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Abstract

For linear automatic control systems, many synthesis methods have
been developed that exercise options of the controller structure and pa-
rameters to provide the stated requirements to the system quality. Coef-
ficient methods can compute approximate, but rather simple, correlations
that link the automatic control system quality indices of a random or-
der and the desired controller parameters. One of the most widely used
criteria when designing an automatic control system is the system sta-
bility maximum degree. In real systems, the object parameters usually
are rough or can be changed within certain limits. Such parameters are
called interval parameters, and such control systems are called interval
control systems. It seems very interesting to provide the maximum de-
gree of robust stability in the system. The approach is based on coefficient
assessment of the stability of interval systems’ indices and allows maxi-
mizing the robust stability degree when using unsophisticated algebraic
associations.
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1 Introduction

Even for stationary control systems, parameters can vary with time due to aging or
for other reasons. Moreover, the parameters of the controlled object could be uncer-
tain or change within some limits in the process of non-stationary system controller
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development. In such cases, it is necessary to design control systems in such a way
that they are stable not only for specified and constant parameter values, but for all
possible values within certain ranges. In the last case, a system is called robust stable.

Much work is devoted to research on stability and synthesis of the control systems
under uncertainty, when parameters of the system can vary within specified intervals
[1-45]. Robust theory is a rather new approach whose main results were obtained
only recently. These include a variety of methods and approaches, such as graphical
criterion of polynomial robust stability [1, 2, 3, 4], edge theorem [5, 6, 7, 8, 9, 10, 11],
and polynomial methods based on Kharitonov theorem and its modifications [12, 13,
14, 15, 16, 17, 18].

The controller synthesis problem is the most complicated when developing interval
systems. It requires providing a desired robust system operation quality in any possible
operation mode by means of linear controller settings. Perturbation theory [19, 20,
21], root approaches [22, 23, 24, 25, 26], µ-analysis [27, 28, 29], and probabilistic
approaches [30, 31, 32] all can be used to solve the synthesis problem.

2 Problem Formulation

The maximum stability degree criterion is one of the most widely used criteria for the
design of robust control systems. The systems constructed according to this criterion
are known to have a higher operation speed, a smaller system overshoot, and a higher
stability margin [39, 40] than conventional control systems. It is also important that
the systems with maximal stability degree produce a low response to parametric per-
turbations in controlled objects. In this context, there is a great interest in solving
the problem of maximizing a linear system stability degree by appropriate controller
settings when an interval uncertainty is present in the controlled object.

We solve the above problem using coefficient methods, which obtain approximate,
but rather simple, correlations that link the desired controller parameters and coef-
ficient performance indices of an automatic control system [41]. These indices are
determined through coefficients patterns of a system characteristic polynomial.

Pushkarev et al. [44] includes an example of a stationary system synthesis on the
basis of coefficient assessments of system quality indices. In this article, we consider
an interval extension of the synthesis technique of [44] based on interval analysis tech-
niques [42, 45].

3 Maximizing the Stability Degree
of Stationary Systems

We consider a linear stationary control system with a characteristic polynomial

A(s) =

n∑
i=0

ais
i = ans

n + an−1s
n−1 + . . .+ a0, an > 0. (1)

For such systems, it makes sense to define stability indices λi [41, 43], which are formed
by quadruples of nearby polynomial coefficients from (1)

λi =
ai−1ai+2

aiai+1
, i = 1, n− 2. (2)
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The sufficient stability conditions of a stationary linear systems have been obtained
on the basis of the coefficient stability indices (2) in [41]:

λi < λ∗ ≈ 0.465, for every i = 1, n− 2. (3)

The conditions (3) can be used to choose controller parameters which provide sta-
bility for an automatic control system. Their simplicity allows one to form constructive
and easily-coded synthesis procedures, while their redundancy on the safe side con-
tributes to stability, which is always necessary when designing real automatic control
systems.

When designing an automatic control system, it is important not only to achieve
stability, but also to provide a specified system performance quality. From this view-
point, the sufficient conditions of the stability degree η offered in [41] could be useful:



ai−1ai+2(
ai − ai+1(n− i− 1)η

)(
ai+1 − ai+2 (n− i− 2) η

) < λ∗, i = 1, n− 2;

al − al+1(n− l − 1)η ≥ 0, l = 1, n− 1;

a0 − a1η +
2a2η

2

3
≥ 0.

(4)

The fulfillment of the conditions (4) guarantees that the roots of the characteristic
polynomial (1) are positioned at the left-hand side from the vertical straight line
through the point (−η, j0). Increasing η within the above conditions allows one to
find its maximum value that can be considered as a maximum estimate of the system
stability degree. Let us denote it by η∗.

The controller synthesis problem is to choose such controller parameters k
∗

that
provide the maximum value of η∗. We denote this maximum as η∗max. Therefore,
η∗max = max

k̄
η∗, where η∗max is an estimate of the maximum stability degree. It can

serve as a quasi-maximal stability degree for an automatic control system.
We introduce the notation

λi(k, η) =
ai−1(k)ai+2(k)(

ai(k)− ai+1(k)(n− i− 1)η
)(
ai+1(k)− ai+2(k)(n− i− 2)η

) ,
i = 1, n− 2;

fl
(
k,η
)

= al(k)− al+1(k)(n− l − 1)η, l = 1, n− 1;

g(k, η) = a0(k)− a1(k)η +
2a2(k)η2

3
.

(5)

Proposition 1. A linear controller with the settings k
∗

provides the quasi-maximal
stability degree η∗max in the system with a characteristic polynomial (1) if

λi
(
k
∗
, η∗max

)
= λ∗, i = 1, n− 2;

λj
(
k
∗
, η∗max

)
< λ∗, j = 1, n− 2, j 6= i;

fl
(
k
∗
, η∗max

)
≥ 0, l = 1, n− 1;

g
(
k
∗
, η∗max

)
≥ 0.

(6)
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Proof: The growth of η in each expression λi(k, η) from (5) is possible up to the value
when λi(k

∗
, η∗max) = λ∗, i = 1, n− 2 by means of changing the controller settings.

Thereby, to determine the quasimaximal stability degree and corresponding controller
settings k

∗
, it is sufficient to solve (n − 2) times the system of equations (6) defining

η∗max for every system, and then to choose the maximum among them. �

4 Maximizing the Stability Degree
of Interval Systems

Under interval uncertainty of the system parameters, the characteristic polynomial (1)
of the system reduces to

A (s) =

n∑
i=0

ais
i = ans

n + an−1s
n−1 + . . .+ a0, an > 0, (7)

ai ≤ ai ≤ ai, i = 0, n,

where ai and ai are a priori specified interval bounds.

Kharitonov’s Theorem [12] is known to be the origin of extremum point-based
approaches to robust stability testing for the systems under uncertainty. The theo-
rem gives necessary and sufficient conditions for interval polynomials’ robust stability.
However, the study of the robust stability of many polynomials is brought to the sta-
bility check of a maximum of four of them, regardless of the polynomial degree n [42].
This theorem is correct if characteristic polynomial coefficients change independently
of each other in the stated intervals. Kharitonov’s Theorem does not support analyzing
the robust quality of interval systems, including the robust stability degree.

Figure 1 shows an example of interval system roots localization area <(a). The
figure suggests that the interval system robust stability degree αr(a) is determined
by its stability degree in the worst operation mode to which a certain set of interval
parameters corresponds.

Proposition 2. For the interval polynomial (7) to have robust stability, he following
conditions are sufficient:

ai−1 ai+2

ai ai+1
< 0.465, i = 1, n− 2. (8)

Proof: Conditions (3) on the interval polynomial have the form

λi =
ai−1 ai+2

ai ai+1
< 0.465, i = 1, n− 2. (9)

To check (4), it is necessary to find the maximum possible values of λi, assuming
that the polynomial coefficient can change arbitrarily in the prescribed intervals. Let
ai−1ai+2 = c, aiai+1 = d. Then λi has the maximum values for cmax and dmin.
Insofar as cmax = ai−1ai+2 and dmin = aiai+1, then, if the conditions (4) hold true

for ai−1, ai, ai+1, ai+2, i = 1, n− 2, they should be satisfied for any other values
of the interval coefficients, ensuring the robust stability of the corresponding interval
polynomial. �



252 Pushkarev, Gaivoronsky, Maximizing Stability Degree of Control Systems

Figure 1: Root domain

Proposition 3. To make the robust stability degree of an interval polynomial (7)
higher than a specified robust stability degree ηsp, it is sufficient to satisfy

λiz =
ai−1ai+2(

ai − ai+1(n− i− 1)ηsp
)(
ai+1 − ai+2(n− i− 2)ηsp

) < λ∗,

i = 1, n− 2, z = 0 at ai+1; z = 1 at ai+1;

al − al+1(n− l − 1)ηsp ≥ 0, l = 1, n− 1;

a0 − a1ηsp +
2a2η

2
sp

3
≥ 0.

(10)

Proof: The conditions (4) for an interval polynomial have the form

λi =
ai−1ai+2(

ai − ai+1(n− i− 1)ηsp
)(
ai+1 − ai+2(n− i− 2)ηsp

) < λ∗,

i = 1, n− 2;

al − al+1(n− l − 1)ηsp ≥ 0, l = 1, n− 1;

a0 − a1ηsp +
2a2η

2
sp

3
≥ 0,

(11)

where the notation

ai−1ai+2 = c, (ai − ai+1(n− i− 1)ηsp)× (ai+1 − ai+2(n− i− 2)ηsp) = d

is used in the expression for λi in (11). Similar to the proof of Proposition 1,
we must satisfy the test (11) for the values cmax and dmin. Then, taking into ac-
count the specified intervals of polynomial coefficients, cmax = ai−1ai+2 and dmin =(
ai − ai+1(n− i− 1)ηsp

) (
ai+1 − ai+2 (n− i− 2) ηsp

)
. The symbol ai+1 means that
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the coefficient ai+1 can have both lower and upper endpoints of the corresponding
interval.

To check the two remaining inequalities in (11), it is necessary to assign such values
of the interval coefficients that provide the minimum values of the left-hand sides of

the inequalities, i.e., al− al+1(n− l− 1)ηsp ≥ 0, l = 1, n− 1; a0− a1ηsp +
2a2η

2
sp

3
≥ 0.

The specified inequalities (11) hold for any other values of the interval coefficients.
Hence, if, for ηsp, the conditions (10) are met for the above bounds of the interval
coefficients, they are also true for all the other values from the prescribed intervals.
Therefor, the localization areas of the roots for the interval polynomial are on the
left-hand side of the vertical line passing though the point (−ηsp, j0). This means
that the robust stability degree of the interval polynomial (7) is higher than ηsp. �

Our experience with the solution of the robust stability analysis problem using
Proposition 3 showed that it is quite helpful to specify various combinations of bounds
of the interval coefficients when each condition is fulfilled in inequalities systems. These
combinations form the polynomials

V1(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + a5s

5 + a6s
6 + . . . ,

V2(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + a5s

5 + a6s
6 + . . . ,

V3(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + a5s

5 + a6s
6 + . . . ,

V4(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + a5s

5 + a6s
6 + . . . ,

V5(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + a5s

5 + a6s
6 + . . . ,

V6(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + a5s

5 + a6s
6 + . . . ,

V7(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + a5s

5 + a6s
6 + . . . .

V8(s) = a0 + a1s+ a2s
2 + a3s

3 + a4s
4 + a5s

5 + a6s
6 + . . . .

Each interval polynomial is defined to correspond to a certain vertex Vm, m = 1, 8 of
the interval coefficients polyhedron.

Proposition 4. The maximum estimate (after) η∗ of the robust stability degree of an
interval polynomial (7) is determined as η∗ = min

Vm

ηVm , when the following conditions

are fulfilled:

λiz(η) =
ai−1ai+2(

ai − ai+1 (n− i− 1) η
)(
ai+1 − ai+2(n− i− 2)η

) = 0.465,

i = 1, n− 2, z=0 at ai+1; z = 1 at ai+1;

λjz(η) =
aj−1aj+2(

aj − aj+1 (n− i− 1) η
)(
aj+1 − aj+2(n− i− 2)η

) < 0.465,

j = 1, n− 2, j 6= i, z = 0 at aj+1; z = 1 at aj+1;

al − al+1(n− l − 1)η ≥ 0, l = 1, n− 1;

a0 − a1η +
2a2η

2

3
≥ 0.

(12)
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Proof: For each system (12) with the number m, we increase η and determine the
maximum values of ηVm (taking m-vertex Vm as an index) for which the conditions (12)
are met. Choosing the minimum of the values ηVm gives the maximum estimate η∗ of
the robust stability degree for an interval polynomial, i.e., η∗ = min

Vm

ηVm . �

If a control system has some interval parameters, a design engineer is interested
not only in providing its robust stability. The engineer also is interested in obtaining a
specified robustness quality, e.g., the quasi-maximal robust stability degree that best
moves the root localization area away from the imaginary axis. To synthesize a robust
controller, it is possible to apply the interval approach to the conditions (6).

Proposition 5. The robust controller with the setting k
∗

provides the quasi-maximal
degree of robust stability η∗max in interval system with a characteristic polynomial (7)
if the following conditions are fulfilled

ai−1(k)ai+2(k)(
ai(k)− ai+1(k)(n− i− 1)η

)(
ai+1(k)− ai+2(k)(n− i− 2)η

) = λ∗,

i = 1, n− 2, z = 0 at ai+1; z = 1 at ai+1;

aj−1(k)aj+2(k)(
aj(k)− aj+1(k)(n− j − 1)η

)(
aj+1(k)− aj+2(k)(n− j − 2)η

) < λ∗,

j = 1, n− 2, j 6= i, z=0 at aj+1; z = 1 at aj+1;

al(k)− al+1(k)(n− l − 1)η ≥ 0, l = 1, n− 1;

a0(k)− a1(k)η +
2a2(k)η2

3
≥ 0.

(13)

Proof: It is similar to the proof of Proposition 1. We should only take into account that
it is necessary to consider the larger system of equations determined by the number
of possible combinations of coefficients extremes ai+1(k) and aj+1(k). �

By doing so, the robust controller parametric synthesis that provides the quasi-
maximal degree of the interval system robust stability anticipates the consideration of
the eight vertices of a system parametric polyhedron, in contrast to the four vertices
from Kharitonov’s Theorem that are necessary only for robust stability analysis.

The suggested method of maximizing the system robust stability degree in its
parametric polyhedron vertices is tested when choosing the settings of linear P, PI, or
PID - controllers of interval control systems.

5 A Practical Example

We are given the transfer function of an open-loop system with the unity feedback

WOL(s) =
k1s+ k0

s
· K

c3s3 + c2s2 + c1s+ c0
,

whereK is a fixed transmission factor of the object under control, k0 and k1 are tunable
controller parameters, and c0, c1, c2, and c3 are such interval parameters of controlled
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object that c0 ∈ [0.1, 0.7], c1 ∈ [1.1, 1.5], c2 ∈ [0.45, 0.49], and c3 ∈ [0.07, 0.09]. We
wish to determine PI-controller parameters that provide the quasi-maximal robust
stability degree for the system, assuming that its accuracy is fixed.

First, we write the characteristic equation of the system in the form

a4 · s4 + a3 · s3 + a2 · s2 + a1 · s+ a0 = 0,

where a0(k0) = k0 ·K, a1(k1) = c0 + k1 ·K, a2 = c1, a3 = c2, and a4 = c4.
We suggest determining the controller coefficient k0 on the basis of requirements to

the system accuracy. According to the error classification in [46], k0 can be determined
uniquely from the coefficients of the interval characteristic polynomial of the system
and a required gain-bandwidth [44]. We set the value of the gain-bandwidth as D = 3.
Then

D =
k0K

c0
⇒ k0 =

Dc0

K
=

3 · 0.1
1

= 0.3.

Next, we have to form expressions for the stability indices λi(k, η) according to (13):

λ10(k1, η) =
0.3 · 0.49(

(0.1 + k1)− 1.1 · (4− 1− 1)η
)(

1.1− 0.49 · (4− 1− 2)η
)

=
0.147(

(0.1 + k1)− 2.2η
)(

1.1− 0.49η
) ,

λ20(k1, η) =
0.49 · (k1 + 0.7)(

1.1− 0.45 · (4− 2− 1)η
)(

0.45− (4− 2− 2)η
)

=
0.49 · (k1 + 1)

0.45 · (1.1− 0.45η)
.

Yet, according to Proposition 3, it is necessary to consider a pair of equations, because
values of the coefficients ai+1 and aj+1 in the denominator can take both maximum
and minimum values from their intervals.

λ11(k1, η) =
0.3 · 0.49(

(0.1 + k1)− 1.5 · (4− 1− 1)η
)(

1.5− 0.49 · (4− 1− 2)η
)

=
0.147(

(0.1 + k1)− 3η
)(

1.5− 0.49η
) ,

λ21(k1, η) =
0.09 · (k1 + 0.7)(

1.1− 0.49 · (4− 2− 1)η
)(

0.49− (4− 2− 2) η
)

=
0.09 · (k1 + 1)

0.49 · (1.1− 0.49η)
.

According to Proposition 5, it is necessary to construct systems of inequalities and
find a simultaneous solution for two systems provided that λ10(k1, η) = λ∗. Then the
same should be done for two systems subject to λ20(k1, η) = λ∗.

In the first case, when λ10 (k1, η) = λ∗, we propose to express the desired controller
parameter k1(η) from the equality λ10 (k1, η) = λ∗.

k10(η) = −1.078η2 − 2.469η − 0.206

1.1− 0.49η
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Figure 2: Localization area of system poles

when λ11(k1, η) = λ∗ we have

k11(η) = −1.470η2 − 4.549η − 0.166

1.5− 0.49η

As a result of our transformations, the only unknown variable in the inequality
system becomes η. It is worth noting that η = η∗max.

We determine η∗max = 0.22 by solving the simultaneously obtained inequality sys-
tems. This solution corresponds to the condition λ11(k1, η

∗
max) = λ∗. Therefore, the

value η∗max should be put into the expression that corresponds to the condition on the
controller parameter k1, yielding k1 = 0.787.

Next, using the criterion λ20(k1, η) = λ∗, we examine the corresponding inequality
systems, and they turn out to have no solutions.

To check the accuracy of the settings of the proportional plus reset controller, we
write the interval characteristic polynomial of the system taking into account values
of the controller coefficients:

[0.07, 0.09] · s4 + [0.45, 0.49] · s3 + [1.1, 1.5] · s2 + [0.887, 1.487] · s+ 0.3 = 0.

Figure 2 displays a pole localization area for the system having the above interval
characteristic polynomial. Also, Figure 2 shows that the actual robust stability degree
αr = 0.24 for the system is even higher than the quasi-maximal robust stability degree
η∗max = 0.22 obtained during the parametric synthesis of the robust controller.
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6 Conclusion

The results presented in the article are based on representation of an interval control
system as a multimode system (operation modes are determined by the parametric
polyhedron vertices of an automatic control system). One more basis of the work is the
application of the stability degree of stationary systems to interval automatic control
systems. More precisely, the quality index of the interval automatic control system
is the robust stability degree that determines the maximum transient period of the
automatic control system in its worst mode.

The main result of our work is a new approach to the linear controller parametric
synthesis for multimode systems that maximizes the robust stability degree and de-
creases of the worst transient time. Another important result is the determination of
the parametric polyhedron vertex set for interval automatic control systems, where it
is worth synthesizing the robust controller according to the maximum stability degree
criterion or analyzing the robust stability degree.
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