )
(T s +1)-(Tgs +1) - (TETEMS2 + Tps + D)+ K K Ky K Ky Ko K g

1.4 Differential Equation of ACS

Having obtained the closed-loop system transfer function for the reference signal

WE ((s) and disturbance W, o(s), ACS unit diagram depicted in fig. 1.5 can be repre-
sented in form (fig. 1.13):

—> Wi(s)

Fig. 1.13. ACS unit diagram

Let’s write the ACS output signal equation in image S

X (5)=X,(5)+ X, (5) = Wei5(5) - G(s) + W (s) - F(s),
where G(s), F(s) are the images of reference signal g(¢) and disturbance f().
Let’s introduce the notation WS ((s) = B(s) s W ()= C(s) and write (1.9):
A(s) A(s)

A(s)- X(s)=B(s)-G(s)+C(s)- F(s), (1.10)

(1.9)

14



where A(s), B(s),C(s) is polynomial of image S:
A(s)=(a,-s" +a,-s" " +a,-s"*

B(s)=(b,-s" +b,-s" " +---4b );

C(s)=(c, 8" +c, -8 +-+¢).

Then (1.10) has a form:

(ay-s"+a,-s" " +a,-s" 2 +-+a,) X(s)=(b,-s" +b 5"+ +b )x

+-ota,);

xG(s)+(c, 8" +c -8+ +c) F(s).
If the transfer function denominator A(s) equals to zero, we obtain the character-
istic equation:

-1 -2
A(s)=a,-s"+a,-s" +a,-s"

+--+a, -s+a,=0. (1.11)

Solving this equation, characteristic equation roots s,,5,, --S, |, are defined.

d
Switching from signal images to their originals and replacing s — p — z , we get ACS
t

differential equation:

d"X(0) d”_lX(t)+a d”‘zX(t)Sn_z

a ++a X(t)=
0 dtn 1 dtn_l 2 dtn—Z n ( ) (1 12)
d"g(t) , d" g d'roy  d7ro
=b, T +b, L +--+b, +c, 4 +c = +-te, f(2).

Example 1.6. Get DCM rotation frequency ACS differential equation, its unit dia-
gram is represented on fig. 1.5.

Solution.

Let’s write the output signal equation @in image s , using the following equation

(1.9).
w(s) = Wclis (s)-U, (s)+ Wéffq (s)-M,(s)=
— KEAKSMKRDKGIKMI . U (S) +
(TSMS + 1)(TGS + 1)(71ET'EMS2 + TEMS + 1) + KEAKSMKRDKGIKMIKTGKFB "
K, (T.,s+1)-(T.s+1
M2( SM ) ( G ) ‘ML(S)

+
2
(T8 + D(Ts + (T T 8™ + Tpys +1) + K Ky Kpp Ky Ky K K
Switching from signal images to their originals, and replacing § — p, we obtain
DCM rotation frequency ACS differential equation:
(Toyp+D(Tp + 1)(TETEMp2 + Ty D+ D) + K Ky K K Ky K K ) - 0(2) =
=Ky Koy Kpp Ko - Ky U, () = Ky, (Tgy p+ 1) - (Top +1) - M (2).

Using the numerical values of system parameters and replacing p —)Z, the obtained
t

equation could be written in form (1.12).

15



1.5 ACS Stability Estimation According to Characteristic Equation
Roots

Solution of differential equation (1.12) for the known g(¢), f(t) is the variation
law of output control variable X (¢). It’s necessary to implement inverse Laplace trans-
form to equation (1.9) for ACS transient process finding:

X0 =L'[X,)+ X, ]= L[5 (5)- Glo) + W (s) - F(s)] =

1 1
=— [ Wi(5)-G(s)-e"ds+—— [ Wi(s)- F(s)-e"ds.
27] o 27] o
If integrals (2.13) are “unsolvable”, the Heaviside formula for transient process
definition is used:

(1.13)

_ | BO) v BG)
X@=U, 40 +§‘sl.-A'(si)e : (1.14)

where U, is the input signal amplitude; A'(Si) is the derivative value of numerator
transfer function for value s, ; n is the roots number of system characteristic equation.

System characteristic equation roots (fig. 1.14) can be real (root s§,), complex-
conjugative (S,,3;,5,,5;) and imaginary (S, S, ). Furthermore, roots can be located: in
the loft half plane, in the right half plane or on the ordinate axis and respectively will be
left, right or neutral.

The system will be stable, if the transient process for  — o0 tend to the steady-
state value X (o0) = X . This means that exponent index of equation (1.14) must be

negative, i.e. all the system characteristic equation roots must be located in the left half
plane (fig. 1.14).

S2 s, t Im
I x O7
Ss §
S1 S4
e ale »
Re
x
Sé 5
A * Sg
33* .....................

Fig. 1.14. Variation of characteristic equation roots location

Root stability criterion:
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The necessary and sufficient condition for the system to be stable is that all the sys-
tem characteristic equation roots were in the left half plane (have a negative real part).

If among the system characteristic equation roots even one is from the right half
plane and the rest are from the left , it means that ACS is unstable.

If among the system characteristic equation roots even one is neutral, and the rest
are from the left half plane, it means that ACS is neutral, that is situated on the stability
boundary.

Example 1.7. Estimate the stability according to DCM rotation frequency ACS
characteristic equation roots.

Solution.

Let’s use the system characteristic equation

A(s) =Ty, s +1) - (T,s +1)- (T, T}, 5 + Ty s +1) +
+KEA 'KSM 'KRD 'KGl 'KM1 'KT 'KFB'
Take equation to the form:
TSMTGTETEMS4 + [(TSMTGTEM) + Ty, +15) - TETEM]S3 +
H[(Topy + T )Ty + Ty T |5° +[Topy + T + Ty |5+
+KEAKSMKRDKG1KM1KTGKFB + 1 = O
Set system parameters: 7, = 0,02 sec; T,, = 0,5 sec; T,, =0,1sec; T, = 0,7 sec;
K, =15K, =15K,,=02;K., =8,K,,, =8.5K,;, =0.15,K,, =0.5

Let’s calculate the system characteristic equation coefficients:

a, =0.1-0.7-0.02-0.5=0.0007 ;
a,=0.1-0.7-0.5+(0.1+0.7)-0.02-0.5 = 0.043;
a,=(0.14+0.7)-0.5+0.02-0.5=0.41;
a,=0.1+0.7+0.5=1.3;
a,=15-0.6-0.2-8-8.5-0.15-0.5+1=13.24.

Using MatLab, we obtain roots values of system characteristic equation
>> W=tf([12.24],[0.0007 0.043 0.41 1.3 13.24])

Transfer function:

12.24

0.0007 s4 +0.043 s"3 +0.41 "2+ 1.3s+13.24
>> pole(W)

ans =

—50.3881

—-11.3604

0.1600 + 5.7460i1

0.1600 — 5.7460i

Conclusion: roots s,,s; are locating in the right half plane, therefore, DCM rota-
tion frequency ACS is unstable for the given parameters.
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1.6 ACS Stability Estimation According to the Mikhailov Stability
Criterion

It is necessary to get Mikhailov curve equation for the ACS stability estimation.

Let’s use closed-loop characteristic equation (1.11) for these purposes
_ n n—1 n-2 —

A(s)=ay-s" +a,-s +a,-s “+--+a, -s+a,=0.

To get the Mikhailov curve equation it is necessary to go to the frequency domain,
substitute § — j@ , separating real and imaginary components

. : .-l . \n=2 .

D(jo)=a,-(jo)" +a,-(jo)" +a,-(jo)" " +---+a, (jo)+

+a, =U(w)+ jV (o).
Where U(w), V(w) are real and imaginary components of Mikhailov curve equation.

(1.15)

According to the equation (1.15), when the @ is changing, one can draw the
Mikhailov curve (fig. 1.15).

y V( CO)
n:
« — n=1
n=3 n=4
——— —»
-0

Fig. 1.15. Mikhailov curves for stable systems with n=1, n=2; n=3; n=4

For ACS stability necessary and sufficient conditions should hold:

. when @ =0 Mikhailov curve locus should begin in the positive
part of the real axis;
J when 0 < @ <400 is changing, Mikhailov curve locus should: se-

quentially, without vanish, in the positive (counterclockwise) derection pass
n quadrants.
If the Mikhailov curve locus for the concrete frequency that does not equal zero
pass through the coordinate origin, the system is neutral.
If any of these conditions are not fulfilled, the system is unstable.
Example 1.8. Estimate DCM rotation frequency ACS stability using Mikhailov cri-
terion.
Solution.
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Let’s use characteristic equation and system parameters from the example 1.7.
A(s)=0.0007s* +0.435> +0.41s* +1.35+13.24.
For the Mikhailov curve equation obtaining substitute in A(s) § — j@ and sepa-

rate real and imaginary components.

D(jw)=0.0007-(jw)* +0.043- (jw)’ +0.41-(jw)’ +1.3-(jw) +13.24 =
=0.0007-@* - j-0.043-&* —0.41- @’ + j-13-0+13.24 =
=(0.0007- " - 041 * +13.24) - j-(0.358- 0 ~1.3- ).

Varying @ from 0 to 6.5, one can draw the Mikhailov curve (fig. 1.16).

3
2
1
Im(D(w))
o 0
-1
-2
-5 0 5 10 15
Re(D(0))
Fig. 1.16. Mikhailov curve for @ from 0 to 6.
100
0
=100
Im(D(®))
7200
=300
=400
12 13 14 15 16

Re(D(w))
Fig. 1.17. Mikhailov curve for @ from 0 to 10.

Conclusion: not all the Mikhailov stability requirements are fulfilled:

The order of quadrant pass is broken.
Consequently, DCM rotation frequency ACS with the given parameters is unstable.
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1.7 ACS Stability Estimation According to the Nyquist Stability Crite-
rion

For the ACS stability estimation it is required to use open-loop system transfer
function replacing s — j@, and draw up the locus. The special feature of this criterion is
closed-loop ACS stability estimation on the base of open-loop form of graph.

Open-loop ACS could be stable, unstable or neutral. Thus there are two approaches
to the system stability estimation.

Open-loop system is stable.

If the open-loop system is stable, the closed-loop system is unstable for any encir-
clement of the point (—1; jO).

If the locus happens to pass through the point (—1; j0), then the closed-loop sys-
tem is neutral, that means that it is boundary stable.

On the fig. 1.18 three ACS graphs are represented. Graph 1 corresponds to the sta-
ble closed-loop ACS, 2 is neutral, 3 is unstable.

Mm(Wos(o))

=0

[

Re(W),.(jo)

Fig. 1.18. Open-loop system locuses

Closed-loop system is unstable or neutral.
In this case, if among the left half plane roots even one is from the right half plane

or located in the coordinates origin.
If the open-loop system is unstable or neutral, then it is necessary and sufficient

that open-loop system locus encircled point (—1; j0) in the positive direction ? times,
for the closed-loop system stability, where K is number of right half plane roots of the
open-loop system.

Unstable open-loop system locus, which has one right half plane root is represented
on fig.1.19.
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A Im(Wois(joo))

— - 1 —0
»=0 Py 1 . _]0 0 >
Re(Wois(jo))

Fig. 1.19. Open-loop system locus for K=1

Locus encircles the point (—1; jO) 0.5 times in the positive direction, consequently

the closed-loop system is stable too.
Example 1.9. Estimate DCM rotation frequency ACS stability using Nyquist stabil-
ity criterion
Solution.
Let’s use DCM  rotation  frequency @ ACS  transfer  function
W, (s)= Kipi Ky - Kpp - Ky - Ky - Ko - K
O (T, s +1) - (T8 +1) - (TpT,, 5% + Tyyys +1)
Let’s set system parameters:

T, =0.02sec; T, =0.5sec; Ty, =0.1sec;
1.=0.7sec;K,, =15 K, =0.6;T,,=0.2;
K, =10;K,,,=85;K,.,=0.16;K,, =0.5.
Ky Koy Kpp Ky - Ky - K - K _
Ty s + 1) - (Tys + 1) - (T, T, 5 + Tyyp5 +1)
12.24
T 0.00075" +0.0435° + 0.41s> +1.35+1

Let’s define open-loop system characteristic equation roots, using Matlab.
W=tf([12.24], [0.0007 0.043 0.41 1.3 1])

Transfer function:

12.24

Wors(s) =

0.0007 s"4 +0.043 s"3 +0.41 s"2+1.3s+ 1

>> pole(W)

ans =

-50.5593

-4.8755 + 1.2244i

-4.8755 - 1.22444

-1.1181

Then since all the roots are located in the left half plane, let’s use the first system
stability estimation approach.

Let’s draw up the stable open-loop system locus, using Mathcad. (fig. 1.20 and fig.
1.21).

21



5 15
Im(W(w))
0
Re(W(®)),-1
Fig. 1.20. Nyquist locus for @ from 0 to 15
Im(W(w))
Ql |
000 05
—0.2—
Re(W(®)), Qo

Fig. 1.21. Nyquist locus for @ from 5 to 45

Conclusion. Nyquist locus, according to fig 1.21, encircles the point (—1; j0),
consequently, the closed-loop system is stable.

1.8 Hurwitz Stability Criterion. ACS Critical Gain

Critical gain K, of ACS is the value of the open-loop system coefficient
K, s.when the closed-loop system is neutral. It’s possible to use any stability criterion
for the system critical gain K., value definition.

Let’s consider the Hurwitz criterion to define K .
This requires closed-loop system characteristic equation:
A(s)=a, 8" +a,-s"" +a,-s"*+--+a, -s+a,=0.
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The principal Hurwitz determinant is formed from equation coefficients on the ba-
sis of following rules:
characteristic equation coefficients from @, are situated along the main

diagonal of the Hurwitz determinant;
determinant columns are filled out with coefficients regarding to principal
diagonal: upwards with increasing indexes, downwards with decreasing in-
dexes;
zeros are set instead of default coefficients.
The rest of the Hurwitz determinant are formed from principal determinant by
means of separating of rows (columns) number, which are equaled to sequence number of
determinant

(a, a, a;, .. O]

a, a, a, .. 0
A=0 a a .. 0

0 0 0 .. a,]

Criterion:
It is necessary, for a stable system, that all the coefficients of the characteristic

equation be positive:

a,>0,a ,>0,..,a,>0,a,>0

If even one determinant is equaled to zero, the system is neutral.

To define critical gain K, it” is enough to take only penultimate determinant and
equate it to zero.

Example 1.10. Define DCM rotation frequency ACS critical gain K., value, using

Hurwitz criterion
Solution.
Before the solution it is necessary to define which coefficients make open-loop sys-

tem coefficient K, . For that, let’s use DCM rotation frequency ACS transfer function
from example 1.9. and find it’s limit.

WOLS(S) — Ky, 'KSM K 'Kcl Ky, 'ZKTG Ky .
(Tys+1)-(Ts+1)-(T.T,,s" +T,,s+1)
lsig(}WOLS(S) =Kops = Kpy - Ky - Kpp - Ky - Ky - Ko - K.

Analyzing system characteristic equation from example 1.7 one can mention that

K, is apartonly of a,.
A(s)=0.0007 5" +0.043-5°+0.41-5° +1.3-s + K, +1=0
Let’s use the closed-loop system characteristic equation:
A(s)=0.0007 5" +0.043-5°+0.41-5* +1.3-s+ K, s+1

Let’s form the fourth order determinant
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0,043 1,3 0 0
0,0007 0,41 1+K,,, 0
0 0,043 1,3 0
0 0,007 0,41 1+K, |

Let’s use third order determinant:

0,043 1,3 0
A,(K,g)=10,0007 0,41 1+K,  |=0.
0 0,043 1,3

Expanding this determinant, we get K ., =10.7555.

A4 (KOLS) =

1.9 Stability Plane Plotting in System Parameter Plane

Using the stability criteria doesn’t give an answer to the question: “To what extent
one can vary the system parameters saving it’s stability”. This problem was solved by
Neimark and then being a part of control theory became known as « D-partition method»
or «Stability plane plotting in system parameter plane». This method is graph-analytic and
allows to define the varying range of one or two system parameters.

The method is as follows. Varying the system parameters in certain sequence, one
can value the parameters combinations, when the system characteristic equation roots are
neutral (located on the ordinate axis). In the fig 1.22 represented the situation when points
1,2,3...m are combination of parameters C and D, when even one of the system (1.11)

characteristic equation roots is imaginary. Connecting these points, we get D -partition
curve.
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D-partition curve

-
>

C, Cs C & &
Fig. 1.22. D -partition curve in parameters plane C and D

D -partition curve divides parameters plane C and D into areas with different
content of the right and the left roots. Plane area where all the system characteristic equa-
tion roots are left claims to be stable. For the stability area identification D -partition
curve shading is used. Closed-loop system characteristic equation, where the varying pa-
rameters C and D are contained, is the initial equation for stability region plotting.

The stability area plotting algorithm in a single parameter plane C':

Varying parameter C is detected in closed-loop system characteristic equation

(1.11).

The given equation is expressed with respect to the variable parameter C .

After passing to a frequency domain, replacing s — j@ and separating real and
imaginary components, D-partition curve equation is ob-

tained N(jw) =Re(jw)+ Im(jw). Let’s set a frequency @ from 0 to o0, and plot

one branch of D-partition curve and for @ from —o0 to 0 — another branch.
Causing a hatch on the branch of the D-partition, select the region of stability.
Choose parameter C variation limits from the stability region.
For the chosen value C, using any stability criterion, make found region checking.
Example 1.11. Plot stability region in plane of the parameter C = K -, .Define vari-

ation limits of K, and critical gain K, value of DCM rotation frequency ACS.

Solution.
Let’s use closed-loop system characteristic equation from example 1.10:

A(5)=0.0007 - 5" +0.043-5* +0.41-5> +1.3- 5+ K, s +1=0

Express K, ¢ from the given equation:
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K, s =-0.0007- s*—0.043-5°-0.41-5° -1.3-5—1.
Let’s go to frequency domain and plot D-partition curve in the varying parameter
K, plane.

T Im(K¢p)

II reg. I reg.

®=0 Re(k cr)

II reg.

N—>—w

Fig. 1.23. D-partition curve in the parameter K, . plane

In the fig. 1.23 one can see that stability region is the III-rdregion. Variation limits
Ko s= (0. . .10.7) are chosen from this region. Therefore, critical gain value

K, =10.7, which coincides with the value is in the example 1.10.

1.10 Step Response of the System and Quality Indexes of the Control
Process.

Performance quality of any control system is characterized by quantitative and
qualitative indexes, which are defined by the step response curve or other dynamic system
characteristics. System step response is the system reaction on the external influence,
which, in general, could be the complex time function. Usually system performance is
considered in terms of following standard influence: unit step function 1(¢), impulse func-

tion O(¢) and harmonic function. Often direct quality indexes (transient character, control
time — 74, and overshoot — 0, %) are obtained from the step response /() , for unit step
input signal 1(z).

Both numerator and denominator influence on step response character. If the
closed-loop system transfer function W, (s) has no zeros, i.e. has the form:

K K
Wers(s)=— p = )
a,s" +as" +..+a, A(s)

the character of the step response is completely determined by the closed-loop characteris-
tic equation roots:

(1.16)

a,s" +as"" +..+a, =0. (1.17)

26



If characteristic equation (1.17) roots are real S, = ¢, , the character of the step re-
sponse is monotonous, fig. 1.24

h(t)

Fig. 1.24. Aperiodic step responce

If the roots are real S, =, and complex conjugate Sl,k =a,t jB, and

complex roots much more than ¢, real, the character of the step response is oscillating

(periodical), fig 1.24.

If the pair of roots located on the ordinate axes and others in the left half plane, that
means that the step response is oscillating with constant amplitude and frequency. The
system is situated on stability boundary.

If the closed-loop system characteristic polynomial roots are situated in the left half
plane, such system is stable. If even one of roots is situated in the right half plane, and the
others are in left, this system is claimed to be unstable.

h(t) ~

4

I
t
Fig. 1.25. Oscillating step response

The system tendency to oscillation is characterized by a maximum value of a con-
trol variable hmax (fig. 1. 25) or by an overshoot value — ,%.
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J:M-IOO%,

h,,
where /1 is steady-state value of control variable after the completion of the step re-
sponse.
h(t) A
hM.a‘\X(t)
ho(O) (-2 f N o N
0 T, t t

Fig. 1.26. Qualitatii/e indexes of step response

System performance settling time is characterized by the duration of step response
I, . Settling time #¢ (step response duration) is defined as a period of time from applica-
tion of influence at the system input to the moment, when the following inequality is held:
‘h(t) — hoo‘ < Ah, where Ah is a small constant value, representing the specified accura-
cy. In the control theory itis A =0.05.

Degree of stability 77 represents an absolute value of the shortest distance from real
axes to the nearest root (or complex conjugated roots). Oscillating zis tg(@) (fig. 1.26).

Settling time 7 and 0, % are connected with degree of stability 77 and oscillating £ by
following correlations:

f=tnta2 so=e 7 100%.

n A7
For a more accurate estimation #g and o according to the correlations, it is neces-

sary for the system not to have zeros and all the system characteristic equation roots were
located inside or on the boundary of trapezium in the roots plane fig. 1.27.

S2 A

Im

S4

Re

S3

Fig. 1.27. Roots qualitative indexes
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Example 1.12. Plot DCM rotation frequency ACS step response. Define qualitative
indexes.

Solution.

Let’s use the closed-loop system transfer function expression for the reference sig-
nal from example 1.5

KEA 'KSM 'KRD 'KGl 'KMl

WC[‘JLI.};‘(S) = 2 .

(T8 + D - (Tgs + D - (TpT g™ + Tpys + D) + K Koy Ko K1 Ky K K g
Let’s set the system parameters:

T, =0.02sec; T, =0.5sec;T,, =0.1sec;T,, =0.7 sec;

K, =10;K,,=0.6;K,,=0.2;K; =8;K,,, =8.5;K,;,=0.15;K,, =0.5.
Then

12.24

0.0007s*+0.043s°+0.41s%+1.35+7.12
Let’s use Matlab to plot the step response. The results are shown on fig. 1.27.
> W=tf([12.24],[0.0007 0.043 0.41 1.3 7.12])

Transfer function:

12.24

Wi (s) =

0.0007 s"4 +0.043 s"3 +0.41 s"2+1.3s+7.12
>> pole(W)

ans =

-50.4742

-9.7133

-0.6205 + 4.5124i

-0.6205 - 4.5124i

>> step(W)
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25t | -
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Amplitude
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] 1 2 3 4 5 B 7 g g

Time (zec)

Fig. 1.28. Step response of DCM rotation frequency ACS

Let’s give all the system indexes:

h_. =271 rad/sec;
h,=K.¢=1.72;
oc=579%;

T,, =0.278 sec;

t; =5.87 sec;

T, =13sec;

Wpp =27) T, =4.83 s6C™';
1 =0.6205;

45123
n=18(0)= 05

1.11 Automated Control System Control Process Accuracy Estimation

Control accuracy research of ACS is conducted by means of the system steady-
state process analysis, i.e. the accuracy of control system is estimated by the steady-state
errors, which is defined by the system structure (transfer functions) and influences (refer-
ence signals and disturbances).
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1.11.1 Control error in stabilization systems

Estimating the stabilization control system accuracy the reference signal is as-
sumed to be constant, i.e. g(¢f)=g, -l(l‘ ) Total control error &, (t)of linear system,

which functional scheme is depicted on fig. 1.29, could be represented as

Ep (t) = g(t) — x(t) , whereg(t) is the reference signal; x(l‘) is the output signal.

In the image domain s the equation can be written as
EF(S)ZG(S)—X(S) (1.18)
Connection between reference signal g(t ) , disturbance f° (t) and output signal
x(t) in the image domain s is established by means of transfer functions
X(s)=Wgs(s) G(s)+W-F(s) (1.19)
where W2 .(s) is the closed-loop system transfer function for the reference signal g(¢) ;

while W, .(s) is closed-loop system transfer function for disturbance f(¢).
For the given control system (fig. 1.Omm6ka! McTOYHHUK CCHIJIKM He HalieH.29)

transfer functions have form:

W(j‘is(s):M; WCZLS(S):Ms (1.20)
T+ W.,.(5) L+, (s)

(s) is the transfer function of the open-loop system;

Where W, 5(8) =Wy (8) Wy,
(8) is the object transfer function.

W, (s) is the controller transfer function; W,
z

€ |

We(s) F>— Wou(s)

Fig. 1.29. Standard ACS unit diagram
Substituting(1.20), (1.19) into (1.18), we get

E.(s)= {1 P55 } G(s) + DeunS) pgy, (121)
+Woys L+ Wos
Where |:1 _ Mo (s) } = 1 =W (S) is the closed-loop system trans-
1+W,,.(s) | 1+W,,

fer function for the control error.
Therefore, total control error £, (s) consists of 2 components

EF(S):Eg(s)+Ef(s), (1.22)

E (l‘) — control error,

where Eg (S) — control error, caused by reference signal g(t); P

caused by disturbance f (t) .

Using  expressions  (1.21), (1.22) and limiting value  theorem
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grgf(t) = liﬁrgs : W(S)-F(S) , for standard signalsg(t) =g, -1(t), f(t) =/ -l(t)

systems steady-state errors can be defined according to the following expressions:

Ep =&, +&;, (1.23)
£, = ng(O)-g0 (1.24)
g, =W, (O)-fo. (1.25)

where &, — steady-state value of the total error; &, — steady-state value of the error,

caused by reference signal; Eff — steady-state value of error, caused by disturbance.

Equations (1.23)-(1.25) are static equations, which in static stationary mode
(t=00, s=0) connect steady-state control error values with transfer function values,
defined for s =0.

The first total control error component in stabilization systems ( g(t) = const)

SS

&, can be reduced to zero by scaling. Then control system accuracy will be fully charac-

terized by steady-state error O :

gss WZ O .
S _ L 1009 = s (O o 00,
8o &o

1.11.2 Control error in servo systems

In servo control systems and servo drive, used in aircrafts, reference
signal 1s changed with constant speed v, .

g(t)zvo -t, v, =const, (1.26)
or with constant acceleration

a.
g(t)z 5 a = const. (1.27)

Control process accuracy estimated with the help of number of errors.
c, g (t d"g(t
%'() L LG del)

1.28
n! dt" (1.28)

Egg (t) =C, -g(t)+cl -g'(t)+

n

C .
where & (t) steady-state error; ¢,, ¢, ... , — — number of errors coefficients;

n!
' " dng(t) . . .
g@), g (), .., 7 — the first, the second, ..., n — derivative of reference sig-

nal.

n

: c :
Coefficients c,, ¢, ..., — of number of errors (1.28) expressed in
n!

terms of transfer function W, for control error:
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; oW, 4 (s)
Co =Weps (S)‘ o € =—L"= ;
S—O aS S:O
. o (1.29)
C_2:8 Wes(s) i C_n:a Wes(s) .
2! Os* s=O, n! Os" <=0

Number of errors (1.29) is restricted, both left and right. Restriction
from the right depends on equality to zero of some derivative from the refer-
ence signal g(¢). For example, for the standard signal g(¢)=g,-1(¢) steady-
state error is defined according to the expression

£,=C, &, (1.30)

In this case number of errors coefficient ¢, characterizes steady-state er-
1OT.

If the reference signal is changed with the constant speed (1.26), steady-
state error expressed as

e ()=cy v, t+c v, (1.31)
where coefficient ¢, characterizes speed error.

Steady-state error for the reference signal (1.27) expressed as
2

e (t)=c -£+c a-t+2.q (1.32)
ss — %0 7 1 71 : :

) c ) )
Coefficient ?2' characterizes acceleration error.

From the expressions (1.30) - (1.32) follows, that for the static, speed
and acceleration errors elimination it is necessary equality to zero of coefti-

. c . . " .
cients 00,01,2—2', respectively. For this purpose, it is necessary to provide ap-

propriate astatism order for the system.
Under the astatism order meant degree v of the image S*, which is situ-
ated in the open-loop system transfer function denominator. For example for

Wes(s)= SQB&

astatism order equals to 2.
A(s)

For the 1™ order astatic systems coefficient c, equals to zero, for the 2™
order astatic systems — ¢,,c, equals to zero, for the 3" order astatic systems —

c :
c,,c,,—~equals to zero. Thereby 1% order astatic systems reproduce constant
0°™1 2'

reference signals g(¢) =g, -1(#) without error, systems with the 2" order of

astaticism reproduce reference signals, which change with the constant speed
g(t)=v,-t, v,=const without errors etc.
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2 Nonlinear ACS

ACS is considered to be nonlinear, if even one element of the system
described by the nonlinear differential equation. Practically all the ACS are
nonlinear. If after substitution of nonlinear system characteristic by the linear
the ACS behavior doesn’t change, such system called linearized. Nonlineari-
ties can be:

e accompanying, if nonlinearity is a part of the composition of ACS invaria-

ble part;

e not accompanying, if nonlinearity is a part of synthesized ACS part;
e essential;

e inessential nonlinearity;

e single-valued nonlinearity;

e mixed nonlinearity.

Nonlinearity is consider to be inessential, if the nonlinear component
substitution by the linear unit doesn’t change fundamental system features
and processes, occurring in the linearzed ACS, have no qualitative difference
from the real system processes.

In the unit diagrams the nonlinear element is represented by means of
the rectangle with static characteristic or functional dependence of the output
signal ¥ from the input signal X , written inside. For a single-valued nonlin-
earity is y = F(x). For mixed nonlinearity y depends not only on output

signal value x, but also on direction (i.e. derivative) y = F' (x, px).

Nonlinear ACS transformations have their own features. They are speci-
fied by the fact that superposition principle and commutativity rule are not
held for them, i.e. y,  # vy, +V,,-

Also not all the structural transformation rules are held for nonlinear
ACS, for example:

e it’s not allowed to transfer the summer through a nonlinear unit;
e it’s not allowed to rearrange linear and nonlinear units, etc.

Nonlinear ACS transformation consists in linear units transformation,

standing from the different sides of nonlinear element.

2.1 ACS Differential Equation in Implicit Form

There is no notation for the closed-loop nonlinear ACS. Therefore dif-
ferential equation obtaining approach for such type of systems is different
from the obtaining of linear ACS equation approach. Let’s obtain close-loop
ACS differential equation, which unit diagram represented on fig. 2.1.
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F(x)

Nonlinear
element WLP(S)

Fig. 2.1. Typical nonlinear ACS bock diagram

Let’s designate the linear part transfer function of nonlinear ACSW,, ()

as W, ,(s)= ig; , then its differential equation has a form
A(s)-Y(t)=B(s)-U(¢). (2.1)
Nonlinear equation element in the implicit form
Y(t) = F(x, px). (2.2)
Let’s write the equation for x(t)
x(t)=g()-U(2). (2.3)

Let’s put (2.3), (2.2) in (2.1) and get the closed-loop nonlinear ACS dif-
ferential equation relative to U(¢) in implicit form.

A(s)-U(t) = F[(g(t) —u(t)),s(g(t)—u(t))}-B(S).
Practically this equation is not used, therefore we get differential equa-
tion regarding X (¢). For this purpose, let’s evaluate U(¢) from (2.3) and put

it in (2.1), then we obtain the differential equation regarding X(¢) in the ex-
plicit form
A(p)-x(t)+ B(s)- F(x,sx) = A(s)- g(¢). (2.4)
If reference signal g(t) =0, then free motion differential equation of nonlinear
ACS in implicit form will be obtained from (2.4).
A(s)-x(t)+ B(s) - F(x,sx)=0. (2.5)
Due to the fact that the nonlinear ACS does not have a differential equa-
tion in explicit form, for analysis and synthesis of such type of systems fol-
lowing approaches are used:
I’" approach.
Accepting hypothesis of linearity of nonlinear element static characteris-
tic, ACS linearization is conducted.
Then, in terms of the harmonic linearization method, the V.M. Popov or
N.I. Tsipkin stability criterion, the nonlinear ACS stability is estimated.
2" approach.
Mathematical model for every segment of the nonlinear element static
characteristic is formed.

35



In terms of the system state space and taking into account the obtained
mathematical models, nonlinear ACS description in form of 1* order differ-
ential equations is performed. Analyzing 1% order differential equation sys-
tems solutions for each segment of nonlinear static characteristic, nonlinear
ACS stability is estimated.

2.2 Harmonic Linearization Method Application for Nonlinear ACS

It’s convenient to use harmonic linearization (harmonic balance) method
for nonlinear ACS study. This method is based on frequency characteristics
usage, applied in linear control theory. It requires taking into account some
assumptions:

o Unit diagram should be typical (fig. 2.1).

o Nonlinear element characteristic should be symmetric in relation
to the coordinate origin.
o The system should have self-oscillation with constant amplitude

a, and frequency @, .
o System should be autonomous, i.e. g(¢) =0.

If a closed-loop autonomous (without external influences) nonlinear sys-
tem can be represented as the compounds of the nonlinear element and a sta-
ble linear part with transfer function W,,(s) (fig. 2.1), then under a certain

conditions could be applied harmonic linearization method to it. The main
idea of this method is that the possible stable oscillations on linear part of
nonlinear system output approximately considered to be harmonic (sinusoi-
dal).

Let’s assume, at the nonlinear element output sinusoidal signal
x(t)=a-sin(w-t) is feed. Therefore, nonlinear element output signal y(¢) is

also periodical and could be expanded in the Fourier series. This series con-
tains components with frequencies multiple to frequency w, 2w,...of output

signal x(¢). Supposing, that this signal, passing through the linear part is fil-

tered to the extent that higher harmonics can be neglected, we write the har-
monic linearization equation of nonlinear element:

y(t)=F(x,sx) = F(a -siny,am- cosy/) =q(a)-x(t)+ g (a) -x(1), (2.6)
@
where ¥ = @-t, q(a), ¢'(a) are the harmonic linearization coefficients of nonlinear el-
ement:
1 2z
q(a)=—— J F(a-sint//, a-co-cosz//)-sinl// dy ;
T-as

36



2.
q’(a):L J F(a-siny, a-w-cosy)-cosy dy .
zeasy

Equation (2.6) is a harmonic linearization equation up to highest harmonics from
the case, when nonlinear element has the ambiguous characteristic. For the case, when
nonlinear element has the single-valued characteristic

y(t) =q(a)-x(t). (2.7)
Expressions for the harmonic linearization coefficients g(a), ¢'(a), definition
represented in.

2.3 Differential and Characteristic Equations of ACS Harmonic Line-
arization

Harmonic linearization method application allows to obtain nonlinear ACS differ-
ential equations in the implicit form.

For this purpose expression (2.6) or (2.7) is put into equation (2.4). As a result non-
linear ACS harmonic linearization differential equation with ambiguous or single-valued
characteristics is obtained:

!
g'(a)
@

A(s)- X(t)+-B(s)- (q(a) -x(t) + .8 x(t)j =A(s)-g(t), (2.8

A(s)- X (1) +-B(s)-(g(a) - x(t)) = A(s) - g(t) (2.9)

For the autonomous ACS expressions have the following form:

A(s)- X(£)+-B(s)- [q(a) x()+ &Y ( ). -x(t)] -0, (210
A(S)-X(t)+-B(S)-(q(a)-x(t)):O (2.11)

For the expressions (2.8)-(2.11) nonlinear ACS harmonic linearization differential
equation are

A(s) +-B(s)- (q(a)+ g(a) ]:o, 2.12)
A(s)+ B(s)- (q(a)) =0. (2.13)

2.4 Obtaining of Typical Unit Diagram of Nonlinear ACS

To reduce nonlinear ACS unit diagram to a standard form (fig. 2.1), use the follow-
ing rules:

¢ Since the system should be autonomous, it’s necessary to discard the reference
signal and the disturbance with the surrounding chains.

e Due to the fact that the nonlinear element should be in a typical scheme, right
after the main summer, it is necessary to add one more summer at the output of the
nonlinear element, in initial schemes.

e If nonlinear element has time lag (thyristor transducer), then gain is realized in
its static characteristic, and time lag remains a separate unit.
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o Standard scheme should be drawn beginning with the included summer.
° After nonlinear element all the other units of initial scheme, forwards the
reference signal to the introduced summer are drawn.
° If the initial scheme has the local feedbacks or additional control channels,
they also should be drawn.
Example 2.13. Cast DCM rotation frequency ACS unit diagram with nonlinear
DCG characteristic to typical. Obtain differential and characteristic equations of harmonic
linearized system. Nonlinear DCG characteristics are shown on fig. 2.2.

F(x)
Sl

-b

c®-----
o

.-..? -C

Fig. 2.2. Nonlinear DCG characteristics «saturation»

Coefficient of linearization for such nonlinearity has a form

[ 2
q(a):ﬁ- arcsiné+é l—b— ; q'(a)=0. (2.14)
Vs a a a’
Solution.

Let’s use ACS unit diagram, represented on (fig. 1.4). Discard all the signals and
represent DCG in form of two units (nonlinear element and inertial unit with transfer func-

1
tion W, .;(s) =————). At the nonlinear element the input supplementary summer is
I.-s+1
added (fig 2.3).
X Y ®
et Kea 2 Wa(s) 2 Wen(S) 4@_’ ‘:;:':::::1“ > Wa(s) [ Wa(s) >
K]-‘li < K']‘(i <

Fig. 2.3. Unit diagram of DCM rotation frequency nonlinear ACS

______________________________________________________________________________________________________

X Win(s)

e }—»I We(s) 2] Wal®) 2 Ko ] Koo 21 2 K 2] Wa ) F2{ W) |-»—-

Fig. 2.4.Reduction of the nonlinear ACS unit diagram to the standard

Let’s obtain the transfer function of linear part of nonlinear system
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Kia Ky Kpp Ky Ko Kpp B(s)
(T,s +1)- (L5 +1)-(T,T,,s* + T, s +1)  A(s)
Using expressions (2.11) and (2.14), write differential and characteristic equations
of the harmonic linearized system

A(s)x(t) + B(s)(q(@)x(t)) = (T, 5 + D)(Tys + (T, T,p5% + Typs + D)x(2) +

. [ 2 (2.15)
+K . K, Kep Ky Ko K g -ﬁ-(arcsiné—ké- l—b—zj-x(t).
7 a a a

A(s)+B(s)-(q(@)) = (Ts + 1) - (Tys + 1) - (T, T8 + Tpys +1) +

. / (2.16)
+KEA'KM'KRD.KMI'KTG'KFB'ﬁ'(arCSiné-i_é. l_b_z\J.
T a a a

2.5 Goldfarb Method for Nonlinear ACS Stability Estimation Applica-
tion

Wp(s)=

The stability analysis of harmonic linearized nonlinear ACS conducted
in 2 stages. On the first stage we take a hypothesis, that system has the self-
oscillations and define amplitude a, and frequency @, of these oscillations.

On the second stage stability of the found periodical solution and the nonlin-
ear ACS is estimated. For these purposes the Mikhailov criterion or the Gold-
farb approach can be applied.
The main equation harmonic balance (linearization) approach has the
form
1+ W, (a) W, ,(jw)=0, (2.17)
where W,,(jw) is the linear part transfer function of nonlinear ACS; W, ,(a)

is the complex gain of harmonic linearized nonlinear element.
On the basis of equations (2.6), (2.7) one can write

Wyp(a)=q(a)+ j-q'(a); (2.18)
Wyp(a)=q(a). (2.19)
Solving equation (2.17) regarding @ and a, self-oscillation parameters
can be defined. Goldfarb suggested to solve this problem in a graphic way,
representing this equation as

Wip(j-o)=-Gy(a), (2.20)

where G,,(a) =1/W,,(a) are the nonlinear reverse characteristics.
Linear part W,,(jo) locus (fig 3.3) and nonlinear element negative
characteristic —G,,,(a) are plot on the complex plane. Nodes of these charac-
teristics give us the equation (2.52) solution. The oscillation amplitude a, de-
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fined according to characteristic —G,,(a), and the frequency @, defined ac-
cording to W, ,(jo).

Fig. 3.5 shows the case when system has 2 periodic solutions: diagram
nodes 2 (a,,»,,)and 5 (a,,. o,,).

For the positive increment of amplitude a, + Aa, locus W,,(jw) encir-
cles point 4 and doesn’t encircles point 11, and for negative a, — Aa — encir-
cles point 3 and doesn’t encircles point 6.

AIm(W(jm))

3 0 Re(W(j m?

Fig. 2.5. Graphic representation of the Goldfarb approach

If the locus W, ,(j®) doesn’t encircle point with positive increment of amplitude

a, +Aa (point 1), and encircles point with negative increment a, — Aa, then obtained

solution will be stable (point 2), in this case the system is stable in general. If not, found
solution is unstable (point 5), and system is stable in small.

Example 2.14. Using Goldfarb approach, estimate DCM rotation frequency ACS
stability with nonlinear DCM characteristic. Nonlinear DCG characteristic represented on
fig. 3.2.

Solution.

Let’s use transfer function of linear part and harmonic linearization coefficients
from example 2.13.

KEA'KM'KRD'KM1'KTG'KFB .
(T,s +1)-(Ts +1)-(T,T,,s* + T,s +1)

2
q(a)zg- arcsiné+é',/1—b—2 :q'(a)=0.
T a a a

Let’s set the system parameters:

T, =0.02sec; T,, =0.5sec; T,, =0.1sec; T, =0.7 sec; K., =10;
K, =0.6; K,,=0.2;
K. =8K,,=85K,.=0.15K,,=05k=K_;b=2.

Then

Wp(s)=
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W (s)= 6.12
L 0.0007s*40.043s>+0.41s%+1.3s+1

[ 2 [ 2
WNP(a)zq(a):ﬁ- arcsing+2- 1—2—2 =5.096- arcsing—kz- 1—2—2 :
3.14 a a a a a a

1

.2 2 / 22
arcsin —+ —- 1——2
a a a

W, ,(jw) and —G,,,(a) locuses are plot on the complex plane. The results repre-

G (@) =1W,,(a)=0.196-

sented in fig. 3.4.

It (WA (e )y

I (Gla))

L

Fe{Wim)),Re(Gla))
Fig. 2.6. W,,(jw) and —G,,(a) locuses

Conclusion. Locuses cut across, therefore, there is general solution of equation
(2.52). Obtained solution is stable and ACS is stable in general.

2.6  Application of Popov Stability Criterion for Nonlinear ACS Stabil-
ity Analysis

The frequency criterion research of the nonlinear ACS equilibrium posi-
tion absolute stability was introduced by V.M. Popov in 1959. To use this cri-
terion is necessary to take into account the following restrictions and assump-
tions:

o unit diagram should be typical (fig. 2.1);

o nonlinear element characteristic should be single-valued;
. linear part of nonlinear ACS should be stable;
. nonlinear characteristic should belong to sector [0, k ] (fig. 2.7), i.e. the condition

0 < f(x) < kx should hold.
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\

0 X

Fig. 2.7.Nonlinear element characteristic

For the equilibrium position of nonlinear ACS is stable, the following

inequality should hold
Re[(1+ jo-a)-W,,(jo)]|+1/k >0, (2.21)
for all @ >0, where & is unconditioned real number.

In other words, if the final real number & can be chosen in such a way
that inequality (2.53) held, the equilibrium position of closed-loop ACS is
absolutely stable.

As it follows from the criterion statement, he gives just necessary, but
not sufficient condition of stability, i.e. system could be stable when this cri-
terion is not held.

This inequality (2.21) is called Popov inequality, its graphic solution is
used on practice. The transformed frequency characteristic of W, ,(j®) linear
part is introduced into consideration for convenience.

Wp(jo)=U (@) + jV (@)

U’ (@) =Re(W,,(jw)); (2.22)

V' (w)=w- Irn(WLP (Jo)).
Let’s extract real component from the square bracket in inequality (2.21)

Re[(l + joa)- W, (]w)] = Re[(l + joa)-Re(W,,(jo)) +Im(W,, (]a)))] =
=Re(W,,(jo)) —aw-Im(W,,(jo)).
Taking into account the equations (2.22) write inequality (2.21) in form
U'(®)-aV (w)+1/k>0. (2.23)
Solution of equation (2.54) reduced to following (fig. 3.5):
When varying frequency @ from 0 to oo, the transformed frequency

characteristic of linear part W,,(jw) is plot on the complex plane, and a
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straight line under any angle « is drawn though the point (—1/ k;; jO) (fig.

2.8a).
Popov criterion.
For the nonlinear ACS equilibrium position was stable, all transformed

frequency characteristic linear part W,,(jw) locus is necessary to be located
on the right side from the straight line, drawn under any angle « , through the
point (—l/ k,; jO). Where £k, is the straight line slope ratio, restricting sector

O, k).

A
1k fa /7] 0=0
\(D—mo U*(O))
W:’(jw)
a)
‘V (o)
-l/kl. ®=0 >
Lw‘m Ulo)
Wie (jo)
*b)
AV(co)
» ©=0 >
Wi (jo)
c)

Fig. 2.8. Popov inequality solution
According to fig. 2.8, for the case a) ACS equilibrium position is abso-
lutely stable; for b) and ¢) Popov criterion is not held, but the system can be
stable.
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Example 2.15. 1t 1s necessary to estimate DCM rotation frequency ACS

stability with nonlinear characteristic of DCG, using Popov criterion.
Nonlinear characteristic parameters of DCG: K., =8;b=4; m=0.1.

Solution.
Let’s plot the nonlinear characteristic of DCG taking into account its pa-

rameters (fig. 2.9).
F(x)

5¢San:

\ B

lopll 4

Fig. 2.9. Nonlinear characteristic of DCG

Let’s use linear part transfer function and system parameters from the

example 2.14
W,p(s) =

6.12
0.0007s*+0.0435°+0.41s*+1.3s +1
Bode plot of transformed frequency characteristic linear part WL*P( ja))

and point (—0.139; j0).
Plot results represented in fig. 2.10.

El:.:% |:|:.4 El:.ﬁ DI.E
oI W(w))
T =)
L N
s
Re(Wia)) Fe(

Fig. 2.10. Popov criterion application for the system stability estimation
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Conclusion. The Popov criterion is held, because it is possible to draw
the straight line under any angle through the found point, in such a way that
all the Bode plot located on the right side of the straight line.

2.7 V.M. Popov Stability Criterion Application for the Case of Neutral
or Unstable Linear Part

In case when the linear part is neutral or unstable, the Popov criterion is
inapplicable. For the Popov criterion generalization for the given case, the
unit diagram transformation is made in such a way that the linear part was
stable. For this, in the unit diagram in parallel with the nonlinear element
proportional link with the transfer ration — r is introduced, and the linear part
is covered by a negative feedback with the transfer ratio » (fig. 2.11).

mmf:f§}+ﬁb—+“mw>
r T— r

Fig. 2.11. Unit diagram transformation

A

Let’s write the transfer function of transformed linear part of nonlinear
ACS

W, .(s
Wip(s)= 1+ VVLP(( ) .
p(8)-r
Value r is chosen in such way, that the transformed linear part of non-
linear ACS becomes stable.

According to the Popov criterion statement: the system equilibrium po-
sition is absolutely stable, if the following inequality 1s held:

1
Re[(l + ]aa)) ’ WLPl(a))] + ;>0,
1
and the nonlinear element f;(x) characteristic should be located in sector

[0,k ], i.e.
0< fi(x)/x<k; fi(x)=f(x)—rx.

Both expressions could be reduced to initial:

L((())] + L>O
1+W,(0) K,
e

X

Re[(1+ jow)-

<K, +r.
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Nonlinear characteristic should be located in sector [r, k, +r]. If linear
part of nonlinear ACS is neutral, then » should be extremely small value.

3 LINEAR PULSE ACS

Depending on signal transmission and transformation methods ACS can
be divided into:

e continuous ACS;
e discrete ACS.

In the continuous systems signals during the transformation process are
not interrupted. There are elements or units, which transform continuous sig-
nals into the pulse sequence, or quantized signals series, or the digital code in
discrete systems. In many modern ACS the discrete devices or digital proces-
sors are used.

Discrete method of signals transmission and transformation supports
their amplitude quantization or time quantization, or amplitude and time
quantization. There are 3 types of quantization and 3 groups of discrete ACS:

1. Amplitude quantization. In this case the signal is fixed in some dis-
crete levels. For the amplitude quantization the multiposition relay element is
used, represented in fig 3.1, its static characteristic represented in fig. 3.2:

x(1) X (1)
— MRE ——

Fig. 3.1. Multiposition relay element

Y Xq

Fig. 3.2. Multiposition relay element characteristic

Results of amplitude quantization are represented in fig.3.3, where X, —

quantized signal.
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Fig. 3.3. Level quantization

Since the relay element is used as a continuous signal X (t) quantizer,

then the discrete ACS also called relay ACS. Such type of discrete systems
refers to nonlinear ACS type, and for their analysis and synthesis the nonlin-
ear system theory is used.

2. Time quantization. In this case continuous signal is fixed in discrete
moments of time: 0, 7', 2T, 3T etc. Continuous signal quantization can be ob-

tained by passing continuous signal through the switch (fig. 3.4), which peri-
odically, with the quantization cycle 7', closed on time /. In the discrete
ACS this element is called the pulse element. Quantization result is repre-
sented in fig. 3.5.

x(t) xr(t)
p—o o >

Fig. 3.4.Pulse element
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MNx(1),x,(kT) —

| \~\<><(t)

\ 4

0 T|| 2T 4T 6T t, kT

Fig. 3.5.Time quantization

If pulse # duration essentially smaller then quantization cycle 7', and
after the switch situated linear unit with time constant 7>>#4, then pulse se-
quence X, (¢) can be considered as series of instantenuous pulses of & -

functions, which amplitudes equale to input signal X (t) values in quantiza-
tion time (fig. 3.6).

X . X k.]
\ \x( )

—x()

0 T 2T 4T 6T t, kT

Fig. 3.6. Signal quantization for the case when 7>>h

The information between the quantization periods is lost. The discrete
signal can be represented as following:

X,)=X,(nT), fort=nT,
X, ()=0, for nT<t<(m+1)T, n=0,1,2,...
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Since the pulse element is used as a continuous signal quantizer, discrete
systems are called the pulse ACS.

3. Amplitude and time quantization. In this case, in the discrete mo-
ments of time: 0,7, 27, 3T etc., the continuous function X (t) values are

chosen and fixed on the nearest specified level. The results of the amplitude
and time quantization are represented in fig. 3.7.

e

N x(1), x (kT)

_Tz'i____ Ly
/ \xT(kT}

$—-—-1--—-F%--—"4-"-"—4-—=—"=p=-—"=4=5-

s

SN E D ) L EE — :}THE (1)
T “1, kT

0 T 2T 4T 6

Fig. 3.7.Amplitude and time quantization

Quantization is implemented by the code pulse modulator or the analog-
to-digital converter (ADC) embedded into the computer. Therefore the dis-
crete ACS of such type called digital.

The amplitude quantization introduce nonlinearity in the digital system,
but for ADC capacity 32 and higher, differences between the signals at the
nearby lying levels are not significant. Therefore, amplitude quantization can
be neglected. Moreover, the pulse ACS and the digital are united by one fea-
ture — time quantization is realized by the pulse element. Hereby for analysis
and synthesis of the digital systems pulse ACS theory can be applied.

The continuous signal transformation to pulse sequence process, which
parameters depend on this signal value in discrete moments of time, called
the pulse modulation. Continuous signal called system input signal of pulse
element or modulator, and output — pulse modulated sequence.

Depending on which pulse parameter (amplitude, duration, phase) is
modulated by continuous signal, there are: the pulse-amplitude modulation
(PAM), the pulse-duration modulation (PDM), the pulse-phase modulation
(PPM). Also possible modulation, when amplitude, duration and phase are
constant, and the pulse period or pulse frequency at the modulator output is
the continuous signal function at the modulator input. Such type of modula-
tion called the pulse-frequency modulation (PFM).
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If the modulated parameter of the pulse sequence is defined by the input
signal values in the fixed equidistant moments of time and remains constant
on all the period of pulse existence, then such a modulation called the pulse
modulation of the first type. There may be instances when the modulated pa-
rameter of the pulse sequence on all the period of pulse existence changes ac-
cording to the current input signal value. Such modulation called the modula-
tion of the second type.

First type pulse-amplitude modulation ACS refers to the category of lin-
ear system, therefore only the linear pulse ACS analysis and the design theo-
ry will be considered.

Linear pulse system is an automated control system, which besides
units, described by the linear differential equations, has the pulse element,
which transforms input signal into pulse sequence.

3.1 General Pulse System Unit Diagram

Single-circle pulse ACS can be represented as the interacting pulse and
the continuous ACS parts (fig. 3.8).

.. o T
Ideal pulse ol e = = = e = = e i S /;

element W“‘TJ

g x(?) x1).
(1)

. - Continuous | '
I 1 Forming unit —p .
' part

Reduced continuous

Feedback [«
Fig. 3.8. Functional scheme of pulse system.

Plant, amplifying element and execution unitare usually a part of con-
tinuous part of the system. The pulse part is usually a control unit and con-
sists of functional elements, which participate in the pulse signal transfor-
mation. This part can be realized by switches, modulators, pulsecontrollers,
digital computing devices with the analog-digital and the digital-analog con-
verters etc.

Functionally a pulse part can be considered as some continuous signal
transformer into the pulse reference signal of any type. In linear pulse-
amplitude systems output signal of pulse part is a pulse sequence, which am-
plitudes are proportional to the continuous signal values, in the equidistant
quantization moments 7'. In the simplest case the pulse part is a real pulse
element or a pulse modulator.
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When studying the pulse systems their real pulse elements are usually
substituted by successive connection of the ideal pulse element (IPE) and the
forming unit (FU) (fig. 3.8).

The ideal pulse element under the influence of continuous input signal
x(t) (fig. 3.9) form ideal instantenuous pulses x*(t) of o -function type,

which «amplitude areas» are equal to the input signal values in quantization
moments. Usually the gain of pulse element refers to the continuous system
part, considering the ideal pulse element transmission gain equaled one.

A MAxF AU
P . -

4 KT 0

T
1
|
I
|
I
|
I
I
I
I
1

Fig. 3.9.Signal forming by real pulse element
The forming unit transform these pulses into signals u(t) of the re-

quired form. Forming unit is pulse-amplitude modulator. Forming element
response to instantenuous pulse of sequence x*(t) coincide with the real
pulse sequence u(t) at the real pulse element output. In practice, most often

the data-hold device of zero order with the transfer function (2.56) is used as
a forming unit

-T-s
W, (s)=- j . G3.1)

For the convenience of system analysis the forming unit is combined
with the continuous part. In this case independently of real pulses form, pulse
systems with amplitude modulation can be represented as the combination of
ideal pulse element and reduced continuous part (fig. 3.10). Output signal of
pulse system reduced continuous part is continuous signal, described by time
function y(t). To apply the discrete Laplace transform it is accepted to con-

sider this signal in discrete moments of time, coinciding with moments of
ideal pulse element shorting at input. This is equivalent to fictitious ideal
pulse element switching on (fig. 3.10) at the systems output, operating syn-
chronously and in-phase with the main pulse element. Reduced continuous
part (RCP) reaction on d-functions is a sum of pulse (weighting) step re-
sponse w(t). The transfer function of the reduced continuous part is equaled

to
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Wicp(8) =Wy, ()Wep(s) (3.2)
Unit diagram of pulse ACS depicted in fig. 3.10.

T v
g(t) S(t) 8*(t) | .ﬁ;n
—L —> RCdUCCd[:';:ltlnll()us D G
(1)

Feedback |«
Fig. 3.10. Unit diagram of pulse ACS

Example 3.1. Form unit diagram of DCM rotation frequency pulse ACS.

Solution.

Let’s place the simplest pulse element and the pulse former after the summer in the
unit diagram of DCM rotation frequency ACS, represented in fig. 1.4. On the basis of fig.
3.10 the pulse system unit diagram can be formed (fig. 3.11).

T
Ideal pulse
P Forming unit —/Ly

element
USD 1-e°T5 Continuous (!J[I‘IT]
- — = = 15
J— il S . part
o(t)
Feedback [«

Fig. 3.11. DCM rotation frequency pulse ACS unit diagram

where W, (8) =K 5 - K,

W..(s)= Ky Ky - Kpp - Ky - Ky
cp 3 .
Tys+1)-(Is+1)-(T,1T,,s" +T,,s +1)

3.2 Mathematical Tools of Pulse Systems
3.2.1 Lattice function and differential equation

Reduced continuous part response only to discrete values of the contin-
uous signal in quantization moments n7. Therefore, continuous function x(?),
defining continuous signal, can be substituted by appropriate lattice function

x(nT)=x(t) for t=nT,
x(nT)=0 for nT <t< (n + 1), where n=0,1,2,...

Thereby, for the lattice function obtaining according to specified contin-

uous function x(?), it is necessary to substitute in continuous function ¢ by nT
(fig. 3.12).
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x(t)
x(nT)

t

T 2T 3T 4T
Fig. 3.12. Function x(t) and its lattice function x(nT )

Lattice functions describe their “generative” continuous functions only
in discrete moments of time, coincident with quantization moments. In inter-
vals between the quantization moments the information about continuous
functions changes is absent. If the quantization interval 7 is set, then the lat-
tice function x(nT ) of function x(t) is uniquely determined. The converse
proposition is false.

For the identification of the continuous function behavior between quan-
tization moments, the intermediate fixed time At=c is introduced. In this case
continuous function x(?) can be substituted by shifted lattice function

x(nT,oT)=x(t) for t=nT +oT .

Varying o7 from 0 to T, collection of lattice functions x(n7T,0T),
n=1,2,3,...can be obtained, which defines the function x(t) for all ¢ values.

When analyzing the continuous systems the differential equations are
used, defining relationship between the continuous function x(t) and its de-

dkx(t)
dt*
and its difference Akx(n) defines finite-difference equation or differential

rivatives Similarly, the correlation between the lattice function x(n)

equation. If this correlation is linear, so the differential equation is called lin-
ear.
Linear differential equation with constant coefficients can be represent-

ed in the following form

a, AN x(n)+a,_A"x(n)+...+ax(n) = f(n), (33)
or

bx(n+k)+b_x(n+k—-1)+...+bx(n)= f(x), (3.4)
where f (n) is the certain lattice function, x(n) 1s the desired lattice func-

tion, represents the solution of the difference equation.
This differential equation, which contains x(n) and x(n+k) called the

differential equation of k-order. Classical approaches to differential equations
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solution in many respects analogous to the classical methods differential
equations solution.

Differential equation solution gives the output signal values only in dis-
crete moments of time ¢ =n7 . In many cases it’s rather enough for the sys-
tem behavior estimation. If appears the necessity in output signal information
obtaining, the offset sequence is used.

In case, when f (n) =0, equations (3.3) and (3.4) called homogenous.

3.2.2 Z-transform application

For sequences f{n) discrete Laplace transform concept, defined by the
expression (2.60), can be introduced

Fi(s)= D{ f(n)} Zf(n)e : (3.5)

In expression, like in case of the contmuous Laplace transform, complex
value s =c+ jw, where c is the abscissa of absolute convergence. If ¢ <o,
then series, defined by the expression (3.5), convergences, and some expres-
sion corresponds to the original f (n) :

Z -transform is widespread for the pulse systems research, which is
connected with the discrete Laplace transform.

Under Z -transform one understand sequence of images, defined by the
expression

F(z)= if(n)z_" (3.6)

Here new notation is introduced z =e*"

Principle rules and theorems in respect to Z -transform are also true for
discrete Laplace transform.

If image F (z) is represented in the simplest table form, then transition
to original doesn’t make any difficulty. Complex fractionally rational form
can be represented in form of the first order sum, then z-transform table can
be used for original obtaining from every simple fraction.

B(2)
z

logue of the Heaviside decomposition expression, used for continuous sys-
tems, can be applied.

Moreover, if F(z) is a ratio of two polynomials F(z) = , then ana-

fy=20 5 P

Z
Al S A-z)4'z)"

where A(z) is the derivative A4(z) for z, and z, are the denominator roots
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(i=L2,...,1).
Depending on the numerator polynomial order F (z) and on roots, the

decomposition formula can be changed.
Moreover, F'(z) can be expanded in a Laurent series (series in decreas-

ing orders of z)
F(z)=C+Cz'+..+Cz " +...,

where C, Zf(()), C =f(1), C, =f(2),...,Ck =f(k) etc.

Series expansion can be performed in any manner, because such expansion is
unique. Most suitable approach for the fractionally rational functions is dividing numera-
tor and denominator.

Applying the Laurent series expansion, the original values of f (n) or
f (n,g) can be calculated in the discrete points without definition of images
F(z) poles.

f(m=)Cy+C,-0(t-T)+C, . 0(t=2-T)+...+C - 0(t=k-T)+.... 3.7

3.3 Sampling Theorem

If the continuous dependence, in the result of quantization substituted by
the lattice function, loss of data is taking place. Such data loss occurs also as
the result of pulse modulator work. In limit, for the infinite quantization fre-
quency, the continuous signal comes out. However, the low quantization fre-
quency limit 1s of the most interest. If the frequency is too low, the continu-
ous signal can considerably change in one interval. Therefore, initial signal
restoration may appear to be impossible, with the help of its lattice function.

Let’s define the condition, which fulfillment allows restoring initial sig-
nal completely.

Let’s assume, continuous part of pulse system has amplitude-frequency
characteristic, represented in fig. 3.13, with the bandwidth from 0 to w..

A
(W)

>
0 Cep 4]
Fig. 3.13. Low frequency bandwidth of pulse ACS
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The sampling theorem was stated and proved by V.A. Kotelnikov in
1933. According to this theorem, if the signal doesn’t contain the frequencies
higher then w,, it is entirely described by its values, measured in discrete
moments of time with the interval T =7/, .

Thereby, quantization period must be

T<rlw, (3.8)

Example 3.2. Applying sampling theorem define quantization period of
DCM rotation frequency pulse ACS.

Solution.

Let’s use the system parameters from example 2.9 and continuous part
transfer function from example 2.16:

T,=0.02sec; T,, =0.5sec; T,, =0.1sec; T, =0.7; K., =15;

Ky, =0.6; K,y =0.2; K, =10; K, =8.5; K,, =0.16; K, =0.5

Ky Ky - Kip - Ky - Ky _
(T,s +1)-(Ts +1)- (T,T,,s* +T,5 +1)
B 153
0.0007s* + 0.043s° +0.41s*> +1.3s +1

To plot the continuous part amplitude-frequency characteristic Mathcad is used.
The continuous part bandwidth @, is restricted to 10% from H, . (®).

Wep(s) =

Results are represented in fig. 3.14. Let’s chose @, =3.25 rad/sec

from the plot and, using expression (3.8), define pulse system quantization
period T <7/m,. <3.14/3.25<0.97 sec.

200T

[l
0 2 4 6 8

()
Fig. 3.14. Continuous part amplitude-frequency characteristic,

@p =3.25 rad/sec.
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3.4 Pulse Transfer Function of Open-Loop Pulse System

Let’s consider unit diagram depicted in fig. 3.15, pulse transfer function
of the open-loop ACS for the case, when W, (s)=1.

Ideal pulse T/& Y %‘)
® >

element
E I > Reduced continuous ‘ ]

part (1)
Fig. 3.15. Closed-loop pulse ACS unit diagram

The direct Laplace transform expression (L-transform) of continuous

function x(7) has the form X (s)= j x(t)e™dt .
0
For the pulse system study discrete analogue of this transform is used — so-called
the direct discrete Laplace transform (LD-transform).

X'(s)= ix(nT)e‘"ST .

The difference of these transforms is, that integral in L-transform substituted by the
sum, and instead of continuous function x(t) corresponding lattice function x(nT ) is
introduced.

Let’s define LD -transform for output signal y* (t) of pulse system

V)= Lyl (0} = Xy e T (3.9)

Since the reduced continuous part response on o-function represents
pulse step response w(?), so the signal value y(t) at the output of the reduced

continuous part is defined from the expression:
()= wn—iT)x(iT),
i=0

Therefore, output signal value in moments of time ¢t =nT equals

y(nT)= iw(nT —iT)x(iT). (3.10)
i=0
Substituting (3.10) in (3.9), obtain
Y*(s):iiw(nT—iT)x(iT)e"ST. (3.11)
n=0 i=0

By means of substitution m=n—i and n=i+m expression (3.11) is
reduced to
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Y'(s)= Zx(iT).Z w(mT)e *Te™™",
i=0 m=—i
Taking into account, that w(mT ) =0 for m <0, finally get
Y*(s)=Zx(iT)-e_iSTZW(mT)-e_”’ST. (3.12)
i=0 m=0

Proceeding from the definition of LD -transform, the expression (3.12)
can be reduced to the form

Y (s)= X" (s)W(s), (3.13)
Then
W (s)= Y'(s) = iw(mT)e""ST =L {w(mT)} (3.14)
X'(s) = ? ,

where W7(s)is the open-loop pulse transfer function in S-image (so-called
pulse transfer function with an asterisk).

Thereby, the open-loop pulse transfer function in S-form is the ratio of
discrete Laplace transforms output to input at zero initial conditions.

Substituting z =e*" In (3.12) Z -transform equation can be obtained, i.e.
Y(z)=X(2) - Wy,(2),

W, (z)= )Y(((ZZ)) = iw(mT)Z_”’. (3.15)

Where W, ¢ (z) is the open-loop system pulse transfer function in z-

transform. Therefore, pulse transfer function of open-loop pulse system can
be defined as ration of z-image pulse output to image pulse input at zero ini-
tial conditions. Expression (3.15) shows that the pulse transfer function is Z-
transform of the pulse transition function of system reduced continuous part,
rLe. W(z)=Z{w(t)} =Z{w(nT)}.
Thereby, to define system pulse transfer function with forming unit of uncondi-
tioned type, it is necessary:
® to define the reduced continuous part transfer function:

W () =Wy (5)W (s);
e to define the pulse transition function of reduced continuous part with the help of
inverse Laplace transform: W(t ) =L {WRCP (S)} ;

e to define the system weighting sequence (lattice weighting func-

tion): w(nT) = W(t)

t=nT °

e to find series sum in right part of the expression: W (z) = ZW(nT )z ",
n=0
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Since the ¢ -function image equals to one, and pulse transition function
equals to w(t) =L {W(s)}, then pulse transfer function in z-form can be

defined as W(z)=Z{W(s)}, i.e., knowing the transfer function expression
W(s), and applying z-transform table, W(Z) can be obtained.

For the given case, when W,,(s)=1, the pulse transfer function in z-
transform of the reduced continuous part W,,(z) equals to the transfer func-
tion of the open-loop system W, (z).

Based on the proposed approach and the unit diagram (fig. 3.16) expres-
sion of the open-loop pulse transfer function Wy, 5(z) in z-transform can be
written for any case

Wops(2) = Z{Wrep(s) - Wig ()}, (3.16)
Ideal pulse T v
element *—)>
. | Reduced continuous = =
— | > = »| Feedback o)

Fig. 3.16. Open-loop pulse ACS unit diagram

Applying the equations (3.1), (3.2), equation (3.16) can be represented
as the following

1 _ e—ST

WOLS(Z):Z{ 'WCP(S)'WFB(S)}-

Taking into account, that e™*" z7 , finally write

W,,s(z)= z-1 -Z{l-WCP(s)-WFB(s)}. (3.17)
S

In the absence of the pulse former in ACS scheme, the expression
Wy (s) can be written as W,,s () =Z{W, (s)- Wy ()}

Z -transform table (appendix 2) allows the obtaining expressions for the
partial fraction only. Therefore, the complex fraction should be decomposed
into partial fractions and then the table can be applied.

Example 3.3. Obtain pulse transfer functions of continuous and open-
loop DCM rotation frequency ACS.

Solution.

Let’s use the system parameters from the example 2.9 and continuous
part transfer function expression from the example 2.16:

KEA 'KM 'KRD 'Kcl 'KMl .
(T,s +1)-(Tys +1)- (T Ty, 5% + Tpyys +1)

Wep(s) =
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In this example to simplify the solution, the system order reduced to the
second order, for 7. =0; 7. =0.
Ky K, Ky Kg-Kyyy 153
(T,s+1)-(T,,;s+1)  (0.1s+1)-(0.5s+1)
Let’s use expression (2.71)

bzt s
Wer(2) == Z{s Wer s) WFB(S)} - Z{s (o.1s+1)(0.5s+1)}'

Denominator roots are: s, =0; s, =—10; 5, =2.
Applying Viete theorem, let’s decompose expression in braces on partial

fractions:

Wep(s)=

{1. 153 }:{4+ B _, C }:

s (0.Is+1)(0.55s +1) s (s+10) (s+2) 3.18)
_A(s+10)(s+2)+ B-s(s+2)+C-s(s +10)
- s-(s+10)(s +2)

Left side of equation (3.18) will be equaled to right side, if their numera-

tors are equal:
153=A(s+10)(s +2)+ B -s(s+2)+C-s(s+10) =

=(A+B+C)s,+(124+2B+10C)s+204

Let’s form three equations system, choosing expression at s,, s, S,
(A+B+C)=0;

(12A+ZB+10C)=O;

204=153.

Solving this system, obtain coefficients values
A=7.65; B=19125; C=-9.5625.

Let’s use Z -transormation table (look appendix 2),
For T =0.9 sec. (look example 2.17) obtain

z-1 .[7.652 19125z 9.56252} _

Wep(2) =

-10T 2T
z z—1 z-e z—e

_z-1[7652 191252 9.5625:
B z—1 z-0.0001187 z-0.164

6.081z> —5.7693z - 0.3127

W. (z)= )
cr(?) z2 —0.164z +0.00001947

Open-loop ACS transfer function
B 0.4865z% —0.4615z —0.025

Wors(2) = Ky - K .WCP(Z)_ z*—0.164z+0.00001947

z
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3.5 Closed-Loop Pulse System Transfer Function

In the pulse closed-loop system unit diagram (fig. 3.17) the pulse ele-
ment can be located in any place, but there is a single approach for transfer

function and output equation obtaining.
T y*(z)
_ A -— >

g & gt | ]
J_ > RC(lucedp::iijl1t|nu0us

(1)

Feedback |«
Fig. 3.17. Unit diagram of the pulse closed-loop system

The output function equation of the obtaining pulse system realized in
the following form:

o It’s considered, that the pulse element is a switch and the
pulse ACS described for the case, when the switch is open-ended.
o It’s considered, that discrete signal at the output of an open-
ended switch exists and is written in Z -transform.

o Output ACS signal equation is written in Z -transform.

o When excluding intervening variables in equations, the

output system equation is written, when it’s possible its transfer
function is also written.

Let’s consider the introduced approach for some variants of the unit dia-
gram.

The first case. Pulse element located after summer (fig. 3.17)

Let’s write signal in the pulse element output in Z -transform:

£ (2)=Z{g(5)} =& (2) ZWpep(s) Wieg(5)}. (3.19)
System output equation is written in Z-transform:
V' (2)=&"(2)- Z{W,ep(5)}. (3.20)

Let’s evaluate & (z) from (3.19):
£ (2)+E(2) ZWyep(s) Wy (s) =g (2).
£ (z)= g (2)
1+ Z{W e () Wy (5)}
Substituting (3.21) in (3.20), obtain:
. W, (s
y (Z) _ { RCP( )}

T Z{ W (5) Wy (5)] © (2);

(3.21)
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Let’s write system differential equation:
(14 Z (W () Wy} ]V (D= Z{Wp ()} 2" (2)  (3.22)
Divide in (3.22) y'(z) by g'(z) obtain the closed-loop system pulse
transfer function
Weep(2)

W. .(z)= )
CLS( ) 1+WOLS(Z)

(3.23)

The second case (fig. 3.18).
x(t)

y(t)

Wi(s)

al
Weg(s) }_f)/ ~—

Ideal pulse
element

Fig. 3.18. System with pulse element in feedback loop

Let's write the signal equation y"(z) at the pulse element output when
feedback loop is broken

Y (2)=Z{x"(s) W)} = 2 (W5 () W ()} - ¥ (2). (3.24)
Evaluating y'(z) from the equation (3.24), obtain the system differen-
tial equation: [ 1+ z{W,,(s)-W,(s)} |- ' (2) = Z{x"(s)- W,(5)}

The third case (fig. 3.19).
s yd?/f)

e
——" &———>»

X(?) I

' Wi(s) —!
VgV

i)
Vi)

(t)

=Y

Feedback [«
Fig. 3.19. System with pulse element in the feedback loop

Let’s write signal equation coming to pulse element, when the feedback
loop 1s broken:

Y (D)= Z{xX (@) W)} = Z{IV,(5) Wiy ()} ¥ (2). (3.25)
Let’s evaluate y',,(z) from this equation
Z{x'(2)-W(s)}
1+ Z{W, ()W, (5)}

y*FB (z)=

where
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W, Wy -x (2)=z-{W,(s) - Wye(s)-x(s)},
W -Wip(2) = Z{VK(S) . WFB(S)}

Output signal system in Z -image:
Y (2)=W,-x (2) =W, (2) Y 15(2). (3.26)
Substituting equation (3.25) into equation (3.26), obtain:
m 'X*(Z) +W - Wep(2)-W, - X*(Z) — W Wy 'X*(Z) ) VV1(Z)
L+ Wiy (2)

Example 3.4. Obtain pulse transfer function of DCM rotation frequency
closed-loop ACS.

Solution.

Let’s use expression (3.23) and pulse transfer functions of continuous
part and DCM rotation frequency open-loop ACS from the example 3.3:

6.081z> —5.7693z — 0.3127
2> —0.164z+0.00001947

0.4865z> —0.4615z—0.025

z* —0.164z +0.00001947

6.081z> —5.7693z - 0.3127
22 _0.164z+0.00001947 _ 6.081z° —5.7693z —0.3127

N 0.4865z> —0.4615z—0.025 1.4865z%> —0.6255z —0.02498 "
z2—0.164z +0.00001947

y'(2)=

_ Wer(2) . _
Wes(2)= W, (2) s Wep(2)

Wors(2) =K Ky - Wep(2) =

Wes(2) =

3.6 Stability Analysis of Pulse Closed-Loop Systems

3.6.1 Pulse ACS stability estimation based on system characteristic equation
roots

Pulse closed-loop ACS transfer function has a form
B(z) byzf+b 2 +..+b
Wers(2) = (z) =— T -
A(z) azz" +az" +..+a,

and its characteristic equation A(z)=a,z" +a,z"" +...+a, =0.

On the basis of correlation between s and z-planes system stability con-
dition can be stated, having characteristic equation roots.

Statement: For the pulse closed-loop system to be stable, it’s necessary
and sufficient, that system characteristic equation roots were modulo smaller
than one, i.e. ‘zl.‘ <1,if ‘zl.‘ =1 — system is on the stability boundary, and if

‘Z,-‘ >1 — system is unstable.
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Example 3.4. Estimate DCM rotation frequency pulse ACS stability, us-
ing root method.

Solution.

Let’s use transfer function of DCM rotation frequency closed-loop ACS
from the example 3.3.

6.081z> —5.7693z - 0.3127 B(z
Wes(2) = E(C)

1.48652% —0.6255z —0.02498  A(z)

Using Matlab , obtain

> W=tf([6.081 -5.7693 -0.3127],[1.4865 -0.6255 -0.02498])
Transfer function:

6.081 "2 -5.769 s - 0.3127

1.486 s"2 - 0.6255 s - 0.02498
>> pole(W)
ans = 0.4575; -0.0367

Conclusion. Since characteristic equation modulo ‘Zl

Zz‘ smaller then 1, DCM

b

rotation frequency closed-loop ACS is stable.

3.6.2 Mihailov criterion analogue application for pulse system stability es-
timation

The physical sense of pulse and continuous systems frequency charac-
teristics is similar. Feature of these characteristics for the pulse systems is
correlation between harmonic sequences (harmonic lattice function) between

output and input signals of pulse filter with transfer function W (s) or W(z).
Envelopes of lattice functions change according to harmonic law.

If at linear pulse filter input harmonic sequence x(n7)=A4-x-sinw-nT
is fed, then after step response finishing harmonic sequence
y(nT)=A-y-sin(w-nT + ) will be at the system otput.

If the initial system information represented as a pulse transfer function
W(s) or W(z), so for transition to frequency characteristics the argument
substitution of s = jw or z=e’*" are used.

As the result of such substitution amplitude-phase-frequncy characteris-
tic (complex gain) of pulse system is obtained.

W*(jw)=W(e""). (3.27)
Let’s consider the transfer function of the following form
b,z" +b, z"" +..+b, B(2)
az"+a,_z"" +..+a, CA(2)

W(z)=

64



Let’s make a substitution z = €T, obtain amplitude-phase-frequency
characteristic.

b.e"" +b "+ . +b,
ety tay
Complex expression can be represented in form
W (j@) =P (@) + jO" (@) =R (w)e” ",
where P(w), Q' (w), R (w), ¢ (w) accordingly is real, imaginary, ampli-
tude and phase characteristics of pulse system. Apparently,

W)=

(3.28)

JjnawT

ae”” +a, e

R*(a)):\/P*z(a))+Q*2(a)), ¢ ()= arctggz ;+k7z k=0,%£1,%2,.

P'(0)=R (w)cosg’ (), O'(w) = R (w)sin ¢’ (w).
For the fixed value of @ amplitude-phase-frequency characteristic repre-
sented as a vector on the plane (P*, jO’ ) When changing  the end of vector

W*(jw) plot some curve, which is called the amplitude-phase-frequency

characteristic locus.

Let’s mention the main frequency characteristic features of pulse sys-
tems, which result from the pulse transfer function properties.

1. For frequency characteristics plotting, it’s sufficient to limit oneself to

@ changing in the range from 0 to %
2. Amplitude-phase-frequency characteristics of pulse system finish on
real axis, because for w:% complex gain (3.27) is always a real number.

Among frequency criterions for pulse systems analysis the Nyquist and
Mikhailov criterions analogues are used. Let’s consider the Mikhailov crite-
rion.

For the stability estimation of pulse ACS characteristic equation of

closed-loop system is used. Making substitution z=e’*" , obtain Mikhailov
curve equation

D*(jw)=a,+a,e’™ +a,eV") 4+ +a VM U (@) + jV(w),(3.29)
Applying Euler formula e’ T=cosT o+ jsinT @, write (3.29)
D(jw)=a, +a,(cosT o+ jsinT w)+ a,(cos2T o+ jsin2T ») +

+...+a,(cosmT w+ jsinmT ).

T
When changing frequency @ from 0 to —, the Mikhailov curve points on the
0
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complex plain U(w), jV (@) (fig. 3.20) are defined.

Fig. 3.20. Mikhailov curve locuses for stable system of 1, 2", 3" orders.

For the close-loop pulse ACS to be stable, it’s necessary and sufficient
that for =0 Mikhailov curve takes the beginning in the positive part of the

: . : 7T .
real axis and by increasing the frequency from 0 to — characteristic curve
0

D'(jw) sequentially, without vanish, in the positive (counterclockwise) di-
rection pass 2m quadrants, where m is the system order.

Example 3.5. Estimate DCM rotation frequency pulse ACS stability, us-
ing the Mikhailov criterion analogue.

Solution.

Let’s use transfer function and characteristic equation of DCM rotation
frequency closed-loop ACS from the example 3.4.

6.081z° —5.7693z-0.3127  B(z)
Wers(2) = 2 = :

1.4865z —0.6255z-0.02498  A(z)
Using Mathcad, obtain the Mikhailov locus (fig. 3.21)
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Im(D(z(w))) _‘2

Re(D(z(w)))
Fig. 3.21. Mikhailov locus

The Mikhailov curve for @ =0 takes the beginning on the positive real
axis (0,836) and finish on the real axis (2,087). Pass sequentially, without
vanish, 2m =4 quadrants. Therefore, DCM rotation frequency pulse ACS is
stable.

3.7 Control Process Quality Estimation of Pulse ACS

For the pulse ACS quality indexes estimation applied the same approach
as in the linear systems, but it has its own specific. Pulse system output signal
y(t) 1s continuous, but, as far as, for the system analysis discrete Laplace

transform and fictitious quantizer are used, it can be assumed that output sig-
nal y (¢) is discrete or y[nT ] Having the discrete signal and making its ap-

proximation, obtain the continuous output signal. Applying the pulse transfer
function of closed-loop ACS it can be written: ¥ (z)=W,;(z)-G(z). To ob-

tain y[nT ] the Heaviside equation or Laurent series can be applied. The eas-

ier way for discrete signal obtaining is using program Control System
Toolbox Matlab. Let’s consider this approach on the example.

Example 3.6. Obtain transfer function and discrete signal of DCM rota-
tion frequency closed-loop ACS. Define system quality indexes.

Solution.

Let’s use system parameters and continuous part transfer function ex-
pression
T, =0.02sec; T,,, =0.5sec; T,, =0.1sec; I, =0.7 sec; K, =15; K, =0.2;

K, =10;K,, =8.5; K, =0.16; K, =0.5.
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Ky Ky - Kip - Ky - Ky, _
(T,s +1)-(Tps +1) - (T,Ty,, 5% + Tpyys +1)
B 12.24
0.0007s* +0.043s” +0.41s* +1.3s +1
Discrete signal of DCM rotation frequency pulse ACS represented in
fig. 3.22 and its quality indexes in fig. 3.23.
>> Wn=tf([12.24],[0.0007 0.043 0.41 1.3 1])

Transfer function:
12.24

Wep(s) =

0.0007 ™4 +0.043 s"3+0.41s™"2+13s+1
>> Wnd=c2d(Wn,0.9) — conversion ¥, (S)into pulse W, (Z)with sampling pe-
riod 7' =0.9 sec.

Transfer function:
5.031 z*"3 +2.607 z*2 + 0.04084 z + 1.89¢-007

7z - 0.3768 z"3 + 0.00426 z"2 - 5.644e-005 z + 1.602e-022

Sampling time: 0.9

>> Woc=tf([0.08],1)

Transfer function:

0.08

>> Wz=feedback(Wnd, Woc) — closed-loop pulse ACS transfer function obtaining
W3c(z)

Transfer function:

5.031 z"3 +2.607 z*2 + 0.04084 z + 1.89¢-007

z" +0.02571 z"3 + 0.2129 z*2 + 0.003211 z + 1.512e-008
Sampling time: 0.9

>> pole(Wz)

ans =

-0.0053 + 0.4612i

-0.0053 - 0.4612i

-0.0151

-0.0000
>> step(Wz)
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Step Response
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Fig. 3.22. Pulse ACS discrete signal
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Fig. 3.23. Pulse ACS quality indexes

For the accuracy estimation of the pulse control systems in the steady-
state condition the value of steady-state error for different reference signals is

used.
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In closed-loop pulse system (fig. 3.10) error e, reference signal g and the
disturbance f related to each other by the following equation regarding z-
image £(2) =W (2)G(2) + Wi (2)F (2).

This expression contains two components of error, the first £, (z) spec-
ified by reference signal, and the second E, (Z) by disturbance.

Steady-state error of pulse system can be calculated by the expression,
which defines the finite value of original 1.e.
e(nT) = hm—E L(2)+ hm—E (2). (3.30)
z z

n—>0 z—1

Let’s define steady-state error for the reference signal, assuming
f()=0.
-1 1
e(nT)=e (nT)—hm G(z2)|. (3.31)

n—0 n% 2=l Z 1 + WOLS (Z)

If the constant signal g(¢)=g, -1(z) fed at the system input, whichz-

image G(z) = &

ror
e(nT) =lim—50 (332)
n—o Ead 1 + WOLS (Z)
For the reference signal g(¢#)=g, -¢, linearly dependent on time,Z -
image G(z)= 2 TZ)2 , and steady-state error, according to (3.30), defined by

the following expression
e(nT) = lim &l (3.33)
n—>0 21 (Z 1)(1 + WOLS (Z))

And called speed system error.
If the input signal changes with the constant acceleration, i.e.

T?g,z(z+1)
2(z-1)°

g(t)=g,t’ /2, then Z -image has the form G(z) =

Steady-state error

2
e(nT) =lim &1 (3.34)
) 1 2z 1)1+ W,y o (2)

and that is called the acceleration system error.
For the given errors definition, one can use the error series

e(nT)=C,g(nT)+C,g (nT) +Qg (nT)+.. + Cy (’")(nT)+ (3.35)
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where g',g",..., g(m) are derivatives of g(#)in the time moments 7';

1 & m &
C,=we () z=1;¢,=as@ j 1 G _TWas@ y .
0z m! oz"
1

1+ Wo,5(2)
Example 3.7. Define the control error of DCM rotation frequency pulse ACS for
input U, =U,-1(¢), U, =5V".

Solution.

WCELS (z)=

Let’s use the expression (3.32) e(nT) =1lim Eo

and, using Control Sys-
n—»o0 > ]+ WOLS (Z)

tem Toolbox Matlab obtain W, ((z).

Wn=tf([12.24],[0.0007 0.043 0.41 1.3 1])
Transfer function:
12.24

0.0007 s +0.043 s"3+0.41 s™"2+13s+1
>> Woc=tf([0.08],1)

Transfer function:

0.08

>> Wpce=Wn*Woc

Transfer function:

0.9792

0.0007 s +0.043 s"3+0.41s™"2+13s+1

>> Wpcd=c2d(Wpc,0.9)

Transfer function:

0.4025 z"3 +0.2086 z"2 + 0.003267 z + 1.512e-008

z"4 - 0.3768 z"3 + 0.00426 z2 - 5.644e-005 z + 1.602e-022
Sampling time: 0.9
. 5(Z4 -0.3768 2 + 0.00426 z* - 5.644-10° z + 1.602-10'22)
e(nT)=1lim . 3 > =
nsw 21 z' -0.0257z +0.21286 z" - 0.0033 z
_ 3137 265

1.1839
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4 CONTROL TASKS AND STUDY GUIDE
4.1 General Study Guide

In the course paper (part 1) linear stationary ACS is a subject of study. In the pro-

ject (part 2) nonlinear pulse ACS is investigated.

Initial data for the ACS study is given as a system circuit schematic, its parameters
numerical values table and list of questions are to be considered.

When linear ACS stability region plotting, take gain constant of amplifying ele-
ment as varying parameter A.

Matlab or Mathcad programs are acceptable to use during the project carrying out.

Nonlinear static characteristic types of nonlinear element, electronic amplifier,
magnetic amplifier and thyristor converter.

F(x), Fx)
Ce--- Co---
b : X -b -mb
® @ >
b mb b
T e - -9 -C
a) b)

Fig. 4.1. Nonlinear element static characteristics: a) EA, b) MA and TT.

Static characteristic parameter values assume equaled «b»=4 for thyristor convert-
er, «b»=0.5 — for magnetic amplifier; «b»=1 — for electronic amplifier; parameter
«m»=0.1; value «c» defined from gain constant of the given amplification element.

If there will be no periodical solutions, when carrying out paragraph 4,
then it is necessary to substitute amplification element coefficient or nonline-
ar element parameters.

To form pulse system scheme is necessary:

o use the unit diagram of closed-loop system for the reference signal;

o in the given scheme, place the ideal pulse element with the pulse
former after the summer;

4.2 Guide Lines for Project Text Document Content

The project must be drawn on the format sheets A4 and contain:
J cover page;
project content;
project task;
ACS unit diagram,;
open-loop and closed-loop ACS transfer functions;
estimation results of system stability in Matlab or Matcad;
step response calculation results according to system unit diagram in
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Matlab;
o conclusion about system analysis quality;
. references.

4.3 Guide Lines for Project Graphic Material Appearance

Requirements for project graphic material:
o functional and structural schemes must be drawn according to the
required format;
. signal motion direction and their title must be drawn in structural
schemes;
. diagrams must be represented with dimensional axis and obligatory
with grid lines.

Conclusion

In the book authors made an attempt to represent all the basic approaches to analy-
sis and design of linear, nonlinear and pulse systems. In order to make an explanation
more clear, a lot of different examples were attached. Theoretical part contains methods
that allow solving main problems of control theory as identification procedure, system
stability analysis and controller design.

Actually, book contains three parts, the first one is devoted to linear systems ques-
tions study; the second part is more complicated and consequently more interesting; in the
third part approaches to pulse systems research are considered.

The main particularity of this book is to acquire practical knowledge in control the-
ory, so it is focused on course work realization. In order to understand the biggest part of
control system design procedure and to make clear corresponding between control theory
methods and real systems the tasks for course paper begin with principle scheme of sys-
tems.

The results of control theory application are everywere around us, it makes this
course important and very interesting.
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Scheme Nel. SYNCHRONOUS GENERATOR VOLTAGE ACS
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Fig. 0.1. Circuit schematic

Table 1

Parameters ACS parameters values according to variants

1 2 3 4 5 6 7 8 9 0

Ky, [V/rad| 20 | 8 |10 | 72 |125]65 |98 | 56|64 | 12
K, 0,2 10,08] 0,1 |0,07/0,12| 01 |{0,13] 0,1 |0,15| 0,08
T, s 10,025 (0,018{0,0140,028{0,0180,022| 0,02 [0,016] 0,03 | 0,021
K, 46 1825|123 113 8,7 [189]122] 20 | 9,1 | 237
K, 1 Pl 1
K7 11,8 [12,8] 8,1 | 88 |9,08 | 142]|11,5] 83| 9 | 46

0 0 0 0 0 0 0

éﬂ
o)

o
o
o

K, 1,05 [1,09] 12 | 1,12 1,15 1,07 | 1,11 [ 1,08 [ 1,18 ] 1,1
Ko, | V/A| o | ool o]|]o]ol|lo]| o]0 0
T, | s (0,0425]0,1270,087[0,079] 0,12 | 0,07 | 0,78 |0,066| 0,1 | 0,042
K 22 |36 |35 [345]34 | 21 205|2,12(2,08] 33
Ko, | V/A| 16 | 23|22 | 151820 |17 | 14| 13| 24
T, | s |055]027]042(037(034(045] 03 |0,28](0385 0,6
T | s | 01 [0,085]0,079]0,112{0,089]0,071(0,085|0,076(0,126| 0,13

~
<
R

0,5 1 | 1,570,751 08 [1,75] 2 | 25 [225] 2]75
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Scheme No2. ARTERIAL PREASSURE ACS BY THE EXTRA CORPORE-

AL CIRCULATION
R P <
-
G RS = L /

FI 0| e

Fig. 0.2.Circuit schematic

Table 2

Parameters ACS parameters values according to variants

1 | 2 3 4 5 6 7 8 | 9 0

K, 35,7136,3| 19,8 |24,7| 24,3 | 148 | 10 (27,7]14,7| 21,1
K, 35,7136,3| 19,8 (24,7| 24,3 | 14,8 | 10, [27,7(14,7| 21,1
T S 0,2510,281 0,36 |0,27] 0,29 | 0,42 | 0,32 {0,45(0,33| 0,4
d 0,15(0,1110,147 0,160,103 (0,133 {0,172 | 0,1 {0,08 [ 0,105
K, 24 |28 | 22 [198]276 | 182 15 [162]152] 14,8
T, S 0|0 0 0 0 0 0 0[O0 0

K, rad[V-s |172]|14,6] 168 | 21 | 17,5 | 24 | 188 [156]| 20 | 18

K, |rad/N-m-s| 0 | 0| 0 [ 0] 0 0 0 |00

T, 0[O0 0 0 0 0 0 0[O0

Ty, 0,5 (0,63| 0,56 {0,48] 0,59 | 0,91 | 0,52 {0,830,76| 0,7
K, | mmHg/V 10,6505 | 0,56 |0,54| 0,4 | 0,6 | 0,5 | 0,4 |07 0,7
K, 0,2 10,35 0,36 {0,25| 0,6 | 0,48 | 0,42 |0,51| 0,4 | 0,25
T, S 83| 14 | 15 |58 8,9 14 |1 74 |178]| 12 | 11

1, S 25 135 | 44 | 23| 50 40 19 | 34|32 | 42

K| V/mmHg |04 [0,35] 0,42 [0,36] 0,25 | 0,32 | 0,45 {0,28]0,33| 0,3
K 1151100 91 | 80 | 72,5 | 63 46 | 40 | 33 | 31

=

10 ] 15 20 | 22| 18 25 | 24 |12 |14 | 17
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Scheme Ne 3. ELECTRONIC FURNACE TEMPERATURE ACS
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Fig. 0.3.Circuit schematic

Table3
Parameters ACS parameters values according to variants
1 2 3 4 5 6 7 8
K, 431 4 | 5 | 4 | 2 | 1 62|52
K, 43 165 |88 |24 2 [26] 4 |86]22] 2
K, 43 165 |44 | 24| 2 |26 4 |43 ]22]216
K¢ 65| 8 [142] 96 (51 |64 | 8 | 42|75 ]| 6
Tpe S 0 0 0 0 0 0 0 0 0 0
K, |deg/V |5 |48 |64 |56 |44 38|64 |24]| 6 | 4
T, S 250 | 140 | 220 | 180 | 120 | 160 | 170 | 275 | 320 | 87
K, 0,9 108 10941088096 0,7 [085]0,92]0,76 | 0,65
T, S 790 | 400 | 690 | 660 | 420 [ 580 | 440 | 760 | 910 | 600
K | V/rad | 05 02|01 |08 121]075]04]0,5]105]08
Ty, s 23501215123 [ 3622|5623 |59 ]|34]38
Ky | Virad | 05 | 04 | 1 321 2 0,75 1 1,8 |24 | 2
Ty, S 28,1 (122 83 | 72 | 14 |21,5] 7,7 | 28,6 | 16, | 10
K 63 | 40 [ 75 [ 90 | 52 | 33 | 70 | 40 | 80 | 25
fi | deg | 18 | 20 [ 25 | 26 | 28 | 30 | 31 | 24 | 29 | 19
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Scheme Ne 4. DIRECT CURRENT MOTOR ROTATION FREQUENCY ACS

\ T _— 4 =
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Fig.0.4.Circuit schematic

Table 4
Parameters ACS parameters values according to variants
1 2 3 4 5 6 7 8 | 9 0

K, 10198 |65 5 |56]125] 7.8 [10,6(69 | 5,6
K, 10198 |65 5 |56 [125] 7.8 [10,6f69 | 5,6
T1 S T, TC T, TC T TC T, TC T, TC T TC T, TC T, TC T, TC T, TC
T, s 0,126| 0,044 (0,0630,109]0,085] 0,08 10,071 {0,068|0,095( 0,056
T, s 0,016/0,0063( 0,01 | 0,02 10,015{0,00810,0085/0,012( 0,01 {0,0085
T, s 0,126| 0,044 (0,0630,109]0,085] 0,08 10,071 | 0,68 |0,095( 0,056
K, 13,8 13,8 | 12,7 | 11,5 (13,8 (13,2 12,5 | 13,8 12,7 | 13,8
T L | L | L || T [T | T | LT |T [T
K, | rad/V-s [285]0095|143] 1,9 |24 |0,96]| 1,43 (285 19 | 2.4
K, |rad/N-m-s| 46| 84 |64 |28 (36|42 2 |[56]32]| 4
T s 0,021 0,009 (0,01310,012]0,011{0,013]0,011 {0,009{0,013| 0,01
Ty, S 0,522/ 0,233 (0,2640,448]0,391]0,368]0,327 |0,456|0,413| 0,366
K, 021 04 (0351025106 | 0,4 10451 0,2 (0,34 0,25
K| Vesfrad 10,13] 02 [02 |04 |01 02|02 [022]02] 0,3
K 81,16 233,6 |131,21100,2{130,9(158, 4/176,7 | 270 ({119,2]248,4
M, N-m 46 | 84 | 64 | 28 [ 36 | 42 | 20 | 56 | 32 | 40
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Scheme Ne5. SERVO SYSTEM
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Fig. 0.5.Circuit schematic
Table 5
Parameters ACS parameters values according to variants
1 2 31415 6 | 7 8 9 (0
K| V/rad 30 | 25 127,632 | 18 | 15 | 20 [ 29,6 |28,6] 33
K, 25 1 20 [ 19 | 22 | 50 |22,5] 23 [ 15 | 14 |12,5
K, 25 1 20 (19 | 22 | 50 |22,5] 23 [ 15 | 14 |12,5
T S 0,28 10,174 10,166(0,126/0,063(0,112]0,056( 0,19 | 0,2 10,158
T, S 0,08 {0,10510,112]0,091{0,051{0,083(0,038| 0,05 | 0,1 {0,102
T, S 0,8 | 0,7 (0,477(0,546/0,268|0,387|0,164( 0,594 0,870,403
T, S 0,028 {0,026 {0,039]0,021{0,012]0,024(0,013] 0,016 |0,023{ 0,04
K., 20 | 21 [ 18 | 24 |185]| 30 | 16 | 27 | 22 | 17
Ky, | rad/V-s 095|143 |19 |1,5/098]|1,44(1,95] 1,9 [1,45/0,95
K, |rad/N-m-s| 52 [0,65| 15 86|36 |08 |24 |172| 78| 40
T, S 0 0 O[O0 0] 07]O0 0 0 (0
Ty S 0,25 | 0,33 10,398|0,295(0,166(0,224(0,107] 0,135 {0,141{ 0,27
K, - - - - - - - - - -
Ky 0,01 {0,008 ]0,008]0,009{0,007(0,011{0,009(0,0088| 0,01 {0,012
M, N-m 5 05 |15 8 | 4 [08] 2 3 4 | 5
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Scheme Ne6.HEAT EXCHANGER TEMPERATURE ACS

) steam
Fig. 0.6. Circuit schematic

Table 6
Parameters ACS parameters values according to variants
1 2 3 4 5 6 | 7 8 9 0
K, V/rad 12 | 15 |125] 14 [ 12 (10| 15 | 10 |[12,5] 14
K, V/deg 2,1 [ 18 [ L7 1,9 |22 (21241 2, |23]|26
T, S 0 0 0 0 0 0] 0 0 0 0
K, 1|11 | S T I O 1|1 |1
K, 1 1 1 1 1 1 1 1 1 1
K., 10,2 1 18,7 8,5 | 17,5 | 10 |12,5( 12 | 12 |11,1 10,9
Ky, | rad/V-s | 14 | 1,1 [124]0095| 1,4 [1,I5] 1 | 094 |1,05]009
K, |rad/N-m-s| 0 0 0 0 0 [0 O 0 0 [0
T, S 0 0 0 0 0 0] 0 0 0 0
Ty, S 0 0 0 0 0 0] 0 0 0 0
K, 0,011 0,01 (0,013{0,00810,012{0,01]0,011{0,014]0,015(0125
K,| V/rad 8 1211518 |9 [75]82] 1L [9,1]10
Ty S 45 11,781 22 | 2,6 | 4 [48(426 39 |3,23]|54
K| deg/rad | 127 | 183 [ 172 | 156 | 95,6 [ 171 | 118 | 178 | 153 | 150
K| rad/deg | 1 1 1 1 1 [ 1] 1 1 1|1
T, S 65 | 30 [ 24 [ 55 | 50 | 125|100 | 90 | 85 [110
T, s 1,251 0,5 10,631 091 (1,07 1,6 ( 1,4 | 1,17 | 1 |1,38
S deg 20 | 25 | 24 | 28 | 30 (25| 26 | 31 | 32 |23
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Scheme Ne7. STEAM TEMPERATURE ACS
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steam  burner ) fuel
Fig. 0.7. Circuit schematic
Table7
Parameters ACS parameters values according to variants
| 213 (456|789 ]0
K, V/rad 14 12110 [ 15|12 [20 |14 | 15| 10 |11
K, V/deg 0,5 10,2]0,4{0,24(0,210,15/0,12|0,25| 0,4 |0,3
T, S 0 11,610 (14110 1,251,710
K, 0,4 10,25/ 0,2 0,18 0,1 |0,210,15/0,12{0,16 | 0,2
T S 22 12,3123 1(2,85] 2 |1,52/0,63(1,66(1,84 | 2
T,=T,=T, S 0 0Olo0jO0OfO]JO]JO]LO] OO
K 6,4 (10,2[13,7]9,8 | 12 |14,5| 18 16,6 14 | 10
Ky, radlV -s 11 514 132148(9,6[9,6]5,6]4,8 |32
K,  |rad/N-m-s| 0 0l0[O[O]O[O[O| O[O
Toy S 0,5 0 10,4210,55( 0 10,32/0,35| 0 |0,3210,25
Ky V/rad 0,028 10,07/0,05{0,09(0,0610,04/0,12|0,08]0,075]0,04
K, deg/rad 40 | 85120 52 [180]152|100] 90 | 65 |230
T, s 1,3 1035 0 | 1,8({04] 01,2 1 | 0 [L5
K, 0,8 1091095 1 |0,6]0,75/0,62| 0,5 (0,55]0,4
T, S 630 950(2500]1150]1260]790 {690 2000|1380 [ 660
Ji deg 30 [22[34 (31 35]40(42]45| 50 |55
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SchemeNe8. DIRECT CURRENT MOTOR ROTATION FREQUENCE ACS

<

v
Fig.
0.8. Circuit schematic
Table8
Parameters ACS parameters values according to variants

1 2 3 4 5 6 7 8 9 0

K, 4 142 (13510 (42 1 |85] 6 3 1
K, 6 |163(223(41,7(39,5| 4,5 |28,8]17,5]10,65| 2,84
K, 0,035( 0,27 {0,026( 0,36 10,092 0,11 | 1 1 (0,101f 0,1
T S 0,083{0,063{0,093(0,054]0,112| 0,08 {0,068{0,072( 0,1 | 0,04
T, s 0,05 10,044| 0,04 |0,064| 0,1 {0,012{ 0,08 [ 0,12 | 0,06 | 0,01
K, 8,6 9 S5 64 (10275 (1259682 | 6,6
T S 0 0 0 0 0 0 0 0 0 0
Ky | rad/V-s | 14|24 |19 [143]096] 1,8 | 24 [095[2,85| 1,9
K, |rad/N-m-s| 64 | 26 | 28| 24 | 8 10 | 3,6 | 5,6 | 21 | 36
T, S 0,012{0,018{0,016( 0,01 [0,015]0,018] 0,05 {0,022{0,035]0,011
Toy S 0,29710,497{0,38210,482( 0,42 |0,247(0,155]0,575| 0,58 10,247
R, Q 08 (1,65(03 | 1 | 1,2 24121 |19]|15] 12
K| V-s/rad | 0,1 |0,08|0,12| 02 [0,08]0,13| 0,2 |0,16]0,15] 0,1
Ty S 0,022{ 0,01 {0,027(0,015]0,025] 0,01 |0,011{0,012{0,014]0,013
K, 0,4 (025(011]02]021]0,15]0,016{ 0,3 |0,12 0,25
K Q 0,121 0,1 10,05]0,08 (0,17 0,11 {0,250,11] 0,2 (0,085
M, N-m 6 10 | 3 12 | 8 10 | 4 5 2 4
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Scheme Ne9. SERVOSYSTEM WITH COMBINED CONTROL
+0 t
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Fig. 0.9. Circuit schematic
Table9
Parameters ACS parameters values according to variants
1 2 3 4 5 6 7 8 9 |0

K, | V/rad 16 18 | 20 [ 28 ( 21 | 15 [ 24 | 20 | 30 |25,2
K | V/rad 16 18 [ 20 | 28 [ 21 | 15 | 24 | 20 | 30 |25,2
K, 0,216 0,202 {0,192] 0,03 {0,154] 0,04 [ 0,3 | 0,12 | 0,2 | 0,2
K, 0,65 | 0,88 10,78 12,85|1,34|3,42]0,68 | 1,22 | 0,93 {1,09
K, 0,65 0,88 10,78 12,85|1,34|3,42]0,68 | 1,22 | 0,93 (1,09
Ko 128 | 11,2 [ 18,6 [ 14,8128 | 20 | 13,6 | 16,2 | 10 |152
T 0,02 | 0,03 [0,01 |0,04]0,02{0,008]0,012{0,015] 0,01 {0,03
Ky | rad/V-s | 141 ] 82 | 62 | 22|87 |26 |156] 56 |123|4,8
K, |rad/N-m-s| 26 | 1,5 |87 |78 24| 10 | 12 | 72| 45 |65
T S 0,03 { 0,02 [0,03]0,01|0,01{0,015/0,008| 0,02 [0,018{0,01
Toy S 0,151 0,12 10,09 0,2 | 0,24 10,18 | 0,14 | 0,21 | 0,12 (0,15
Ky 20 10 | 12 | 14 { 10 | 15 |13,55] 11,8 | 17,6 |20,4
Ky, 0,008 0,011 | 0,01 {0,006{0,008(0,012] 0,01 |0,009{0,007{0,01
Ky | V-sfrad | 0,5 | 0,1 |02 [0,08]|0,11] 02 ]0,18]0,15]0,11 |0,1
d 0,15 0,2 | 0,4 10,172/ 0,19 | 0,19 ]0,345| 0,26 | 0,45 {0,56
T s 0,03 {0,0375(0,067| 0,05 |0,061{0,044] 0,08 {0,079]0,106 (0,23
M, |N-m 2 2 6 5 2 8 6 4 3 2
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SchemeNel0. HERMETIC CHAMBER TEMPERATURE

/G

ACS
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| 1

Fig. 0.10. Circuit schematic

~Mn

Table 10
Parameters ACS parameters values according to variants
1 2 3 4 5 6 7 8 9 0
K, Videg | 21 | 15| 8 |16 | 12 | 10 [ 12 | 15| 20 | 18
K, V/deg | 04 0,160,225 0,1 | 02 [0,12[0,15] 0,1 |0,22]0,24
T, s 0O [L6] 0 [63] 0 [25] 0 8 0 4
K, 2 |064] 4 [1.82| 3 |135]3,5(047] 2 |45
K, I | 2 105(04| 1 [025]08]04]12] 1
K,, 24 45| 3 2 | 87 [ 35]64 (225618
T, =T, s 0 0 0 0 0 0 0 0 0 0
K, |rad/V-s| 13 |1,15| 12 [1,04|1,12| 1 [0,93]0,95]|1,05 0,83
rad/N-m-s
Ky, olo]Jo|lo|lo|Oof[O0oO]|[O]O]oO
Toy s 0,54 0 (0,255 0 (0,23 0 (038 0 [02 ] O
K, 0,02 {0,081{0,074{0,002{ 0,03 {0,003{0,006( 0,01 {0,038]0,002
Ko, |degfrad| 25 | 15 |275| 18 | 35 | 16 | 18 | 22 | 30 | 26
K, 0,744 10,8530,667(0,886(0,3380,789| 0,65 (0,717(0,78210,823
T. s 60 | 15 | 90 | 30 | 60 | 25 | 40 | 20 | 20 | 100
K., s 22 | 63 | 40 | 90 | 35 | 60 | 100 | 115 | 80 | 25
Kus | Virad | 36 | 25| 5 |24 2 2 142(105]28] 4
J1 deg 8 6 |12 | 15| 9 | 10| 14 | 18 | 21 | 16
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Scheme Nell. SERVO SYSTEM
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Fig. 0.11. Circuit schematic
Table 11
Parameters ACS parameters values according to variants
1 2 3 4 5 6 7 8 9 0
K, V/rad 12 (15 |16 [125] 10 [135]| 14 | 9 | 15 |145
K sl V/rad 12 (1516 [125] 10 (135 14 | 9 | 15 |145
K, 2241173125 1202 18 [ 175|153 [11,5]|27,2| 16
K, 22411731 25 1202 18 [ 17,5 | 153 [11,5]|27,2| 16
K, 11 T T Y O O A O
Ko 182 15 | 17 |168|13,7| 16,6 | 16 [18,7| 14, | 10,4
T 0,01 { 0 10,008 0 0,012] O (0,006 O [0,011] O
Ky | rad/V-s [143] 2,1 |1,84| 2 [285|1,43(195| 15| 1 [1.95
K, |rad/N-m-s| 21 [36,5| 40 | 32 | 20 | 27 | 18 | 24 | 26 | 42
T S 0 (0,015 0 (0,02 0 [0,016] O 0,022 0 |0,018
Toy S 0,16210,307| 0,13 10,272(0,191{0,355]0,15810,189| 0,2 0,256
T S 0,04 1 0,05 { 0,03 10,055{0,075]0,085{ 0,06 | 0,1 |{0,08 | 0,1
T, S 0,1 10,0810,07(0,107(0,115{0,112]0,085]0,155]0,125]0,126
Ky | V-s/rad |025]0,16| 02 [027]0,13]0,15]0,18[0,12[0,15]| 0,2
K, 0,01 10,011{0,008| 0,01 {0,009]0,008]0,012{0,011]0,007{0,012
M, N-m 2 4 3 2 2 3 2 4 3 4
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Scheme Nel2.SERVO SYSTEM
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Table 12

Parameters ACS parameters values according to variants

1 2 3 4 5 6 7 8 9 0

K, V/rad 30 | 25 (27,6 32 | 18 | 15 | 20 | 29,6 |28,6 | 33

K, 251 20 | 19 | 22 | 50 |22,5| 23 | 15 | 14 |12,5

K, 25120 | 19 | 22 | 50 [22,5| 23 15 | 14 125
T s 0,28 {0,174 {0,166(0,126]0,06310,112]0,056| 0,19 | 0,2 0,158
T, s 0,080,105 {0,112(0,0910,051}0,083]0,038| 0,05 | 0,1 (0,102
T, s 0,8 | 0,7 10,477|0,546/0,268(0,387(0,164 0,594 | 0,87 {0,403
T, s 0,028] 0,026 10,03910,021{0,012{0,024(0,013{ 0,016 {0,023| 0,04

K., 20| 21 | 18 | 24 | 185 30 | 16 | 27 | 22 | 17

Ky, | rad/V-s 095 1,43 [ 1,9 | 1,5 1098 |1,44[1,95| 1,9 |1,45]0,95

K, |rad/N-m-s|521065| 15 | 86|36 | 08|24 [ 17278 | 40
T, s ol o lo|lo|o]of[o| o fo]o
Tous s 0,25] 0,33 [0,398]0,295(0,166(0,224(0,107| 0,135 |0,141] 0,27
K, oo 171
K, 0,01 | 0,008 [0,008]0,009(0,007]0,011{0,009(0,0088| 0,01 [0,012

]

M, N-m 5105 |15 ] 8 4 (08| 2 3 4 5
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Scheme Nel3. DIRECT CURRENT MOTOR ROTATION FREQUENCY COM-
BINED ACS
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Table 13

Parameters ACS parameters values according to variants

1 2 3 4 5 6 7 8 9 0

K, 5 175064110 8 [72]56] 6 [55] 88
K, 23,33]15,25| 56 16,25 20 | 20 | 12 | 15| 8 | 12
K, 20 | 8 [15]625] 25 [ 20 | 15| 15 |20 | 20
K, 18,75 12,5 (12,5 15 | 20 [12,5] 15 | 19 | 16 | 25
T s 0,06 | 0,02 [0,03 | 0,02 | 0,01 | 0,01 {0,015{0,0050,006{0,008
Ky | rad/V-s |16 28| 2 [32]24 (32|24 3 |25]18
K, |rad/N-m-s| 14 | 32 |56 | 15 | 24 | 8 [13,8617,1]|9,6 |21,6
T, s 0,02 | 0,1 {0,08(0,15{0,12| 0,1 |0,14|0,11{0,08] 0,05
o s 0,304 [05[035]04 032[045] 03 |04 0,36
K| V-sfrad 0,02 0,05 (0,04 0,04 0,015[0,025] 0,03 |0,035[0,04 | 0,03
Ky s 0,01 |0,005(0,006|0,005{0,008{0,003| 0,01 {0,002{0,003|0,002
K| V/N-m 0,02 |0,06[0,04]0,050,025]0,01 {0,035/ 0,02 [0,03 | 0,04
M,| N-m 1036|248 |13]15]9]12
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Scheme Nel4. TURBOJET ENGINE ROTATION FREQUENCY ACS
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Fig. 0.14. Circuit schematic
Table 14
Parameters ACS parameters values according to variants
1 2 31415 6 7 8 9 0
Ky 8 | 54555 5| 4 |72(85]75]|47
Ky, 8 [ 54555 5 4 172857547
T, S 0 0 0 [0} O 0 0 0 0 0
K, rad/V st 24 182,014,586 (425064861 8, | 4
Ky, |rad/N-m-s| 0 0 0 [0} O 0 0 0 0 0
T, s 0 0 0O [0} O 0 0 0 0 0
Ty S 0,11]0,07 {0,126(0,06(0,055|0,085| 0,05 {0,046(0,058| 0,09
K, mm/rad | 48 |52 (39432 5 |36 4 |44] 3
Ky |7 | ag s | a0 |36 s0 | 32 | as | sa | 42 | 60
K, 1 1 1| 1] 1 1 | 1 1 1
- s 6 4 1551(35[63 43 |1,75129]32] 5
K, V-s/rad | 0,1 |0,15]0,12]0,08] 0,08 [ 0,07 | 0,05 | 0,04 | 0,05 | 0,06
T, s 0 0 0O [0} O 0 0 0 0 0
d 0,024/ 0,06 10,065(0,12| 0,06 {0,084(0,115| 0,1 | 0,09 | 0,11
T s 0,022(0,0270,036(0,03{0,023{0,042(0,024]0,017{0,022{0,032
/i Rad|/s 2 4 3 15] 6 7 8 [ 11 | 10 | 12
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Appendix 1

Device scheme

Device equation

Biological control object (BCO)
with the arterial pump (AP)

P

(T,p+ (T, p+ DAP(1) =
= KK, Aot~ K, (T,p+ DAL (1),

P —preasure in BCO;
@— AP rotation frequency;

@_}-I}_&O O; B?O f — disturbance;
| K, ,K,— gain;
T ,1, - time constant.
Direct current generator with sepa- | (7..p + DAU.(¢) =

rate excitation (G)

Urc

R,

Us
@ .

=K; AU (1) - K (T;p +DAR,(2),
U .- output voltage of G;

U .. — voltage on field coil;

R, —load resistance;

K, K; - gain of G;

T, — time constant of G.

Synchronous generator (SG)

} UG,
®

(Tsop +DAUG(2) =

=K AU, (1)- K (Tsop +DAIL(D),
U, — output voltage of SG;

U ..— voltage on field coil;

K s K g, — gain of SG;

Ty, - tlme constant of SG;

— load current.
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Direct current motor with separate
excitation

. ®
Uy FclgiildE (‘% L

(TETEMP2 + T p+DA0() =
:KMIAUAV(t)—KMZ(TEp+1)A¢L(l‘)
or

(TETEMp2 + Ty, p+ D) pAQ(2) =

= KMlAUAV(t) _]<M2 (Tzp+DAM ,, (1),

- rotation frequency of output shaft;
@— rotation angle of output shaft;

U ,,— armature voltage;

M , - resisting moment on shaft;

K, ,K,, —voltage and moment shaft;
T.,T;,,— electromagnetic and electromechani-
cal time conctants.

Furnace with burner

Working
~— fluid

(Tpp + (T p+DAO() =

=K K Ay (1) - K (T,p + DA (@),

60— temperature in furnace;

y — rotation angle of furnace control element;
f — disturbance;

K,, K, — gain;

T,,T,.— time constants.
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Heat exchanger

e
- ™ o
—r"'i = —> ' /) iy
T
steam

(T, 0+ D (T, p + DAO() =

= KHElAy(t) - KHEIKHEZAf(t)a

60— temperature in heat exchanger;

y — rotation angle of control element;
f — disturbance;

K, ,K,,— gain;

T,,,T,,— time constants.

Hermetic cabin

1-heater, 2-cooler, 3-pump
[(Tp+ (T, p+1)-K, |AO(t) =

=K, (T,p+DAy () = (T,p + DAS (9),

©® - temperature in cabin,

y —rotation angle of control element,

K., K- gain of control element and cabin,
T, T,. —time constants of control element
and cabin.

Electric furnace (EF)

HE — heating element

O]

—

HE

IREENENE) BN

electric furnace

(T,p+D(T,p +DAO() =
=K, K, AU (t)— K, Af (¢),
6— temperature in electric furnace;

U — voltage on HE;
f — disturbance;

K,,K,— gains;
T,,T,— time constants.
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Turbojet engine (Trep + DAO(1) = Ky AR(1) — Ky AF(2),

@— output shift rotation frequency,
- |; .| h—control element position,
f—disturbance,

Ky, Ky — gains,

TE, >

T, —time constants.

Error angle measurement uniton | AU(¢) = K (a(t) — B(2));

selsyns o — sensor rotation angle,
S — detector rotation angle,

ﬁ/\ /\53 U- voltage on measurement unit output,
""'_ _U K - sensor gain.
Error angle measurement umt on | AU@) =K (a(t)- B{1));
rotary transformer « — sensor rotation angle,
S b [ — detector rotation angle,

4 U- voltage on measurement unit output,

_ ‘s’ ‘ K ;— sensor gain.
i U

__]
ﬁ
Reducer Ap,(t) =K, Ap (1),
o1 02 @,— Input shift- rotatio.n angle;
@, — output shift rotation angle;
_3' 1 R | a_ K, - reducer gain.
Temperatur sensor (T, p+DAU(t) = K, AO(2),
60— measurement object temperatur;
® U - sensor output voltage;
< > U K, — sensor gain;

T,,— sensor time constant.
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Preassure tensometric sensor

U

AU(#) = KpsAP(2),

U - sensor outoput voltage;

P — measurement object preassure;
K ,— sensor gain.

®

Elastic feedback element

$ 1v

(Trs,p +1)AU (£) = K Ty pAO(2),
6 — measurement object temparatur;

7 — element output voltage;
K, — element gain;

T}, —element time constant.

7) ..... C

Elastic feedback element

.

= [R

(Typ+1)AU (1) =K, T, pA6(2),
]/(t) - rotation angle of potentiometer motor,

U - element output voltage;
K, —element gain;
T,., — element time constant.

AU, (t)=K, AU, (1),
U, - EA output voltage;
U,— EA input voltage;
K, , —EA gain.

Magnetic amplifier (MA)

U; "i“ U,

(T,,p +1)AU, (t)=K,,AU, (1),
U, - MA output voltage;

U, — MA input voltage;

K,,,— MA gain;

T,,,— MA time constant.
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Demultiplier (T,p+1)AU, (t)=(T, + 5)AU, (1),
where
| T=RR,C/(R +R,),

| ' §=R,/(R +R,).
R,

U, U,
R, l
Correcting circuit (Lp+1)(T,p+1)AU, (¢t)= (T, +1)(T, +1) AU, (1),
C1| | where
1, =R,C;
Rl T;T:‘_ - R1R2C1C2;
C, - T,+T,=RC,+(R,+R).
U U,
R;
l
Comparing-summarizing unit (CSU) | AU, (¢)=K ,AU,(t)+ K , AU, (t) -
U, R -K,AU,(1)- K, AU, (),
— where
Us LR; |3 Ryp
K, =R.,/R;
A4, — “YFB[ "2
Uu{ R H + :
1 K, = RFB/R3;

UOUT ’
B KA4 = RFB/ Ry;

94




Unipolar angular motion sensor

-+

AU =K (Ap(t),
@ —rotation angle of potentiometer motor

(measured value);
U — sensor output voltage;
K ,; —sensor gain.

Moment clutch

AU(t) =K cAM (t)’

M, —measured moment;

M
. U - voltage on MC output,
a ')' - -1 MC U K, —MC gain.
Measurement unit (Top+1)AU,y =K (Top +1)AG(2) -

Ug

UOUT

2.9
|_I

L]
=

CU

—K; AU o7 (2),

G — motor rheostat position (reference signal);
U, —measured voltage;

U, —output voltage;

K —reference signal gain;

K, —measured signal gain;

T, — device time constant.

Measurement unit

(Tgp + LIAU(t) = Kyy (Typ + 1) -

- 86 (t) — Ky A8(1],

G - rheostat motor (reference signal);
6 — measurement object temperatur;
U - device output voltage;

K, —reference signal gain;

K, —measured value gain;
T,

o — device time constant.
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Velosity sensor

[

| I

_|_
o) Field _|_
coil T

(Tsp+DAU(t) = K, ;Aw(t),
@ — VS shaft rotation frequency,

U - VS output voltage,
K, — VS gain,

U/l 7, — VS time constant.
Velosity sensor (Tsp+DAU(t) = K, ;Aw(t),
@ — VS shaft rotation frequency,
£ % LR | U - VS output voltage,
m_)_ @— L | Kis-VS gain,
x & * C T, — VS time constant.
Thyristor transducer (TP) (T,;p +DAU,(t) = K, AU, (1),
U, —TT output voltage;
U, - TT output voltage;
U, ﬁ U, K,, =TT gain;

T, — TT time constant.
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Demultiplier

R’
U1 R R” U2

U,(1)=K,U,(1),
where K, =R'/R.

Passive correcting RC - circuit

CII
11

L 31 R Uz

(T, +1)AU, (1) =T,U,(1),
where 7= RC.

Active correcting circuit

R C

LpAU, (1) =~(T, +1)AU, (1)
where T, = RC;T, = R,C;

- +
Ll l_ UZ

Active correcting circuit

Ui /

(Lp + DAU, () = (T, + K)AU, (1),

where K = R :
R, + R,
TI — Rle C, T2 — R2R3 C
R, + R, R, + R,

Passive correcting RC-circuit

N —
v

(Tp +DAU,L () =T, pAU\(1) ;
R.R

where 7, =—=—-C;
R +R,

T, = R3+—RIR2 C;
R +R,
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Appendix 2

Lattice functions images

Laplace trans-

Unbiased lat-

Original form tice function z-transform
()= I, for t=0
o, for t#0 - o,[n] 1
—sT _ _
O)-1¢-T) l—e Vi[n]=Al[n—1] |
s
1 z
1(2) — 1[n]
S z—1
1 7 1z
t = n (z— 1)2
C L (nT) Tz(z+1)
2! s’ 2! 2(z-1)°
£ 1 (nT)’ T’z(z* +4z +1)
31 st 3! 31(z-D)°
s I (nT)" T'2R.(2)
k! Sk+l k! k'(Z _ 1)k+l
1
e—at e—anT — dn Z_aT
S+a z—e
o 1-e ")z
l_e—at l_e—anT ( )aT
s(s+a) (z-D(z—-e"")
1 Ze—aT
-at —anT
te +a) nTe (z—c )
L ! (T’ ot z(z+ e Mye
2! (s+a)’ 2! 2(z—e Ty
ie’at 1 (nT)k efanT ZRk (ZeaT)e_kaT
k! (s+a)™" k! kl(z—e )
-1
sin 77— > 7rT2 5 sinzn =0 0
s*+xT
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t s coszn = (—1)" z
cos 7T = 2
s +n° /T z+1
0,5z/T
sinZ L s 40,257/ T? sinZn z
2T ’ 2 22 +1
S 2
cosTL s*+0,257% /1 T? - EMBED =
2T ’ z2+1
in ST
sin it P sin nT _ zsinf
s +p z-=2zcos BT +1
2 p—
cos fi : s : cos pnT 2z zcos BT
s +p z"=2zcos BT +1
- p : ze “" sin ST
—at t —anT T
¢"sinf (s+a) +p e sinfn z* —2zcos fT + e
oy z* —ze " cos BT
e “ cos St Gray i e ™ cos pnT | z* —2ze " cos BT + & 2"
- - 5(t - I’ZT(')) z "
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