ЛАБОРАТОРНАЯ РАБОТА 4. РАСЧЕТ КУБОВ СВОЙСТВ

Цель работы:

Провести интерполяцию скважинных данных в межскважинное пространство. *Задачи:*

- 1. Расчет куба литологии.
- 2. Расчет куба песчанистости.
- 3. Расчет куба пористости.
- 4. Расчет куба проницаемости.
- 5. Создание флюидных контактов.
- 6. Расчет геометрических свойств.
- 7. Расчет куба нефтенасыщенности.

Упражнение 1. ФАЦИАЛЬНОЕ (ЛИТОЛОГИЧЕСКОЕ) МОДЕЛИРОВАНИЕ

После перемасштабрования выполняется интерполяция скважинных данных в межскважинное пространство и рассчитываются кубы свойств – фаций, пористости, проницаемости, нефтенасыщенности.

Литологическое, или фациальное моделирование представляет собой моделирование дискретного параметра – фации. К дискретным, относятся количественные признаки, которые могут принимать только отдельные значения, без промежуточных значений между ними. Дискретные признаки, как правило, целочисленные.

Выбор алгоритма моделирования производится геологом исходя из общих представлений об условиях седиментации, с учетом сравнения количественных оценок результатов построения с данными по скважинам. Зоны распространения коллекторов и неколлекторов должны вырисовываться в физически реальную картину, отражающую геологическое строение данного месторождения.

Для большего приближения к реальному объекту используются разные способы влияния на интерполяцию, например создание трендовых параметров. В качестве вертикального тренда обычно используется ГСР, горизонтального – карта песчанистости. Трендовые карты обычно строят по скважинным данным на этапе проведения корреляции разрезов скважин.

Открываем диалоговое окно *Facies modeling* (панель *Process* \rightarrow папка *Property Modeling*).

Во вкладке *Make model* расположены основные настройки для моделирования фаций.

🞯 Facies modeling with 'New mo	odel/3D grid'		×
Make model Hints			
📋 🔘 Create new			
🥒 🥥 Edit existing:	Facies (U)	•	
🖌 🔝 🖬	Status:	Is upscaled	
Common Zone settings	🔲 Global see	d : 2119	?

🕍 Show color table – Открывает окно настроек для фаций.

	Settings	for 'Facies'					×
_₽		-# Ex Ex ^E n	1] ?
	Code	Name	Parent	Background	Lines	Pattern	
	0	Sand		•	•	┸┰┸┰┚╺	
	1	Fine sand		•	•	┸┯┸┯┚╺	
	2	Coarse sand		~	•	┹┯┹┯┛╺	
	3	Shale		~	•	┷┯┷┯┙╺	
	4	Carbonate		•	•	┵┯┵┯┙╺	
	U	UNDEF		v	•	v	
CI	hange se	elected rows					
P	attern:	*	Line o	olor:	_		
			-	Apply	∕ <u>0</u> K	🔀 🗡 Can	cel

Show discrete statistics – Открывает окно статистики для активного свойства.

\Xi Settir	ngs for '	Facies [l	ינע					×	
	Qu	ality attrib	outes			Structura	l analysis		
	Color	s	fx	fx Operations			🗡 Variogram		
🞻 Sty	le 🚹) Info	📙 s	tatistics	D Disc	rete statistics	📕 📙 His	stogram	
8	🛛 🔽 Fi	or zone:		Surf_P2_	top - Surf_P2	bot		- ?	
	-	antu akabir	tine						
Er Er	nie prop	eny statis	sucs.						
Code	Name	%	N	Inte	Min	Mean	Max		
0	Sand	74.30	155	326	0.0 (1)	2.7 (4.75)	17.7 (30)	:	
3	Shale	25.70	537	312	0.0 (1)	1.0 (1.72)	8.4 (15)	0.	
								•	
🌻 Uş	pscaled o	ells stati:	stics:						
Code	Name	%	N	Inte	Min	Mean	Мах		
0	Sand	73.89	236	25	0.7 (1)	5.6 (9.44)	17.7 (30)		
3	Shale	26.11	85	30	0.3 (1)	1.7 (2.83)	8.8 (14)	-	
•				III				- P-	
🛓 w	'ell logs s'	tatistics:							
								_	
Code	Name	%	N	Inte	Min	Mean	Max		
	Sand	74.38	696	28	0.1	5.0	17.6	:	
3	Shale	25.62	245	37	0.0	1.3	8.5		
				m				P	
🍺 Cop	oy to outp	out sheet	: 📝 Lis	t1 🔽 L	ist 2 🔽 List	3 🔲 Reset	E		
						✓ <u>0</u> K	📉 🗡 Can	cel	

Вкладка *Common tab* – содержит общие настройки для моделирования фаций. Вкладка *Zone settings tab* – основной диалог для моделирования фаций. Для доступа в этот диалог нажмите иконку **С**.

В строке *Zones* выбираем зону 1 – *Surf_P2_top* - *Surf_P2_bot* (пласт Р2).

Из списка фаций (левое окно) с помощью голубой стрелки перетаскиваем в правое окно моделируемые фации (в нашем случае – песчаники и глины).

🗊 Facies modeling with 'New model/3D grid'	×
Make model Hints	
🔲 🔘 Create new	
🥖 💿 Edit existing: 🗧 Facies [U]	•
Status: Is upscaled	
Common Zone settings 🕞 🔲 Global seed: 2119	?
Zones: Surf_P2_top - Surf_P2 - I - D - D - D - D - D - D - D - D - D	
Facies: No conditioning to facies. The zone is modeled in one single operation	ation.
Method for zone/facies: Sequential indicator simulation	•
🔁 Facies 🛛 🔂 Settings 💡 Expert 🔞 Hints	
□ 1: Fine sand [0 %] □ 0: Sand [73.89 -> 73.8	9 %]
2: Coarse sand [0 %] 3: Shale [26.11 % -> fr	om trend]
	Ē
	Ē

Для создания вертикального тренда используем диалог *Data analysis*, который открывается нажатием на иконку *Show data analysis dialog*.

Окно содержит вкладки – *Proportion, Thickness, Probability, Variogram*. По умолчанию открывается вкладка *Proportion*.

Вкладка *Proportion* позволяет вычислить в интерактивном режиме количественную вертикальную изменчивость в процентах различных фаций по слоям (layers) в 3D модели.

Вкладка состоит из двух окон.

Левое окно *Estimated facies proportions* показывает долю фаций оцененных из выбранных входных данных (upscaled, logs или property) в одной зоне или всех зон. Над этим окном, расположена таблица с названиями фаций и их процентным

составом. Вы можете выбрать определенный набор фаций для отображения в окне *Estimated facies proportion*. По умолчанию выбираются все фации. Так же можно выбрать для отображения удельный вес в процентах (%) или количество образцов (N).

В правом окне *Proportion curves* отображается гистограмма для выбранных фаций. Вычисленный, процентный состав для каждой фации, отображается в таблице выше этого окна.

В верхней части окон при перемещении курсора по слоям отображаются процентный состав фаций в выбранном слое.

После завершения статистических расчетов по зоне 1 нажимаем *Apply*. Далее, в строке *Zone* выбираем *Surf_P2_bot* - *Surf_T_bot* и рассчитываем вертикальную изменчивость фаций для зоны 2 (пласт T).

🛣 Data analysis with 'New model/3D grid'
Property: 🗧 Facies1 (U) 👻
😫 💽 🗐 🗆 🚡 Decimation Decimated number of data: 10000
Zon Surf_P2_bot - Surf_T_bot
Facies: No conditioning to facies.
荐 Proportion 🗊 Thickness 🗽 Probability 📝 Variograms 🔛 Declustering
% 0: Sand [38.93 %] 2 0: Sand [39.22 %] 3: Shale [61.07 %] 2 3: Shale [60.78 %] 3: Shale [61.07 %] 3: Shale [60.78 %]

Нажимаем ОК.

Для использования полученных зависимостей в качестве вертикальных трендов при моделировании фаций в окне *Facies modeling* нажмите иконку Facies the vertical proportion curves from Data analysis u Use estimated facies proportions from Data analysis.

Перейдите на вкладку *Fraction/trends* и скопируйте в строку *Horizontal* карту песчанистости пласта P2 – *Facies(0: Sand) (Zone P2_top)* из панели *Input*, которую мы будем использовать как горизонтальный тренд при моделировании фаций.

Нажимаем Apply.

Далее, в строке *Zone* выбираем *Surf_P2_bot* - *Surf_T_bot* и аналогично задаем настройки для второй зоны (пласт Т):

Нажимаем иконки 🌆 🗖 для использования вертикального тренда;

В вкладке *Fraction/trends* в строке *Horizontal* копируем карту песчанистости для пласта Т – *Facies(0: Sand) (Zone P2_bop)* из панели *Input*.

😴 Facies modeling with 'New model/3D grid'	📑 Facies modeling with 'New model/3D grid'
Make model Hints	Make model Hints
📴 💿 Create new	🖸 🔘 Create new
🥒 💿 Edit existing: 🗧 Facies1 [U] 👻	🥒 💿 Edit existing: 🗧 Facies1 [U] 🗸 🗸
Status: Is upscaled	Status: Is upscaled
Common Zone settings 🔚 🔲 Global seed: 3356	Common Zone settings Global seed: 3956
Zones 🛛 🗮 Surf_P2_top - Surf_P2_bot 🔹 🔹 📄 📄 🗋	Zones: Surf_P2_bot - Surf_T_bot
Facies: No conditioning to facies. The zone is modeled in one single operation.	Facies: No conditioning to facies. The zone is modeled in one single operation.
Method for zone/facies: Sequential indicator simulation	Method for zone/facies: Bequential indicator simulation
Facies 🔯 Settings 💡 Expert 🔞 Hints	🔄 Facies 🛛 🔂 Settings 💡 Expert 😧 Hints
1: Fine sand [0 %] ○: Sand [73.89 → 73.89 %] ○	I: Fine sand [0 %]
2: Coarse sand [U %] 4: Carbonate [0 %]	2: Coarse sand [0 %] 3: Shale [61.07 -> 61.07 %]
Same variogram for all facies ?	Same variogram for all facies 🕜
Variogram Fraction/Trends	Variogram II, Fraction/Trends
🔽 🔽 Tust fraction/trends	Trust fraction/trends
Global fraction	Global fraction
Upscaled cells 26.11 % # Cells: 80	Upscaled cells 61.07 % # Cells: 407
Manual 2011 %	Well data % # 5 amples: 1552
Trend	
Trends	Trends
Vertical R	Vertical 12
V Inverse X avis	
Thorizontat A Pra Facies(0: Sand 1/Zone P2 top)	Weitzental: A Fitz Facies(I): Sand 1/Zone P2 hot
Volume: Winner 2	Volume:

ОК.

Получаем куб фаций.

Для просмотра вертикального или горизонтального сечения (направление I, J или K) куба фаций, откройте контекстное окно *Grid Property* и в группе *Player*, и нажмите на соответствующий инструмент.

	F	etrel E&P Softwar	re Platform 2015 - (проек	т_2]			Wi	ind. Grid	Ргоре
Petroleum Systems	Decision Support	Structural Med	eling Property Mod	leling Frac	ture Modeling	Production W	ell Design	3D -	0015
Adjust color table	 Upscaled only Property filter 1D filter 		Intersection player	Variogram	 Statistics Discrete statistics Multi-value 	TVT Attribute map map	Calculator	Facies tool palette	E Ser
Color table	Fliter	Players	window 1 (SSTVD)	Analysi	\$	Quality assurance	Uperations 1	Facies edit	Mo
Image: Second	♦ X layer × ► H ►H € ← CP T COJOK		R P P Ary	* • • •		• ✿ • ♪ ∠ • [<i>φ</i>	,

Расчет куба песчанистости

По кубу литологии рассчитывают куб песчанистости, который необходим в дальнейшем для подсчета запасов.

Правым кликом на папке *Property* (панель *Models*) открываем калькулятор. В калькуляторе вводим формулу для расчета коэффициента песчанистости *NG=If(Facies=0,1,0)* и задаем соответствующий шаблон.

		🌐 Property calculator for '3D grid' 💿 📼 💌
		Sw=Kvo/100 Sw=Kvo/100
_		NG=If(Facies=0,1,0)
슜	Models 🗸 🗸 🗖	 Result
Fav	Surf T bot	
orite	🧐 🔲 Edges	
57	🔺 💢 📃 Intersections	NG=Iff Facies=0.1.0)
	💯 🔲 Grid I-direction 1	
ja Be	🛄 📃 Grid J-direction 1	From file:
uts	4 🌐 🛞 Pro	
F	🔁 🔘 💩 Settings	Select variable: Attach new to template NG Net/Gross
Ĩ	$\Phi \bigcirc$ 🔢 Send all to Studio	The facies [0] → Filter templates: → Functions
b	k 🔍 🔛 Retrieve all from Studio	kPER [U] ≡ Geometry
SM	So 💽 🧮 Subscribe	So Kng [U]
		Kvo [U]
	S O E Import (on selection)	Sw O Deg C <
Me	🚄 🔘 🚉 Export object	Grad
Des:	🛄 📿 🔯 E <u>d</u> it global color table	
	VB ○ Color legend ►	Inv Round Sqrt 7 8 9 Or And >
	Delete content	Sin Abs Int 4 5 6 * / >=
μTa	🖻 😹 🔽 Fa	Cos Exp Ln 1 2 3 - (🗘
Ś	🖌 🧮 💆 Zo 📔 Insert new folder	
	🚬 🔛 🕑 🌒 Collapse (recursive)	

Упражнение 2. ПЕТРОФИЗИЧЕСКОЕ МОДЕЛИРОВАНИЕ

С учетом пространственных закономерностей распределения каждой фации, строятся непрерывные кубы пористости, проницаемости и водонасыщенности (нефтегазлнасыщенности), которые должны достоверно воспроизвести пространственное распределение петрофизических свойств для последующего гидродинамического моделирования.

В качестве исходных данных для построения куба пористости используются:

• результаты интерпретации ГИС (РИГИС),

• куб литологии,

• геологические закономерности вертикальной и горизонтальной изменчивости пористости: трендовые карты и кубы, ГСР, гистограммы, полигоны зон замещения и выклинивания разных типов фаций, уравнения зависимостей.

Следует учитывать, что средние значения пористости в ячейках сетки в коллекторе должны превышать граничные значения Кп в коллекторе, определенное по данным ГИС. В неколлекторах значения Кп принимаются условно равными 0 или приравниваются значению меньше Кп.гр.

Кп = 0, или Кп < Кп.гр

Коэффициент проницаемости не является подсчетным параметром. Однако для выполнения последующего гидродинамического моделирования требуется предоставить оценку проницаемости коллекторов по ГИС, показать сопоставимость этого свойства с керном, ГДИ скважин.

Проницаемость по ГИС для гидродинамических расчетов нужна в качестве начального приближения, затем она уточняется гидродинамиками при проведении адаптации фильтрационной модели, исходя из динамических свойств пород и технологических условий добычи УВ.

Для неколлекторов не рекомендуется задавать нулевую проницаемость, т.к. при гидродинамическом моделировании часто выясняется, что, неколлектора хоть и не содержат запасы УВ, тем не менее, участвуют в процессах фильтрации флюидов. В этом случае необходимо чтобы неколлектора имели проницаемость меньше граничной, но больше нулевой.

0 < Кпр < Кпр.гр

Моделирование пористости

Открываем диалоговое окно *Petrophysical modeling* (панель *Process* \rightarrow папка *Property Modeling*).

Во вкладке *Make model* выбираем моделируемое свойство – *POR*, нажимаем иконку *Facies* и задаем соответствующие настройки для разных фаций.

Для моделирования пористости в песчаниках (коллектор) метод моделирования оставляем по умолчанию (*Gaussian random function simulation*), а в качестве горизонтального тренда используем карту пористости, рассчитанную по данным ГИС. Для глин (неколлектор) – задаем значение от 0 до 0,1 (предел коллектора) или всем неколлекторам присваиваем значение Кп = 0.

💋 Petrophysical modeling with 'New model/3D grid'	💋 Petrophysical modeling with 'New model/3D grid'
Make model Hints	Make model Hints
🖸 💿 Create new	Create new
🥖 💿 Edit existing: 🛛 🖞 POR [U] 🗸	🥒 🍥 Edit existing: 🛛 🗘 POR [U] 🗸
Status: Is upscaled	Status: Is upscaled
Common Zone settings 🚡 🔲 Global seed: 11882	Common Zone settings 😭 🔲 Global seed: 11882
Zones: Surf_P2_top - Surf_P2_bot - 🖌 🖌 📄 📄 🗋	Zones: 🚬 Surf_P2_top - Surf_P2_bot 🗸 🖌 🖌 📄 🖹 🗋 🗋
Facies 🗧 Facies (U) 🗸 📃 0: Sand 🗲 🖌 🕨 📄 📄 🗋	Facies: 🗮 Facies [U] 🗸 🔳 3: Shale 🗸 🚺 🕨 🕨 📄 🗐 🗋 💭
n 🔝 🕼 nerring for aussian random function simulation 🗸	Method from Assign values
👷 Variogram 🔨 Distribution 🦉 Trends 💡 Expert 💡 Hints	Settings
Trends by pre/post processing	Assign all values Keep upscaled log values
Trend transformation	
No transform O Scale	
Trend	
Vertical function: 🖹 🏟	
Depth options: Based on layer index	Surrace:
V Inverse X avis	Vertical function:
V Horizontal: V Zone P2_top (PDR)	
Trend combination method: Product or trends	Crimin
Volume:	U Servinc.
Trend is logarithmic	

ОК.

Получаем куб пористости.

Моделирование проницаемости

Открываем диалоговое окно *Petrophysical modeling* (панель *Process* \rightarrow папка *Property Modeling*).

Во вкладке *Make model* выбираем моделируемое свойство – проницаемость, нажимаем иконку *Facies* и задаем соответствующие настройки для разных фаций.

Дл песчаников в качестве тренда можно использовать куб пористости. В глинах – задаем значения от 0 до граничного значения коллектора.

📴 Petrophysical modeling with 'New model/3D grid'	💋 Petrophysical modeling with 'New model/3D grid'
Make model Hints	Make model Hints
📮 🔘 Create new	🚦 🔘 Create new
🥒 💿 Edit existing: 🖈 KPER [U] 🗸	🥒 💿 Edit existing: 🖈 KPER [U] 🗸
Status: Is upscaled	Status: Is upscaled
Common Zone settings 🔚 🔲 Global seed: 28326	Common Zone settings 🖀 🔲 Global seed: 28326
Zones: Same settings for all zones 🔲 Together	Zones: Same settings for all zones 🔲 Together
Facies: 🗮 Facies [U] 🔹 🛄 0: Sand 🔹 🕅 🚺 📄 💼 🛄 🛄	Facies: 🚆 Facies [U] 🗸 🔳 3: Shale 🗸 🖌 🕨 🗈 🗊 🗋 🗋
Image: Second state of the se	Method for zone/facies: III Gaussian random function simulation
🔀 Variogram 🔨 Distribution 🥥 Trends 💡 Expert 🔞 Hints	🔀 Variogram 🔨 Distribution 😹 Co-kriging 🥥 Trends 💡 Expert 😡 Hints
Trends by pre/post processing	
Trend transformation	Seed number
No transform O Scale	▼ Seed: 32611
Trend	Dutruit data range
Vertical function: 😰 🌩	Min: 0 Absolute
Depth options: Based on layer index 👻 🖓	May 02 Absolute
Inverse X axis	Distribution method
🗌 🗆 Horizontal: 🥥 📦	2 Standard 2 Bivariate
Trend combination method: Product of trends	
🗹 Volume: 🌐 🛃 Φ POR [U]	Distribution
Trend is logarithmic	Prom upscaled logs

ОК.

Получаем куб проницаемости.

Упражнение 3. СОЗДАНИЕ ФЛЮИДНЫХ КОНТАКТОВ

Могут быть заданы любые типы контактов – нефть/газ, нефть/вода и т.д. Эти контакты могут задаваться на основании постоянного значения глубины или могут быть представлены поверхностью – 2D гридом. Контакты могут быть различными для различных зон и сегментов. Можно задать несколько наборов контактов, и каждый набор может содержать ряд различных типов контактов.

Все наборы контактов будут храниться в папке Fluid Contacts (панель Models).

Двойной клик на процессе *Make Contacts* в папке *Corner point gridding*.

В появившемся диалоговом окне *Make Contacts with "New model/3D grid"* выделите газонефтяной контакт – *Gas Oil Contact* и удалите его с помощью

пиктограммы *Delete selected contact* (в данной работе будем создавать только водонефтяной контакт).

Теперь выделите *Oil Water Contact*. В поле *All segments* введите абсолютную отметку ВНК -1683 м.

🖪 Make contacts with 'New r	nodel/3D grid'		×
Make contacts Make regio	ns property Hir	its	
🕫 💿 Create new: Contact	set		
🖉 🔘 Edit existing:			-
📕 🚄 Oil water contact	Contact type:	Oil water contact	•
	Contact name:	Oil water contact	
Contact: V Same for all zones	Contract Store Store Populate Store	egments Use regions property	
All segmen	1699		
	1004		
		oply 🗸 <u>O</u> K 🗡 Canc	el

Нажмите ОК.

В данном случае контакт выглядит как плоская поверхность с постоянным значением глубины.

Упражнение 4. ГЕОМЕТРИЧЕСКОЕ МОДЕЛИРОВАНИЕ

Геометрические свойства – это свойства создаваемые использованием определенных заранее переменных параметров системы, таких как *Cell Height* (высота ячейки), *Bulk Volume* (общий объем), *Depth* (глубина), *Above Contact* (высота над контактом). Эти свойства строятся на основе геометрических свойств самих ячеек грида, расстояния до других объектов и т.д. и могут быть важными при подсчете запасов и в математических операциях с петрофизическими свойствами (например, для преобразований водо- и нефтенасыщенности)

Создание геометрического свойства Bulk Volume (общий объем породы)

Двойной клик на процессе Geometrical Modeling в Property Modeling на панели Input.

Для создания нового свойства выберите *Create new*, если требуется перезаписать существующее свойство выберите *Edit existing*.

В строке *Method* выберите *Cell Volume* (рассчитывается общий объем каждой ячейки в 3D гриде).

🕕 Geometrical modeling with 'New model/3D 🔜
Make property
📮 💿 Create new
🥒 🔘 Edit existing: 🔟 Kng [U] 📼
Settings
Method: Cell volume
Property template: V _R Bulk volume -

Нажмите ОК, чтобы сгенерировать свойство.

Создание геометрического свойства Above Contact (высота над контактом)

Двойной клик на процессе *Geometrical modeling*. В диалоговом окне в графе *Method* выбираем *Above contact*. Для задания контакта либо ставим константу, представляющую собой глубину контакта, либо при помощи голубой стрелки перекидываем поверхность контакта (папка *Fluid contacts* \rightarrow *Contact set* \rightarrow *Oil water contact*).

Метод выбираем – *By center of the part of the cell above contact.* Нажимаем *ОК* для создания свойства.

■ Geometrical mode Make property	eling with 'New model/3D 主
Create new	
🥒 🔘 Edit existing:	🔟 Kng [U] 📼
Settings	Regenerate name
Method:	 Above contact
Property template:	<u>↓h</u> Above contact
Constant	-1683
Contact	⇒
By center of who	
By center of the p	part of the cell

Создание геометрического свойства Absolute or Relative Depth

(абсолютная глубина)

Двойной клик на процессе *Geometrical modeling*. В диалоговом окне в графе *Method* выбираем *Absolute or relative depth*. В графе *Property template* оставляем по умолчанию *Elevation general*, еще ниже выбираем *Absolute depth*, *Real coordinates* оставляем по умолчанию, а в самом низу выбираем *Negative depth*. Нажимаем *OK*.

Создание геометрического свойства Contact Set (флюидный контакт)

Эта операция позволяет создать свойство, где ячейкам задается код, исходя из расположения относительно углеводородных контактов.

На панели *Models* кликните ПКМ на *Contact set* (папка *Fluid contacts*) и выберите *Setting*. В появившемся окне откройте вкладку *Operation*.

Выберите Oil zone как код выше контакта, ниже контакта установите – Water

Нажмите *Make Property* и новая модель свойств с именем *Contact set* будет добавлена в папку *Properties*.

Упражнение 5. МОДЕЛИРОВАНИЕ НЕФТЕНАСЫЩЕННОСТИ

Для построения куба водо- (нефтегазо)насыщенности используются зависимости водо- (нефтегазо)насыщенности от коэффициента пористости и высоты интервала относительно ВНК или уровня зеркала воды.

Создание функции между высотой над контактом и нефтенасыщенностью для разных интервалов пористости

Через главную панель инструментов откройте новое окно *Function Window*.

В окне *Function* по оси X отобразите свойство «над контактом», по оси Y – нефтенасыщенность *Kng*, в качестве Z (для раскраски) включите пористость *POR*.

Необходимо рассчитать зависимость между высотой над контактом, нефтенасыщенностью и пористостью.

Для того чтобы информация была только для коллекторов, и только тех, которые выше контакта, используем фильтр – ПКМ на папке *Propeties* \rightarrow *Settings* \rightarrow *Filter*.

Ставим галочку рядом с *Use Value Filter*; выбираем *As normal cells*; а затем поочередно фильтруем по фациям (только для коллектора) и по *Above contact* (минимальное значение должно быть больше 0, например 0.1 или 0.01).

Нажимаем *Apply*.

В результате получим следующее:

Зависимости между абсолютной глубиной и нефтенасыщенностью рассчитываются для разных интервалов пористости (например, 0,24-0,20; 0,20-0,16 и менее 0,16). Поэтому нужно включить фильтр поочередно для выбранных интервалов пористости.

При открытом окне *Function window* нажать на инструмент *Nonlinear Function*.

Choose degree: 2 Axis Min Max Si Dil water cont 0.116821 55.2616 13.627 Kng 0.0399272 0.852804 0.16940 Description Valu 0.39256 Covariance: 0.64326 0.64326 Polynominal fu y = 0.496795 + 0.0043705 * x - 1.87528E-5 * x' Name of funct Kng_vs_Oil_water_conta	Overwrite last Use selected dat	a only		
Dil water cont 0.116821 55.2616 13.627 Kng 0.0399272 0.852804 0.16940 Description Valu Correlation ind 0.39256 Covariance: 0.64326 Polynominal fu y = 0.496795 + 0.0043705 * x - 1.87528E-5 * x' Name of funct Kng_vs_0il_water_conta	Choose degree: 2	Min	Мах	s
Description Value Correlation ind 0.39256 Covariance: 0.64326 Polynominal fu y = 0.496795 + 0.0043705 * x - 1.87528E-5 * x' Name of funct Kng_vs_0il_water_conta	Oil water cont Kng	0.116821 0.0399272	55.2616 0.852804	13.627 0.16940
Correlation ind 0.39256 Covariance: 0.64326 Polynominal fu y = 0.496795 + 0.0043705 * x - 1.87528E-5 * x' Name of funct Kng_vs_0il_water_conta	Description			Valu
	Correlation ind Covariance: Polynominal fu Name of funct	y = 0.496795 + 0	.0043705 * x - 1.8 Kng_vs_Oil_v	0.39256 0.64328 7528E-5 * x' water_conta
	Bounded X avis may	60	¢	crossple

На панели *Input* появится рассчитанная функция. Переименуем ее в *Kng_vs_0.24_0.20*.

Аналогично рассчитываем зависимости для остальных интервалов пористости. После завершения расчетов не забудьте отключить все фильтры.

Расчет куба нефтенасыщенности

В окне 3D отобразите любое свойство, моделирование которого уже завершено, например куб пористости. Открываем диалоговое окно процесса *Petrophysical Modeling*. Нажимаем иконку – *Show property filter*.

💋 Petrophysical modeling with 'New model/3D grid' 🛛 🔯
Make model Hints
📴 💿 Create new
🥖 💿 Edit existing: 🔟 Kng [U] 👻
Status: Is upscaled
Common Zone setting Global seed: 28806
Zones: Surf_P2_top_Surf_P2_tet Show property filter Facies: No conditioning to races: me zone is madeled in one single operation.
Method for zone/facies: # Gaussian random function simulation
🔀 Variogram 🔨 Distribution 😹 Co-kriging 🥥 Trends 💡 Expert 😡 Hints

И в открывшемся окне поочередно включаем фильтр для интервала пористости 0,24-0,20 и для свойства *Above contact* (устанавливаем минимальное значение 0.1 или 0.01). Нажимаем *Applly*.

Settings for 'Properties'		×	🗂 s	ettings for 'F	^o ropertie	s'			×
ញ Composite Qualit	ity attributes	Structural analysis		Composi	te	Quality attribute	s	Structural	i analysis
🖌 🞻 Style 🚯 Info 🚻 St	tatistics 🔂 Operal	tions 🏹 Filter	-	Style 🚺) Info	📊 Statistics	20	perations	🍯 Filter
Upscaled: Always include Use value filter Use visible filters Use visible filters Get limits from selecter Min Ustart Vidth Image filter Index filter Get limits from selecter Min Ustart Vidth Image filter Image filter Image filter Value filter Image filter Value filter Image filter Kro [U] Kro [U] Kro [U] Kro [U] Kro [U] Sow Contact set Elevation general Built volume Image filters Min Peset all filters	(Invert filter (Q20) (Q20 (Q20	t total filter segment/zone filters ocal grid filter away 0-volume cells And/or And And 0.2 0.15 0.1 0.05 0.05 0.0		Jpscaled: All Jse index file Jse value filte Jse visible filt Defined value x filter (128): U (101): U (101): U (101): U (101): C (103): U (101): V (103): V	ways inclu r r r r r r r r r r r r r r r r r r r	de m selected art Width Skip		nvert total filte Jse segment/ Jse local grid Riter away 0-v RAND	rr zone filters filter rolume cells

Во вкладке *Common* (окно *Petrophysical Modeling*) поставьте галочку рядом с *Use filter*.

💋 Petrophysical modeling with '	New model/3D grid'	×
Make model Hints		
💴 💿 Create new		
🤌 💿 Edit existing:	🖄 Kng [U]	•
🖌 🔝 🖬	Status: Is upscaled	-
Common Zone settings 🏹	Global seed: 28806	?
D 🚬 These setting	s are for all zones:	
Use filter (Visible cells only)	ç ?	
Ensure that all cells get a value	e 🕜	
Local model update		
Only overwrite cells	Use union	?

Во вкладке Zone Settings для каждой зоны задайте следующие установки: для неколлектора (Shale) выбрать метод Assign Values (присвоение значений) и Constant=0.

Petrophysical modeling with 'I	New model/3D grid'			
Make model Hints				
📴 🔘 Create new				
🥒 💿 Edit existing:	🖄 Kng [U] 🔹			
🔬 📊 🛣 🎞	Status: Is upscaled			
Common Zone settings 🏹	Global seed: 28806			
Zones: 🔀 Surf_P2_bot - Surf_T_bot 🔹 🖌 🖌 🖌 🕞 🗐 🗋 🗋				
Facies: 🗧 Facies (U) <	3. Shale 📕 🖌 🕨 📄 💼 🗖 🗋			
Metho zone/	od for Assign values			
Settings				
Assign all values in the zone from: I work	p upscaled log values hanged if any			
Undefined				
O Constant:				
Other property:				

Для коллектора выбрать метод, например, *Kriging by Gslib*. В установках для Крайгинга во вкладке *Trends* нужно поставить галочку рядом с *Vertical function* и при помощи голубой стрелки перекинуть функцию из панели *Input*, относящуюся к первому интервалу пористости.

🍘 Petrophysical modeling with 'New model/3D grid'
Make model Hints
Create new
🥕 🐵 Editexisting: 💁 King [U] 👻
🔬 📊 🛣 📰 Status: Is upscaled
Common Zone settings 🚡 📄 Global seed: 11257
Zonex 💐 Surf_P2_top - Surf_P2_bot 🔹 🕅 🚺 🚺 🚺
Facies: 📱 Facies (U) 🔹 🚺 🔊 🔿 🔹 🚺 🕨 🚺 🚺 🗋
n 🕼 👷 Method for 🌐 Kriging (Gslb) 🗸
🛃 Variogram 🔨 Distribution 🥥 Trends 💡 Expert 🥹 Hints
Trends by pre/post processing
Trend transformation
No transform O Scale
Trend
Vetical function 🖉 📦 🗥 Kng_vs_0.24_0.20
Depth options: Based on layer index v 🔽

После нажатия на *Apply* нефтенасыщенность моделируется для соответствующего интервала пористости при помощи соответствующей функции.

Затем, по окончании процесса моделирования первого интервала пористости фильтруем следующий интервал пористости (0.20-0.16), во вкладке *Trends* в окне процесса петрофизического моделирования выбираем следующую функцию (и так для всех зон) – нажимаем *Apply* – переходим к следующему интервалу пористости. И так до тех пор, пока интервалы не закончатся. Когда они закончатся – у вас будет надлежащим образом промоделированное свойство нефтенасыщенности.

Контрольные вопросы

- 1. На чем основано стохастическое моделирование?
- 2. Методы стохастического моделирования?
- 3. На чем основано детерминированное моделирование?
- 4. Методы детерминированного моделирования?
- 5. Способы влияния на интерполяцию.
- 6. Что такое ГСР, для чего он используется?
- 7. Что такое трендовые карты?
- 8. Основные задачи литолого-петрофизического моделирования.
- 9. Как проводят моделирование пористости в коллекторах и неколлекторах?
- 10. Как проводят моделирование проницаемости в коллекторах и неколлекторах?
- 11. Дайте понятие геометрического моделирования.
- 12. С какой целью рассчитывают геометрические свойства?
- 13. По каким данным устанавливают положение ВНК?
- 14. Что называют уровнем зеркала чистой воды?
- 15. Что такое модель переходной зоны?
- 16. Какие зависимости используются для расчета нефтенасыщенности?