Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский Томский политехнический университет»

КАЛОРИМЕТРИЯ ЭЛЕКТРОННОГО ПУЧКА ИМПУЛЬСНОГО УСКОРИТЕЛЯ

Методические указания к лабораторной работе

Томск – 2019

Введение

Цель лабораторной работы – произвести измерения полной энергии электронного пучка, инжектированного в атмосферу, калориметрическим методом.

1. Калориметрия.

Калориметрический способ измерения энергии пучка электронов основан на измерении количества теплоты, сообщенной объекту в процессе воздействия на него излучения.[1]

Классификация калориметров [2]: адиабатические, изотермические (с постоянной температурой), диатермические (с переменной температурой) и проточные (по тепловым условиям измерений и взаимодействию реакционной камеры с внешней средой).

В адиабатических калориметрах теплообмен реакционной камеры (коллектор) с окружающей средой отсутствует (или он минимален). В этом случае калориметр является не проницаемым для тепла. В этих условиях теплота Q выделяемая в калориметре с начала опыта, практически, вся используется для нагревания его содержимого. В конце опыта температура калориметра становится выше начальной. Такой прибор является интегратором, суммирующим все количество теплоты, выделяющееся в нем в ходе опыта.

В изотермических калориметрах теплопроводность калориметра очень велика и теплота не аккумулируется в калориметре, а быстро переходит во внешнюю среду. Разность температур здесь всегда очень мала. В этом методе требуется уже не термометр, а прибор для измерения величины, пропорциональной потоку выделяемой теплоты. О количестве теплоты изотермических калориметрах судят по количеству вещества, изменившего свое агрегатное состояние (плавящееся твердое тело или испаряющаяся жидкость).

В диатермических (с переменной температурой) калориметрах количество теплоты определяется по изменению температуры калориметрической системы. Здесь калориметрический сосуд или коллектор обычно размещают в гнезде, которое находится в среде с измеряемой температурой.

В **проточных** калориметрах тепловой эффект определяется по известным удельной теплоёмкости и массе газа или жидкости, уносящих тепло из реакционной камеры, их разогреву или охлаждении при теплообмене.

В случае регистрации энергии потока заряженных частиц, фактически, производится сравнение значений температуры коллектора калориметра до и после воздействия. Важной характеристикой калориметра является толщина коллектора, так как она обеспечивает поглощение частиц всех энергий конкретного пучка (калориметр полного поглощения). Потерями энергии пучка на генерацию тормозного рентгеновского излучения (1-2%) пренебрегаем.

Дополнительно, материал коллектора выбирается с низким коэффициентом вторичной эмиссии и высоким порогом абляции. Масса коллектора определяет также чувствительность и тепловую инерцию прибора.

Так как процесс генерации электронного пучка имеет стохастический характер, то измерения необходимо проводить минимум 3 раза и каждый раз начинать с одной начальной температуры.

Применяемые в работе способы регистрации температуры: термопарный и тепловизионный.

Рисунок 1. Схема определения эффективности генерации электронного пучка. 1 - катод; 2 - поддерживающая решётка; 3 - мембрана; 4 - гильза катода; 5 - катододержатель; 6 - коллектор калориметра; 7 - пояс Роговского; 8 - ёмкостный делитель напряжения. d – размер катод-анодного зазора.

Расчет полной поглощенной энергии будет производится по следующей формуле:

$$Q = c * m * \Delta T,$$

где с – удельная теплоемкость коллектора калориметра, m – масса коллектора калориметра, ΔT – изменение температуры коллектора калориметра.

2. Определение полной энергии электронного пучка с помощью термопарного калориметра.

Калориметр имеет конструкцию, подробно описанную в [1]. Коллектор калориметра выполнен тем же диаметром, что и коллектор ЦФ и представляет собой медный диск известной массы. К медному коллектору калориметра с помощью сплава Вуда [2] припаян датчик температуры, показания которого передаются на выносной блок индикации.

В качестве датчика температуры и контроллера-измерителя используются TPM1 (измеритель регулятор микропроцессорный одноканальный) и термопарный датчик Cu 50. [3]

Рисунок 2. Внешний вид контроллера измерителя и датчика температуры.

3. Определение полной энергии электронного пучка с помощью тепловизора.

Коллектором калориметра является медная пластина, температура которой определяется с помощью бесконтактных способов измерения температуры (пирометр, тепловизор). Для увеличения коэффициента излучения (ИК) меди, задняя (от пучка) сторона мишени покрывалась черной матовой краской. В лабораторной работе будет использоваться Fluke Ti10. Для обработки тепловизионных изображений применяется программный комплекс, поставляемый с прибором SmartView2.1.[4]

Рисунок 3. Внешний вид тепловизора.

4. Распределение энергии пучка в сечении.

Так как коллекторы калориметров выполнены из металла, металл имеет высокий коэффициент теплопроводности, поэтому показания термограммы не отражают распределение энергии в сечении. В связи с этим, для исключения фактора высокой теплопроводности в нашей лаборатории был разработан секционный калориметр, который позволяет более точно измерить распределение энергии в сечении.

Рисунок 4. Устройство секционированного калориметра.

1 – выпускное окно ускорителя; 2 – фланец выпускного окна; 3 – корпус калориметра; 4 – винт регулировки высоты коллектора; 5 – секционированный коллектор калориметра; 6 – CaF₂ окно; 7 – винт позиционирования тепловизора; 8 – тепловизор.

После серии импульсов электронного пучка тепловое изображение коллектора калориметра фиксируется тепловизионной камерой.

Рисунок	5.	Изображение
температурного	поля	коллектора
калориметра с обоз	начением	и секций.

4.1 Обработка полученных результатов.

Подготовка теплового изображения коллектора

Изображение секционированной структуры коллектора требует приведения к шаблонным значениям местоположения секций. Для этого, изображение кадрируется и поворачивается до совпадения горизонтальных (вертикальных) осей в любом доступном редакторе (Рис. 3, например Paint) и сохраняется в формате пиксельной графики (например, .bmp) с разрешением, удобным для оцифровки (здесь 180х180 пикселей).

Вставить Буфер обмена	П ить Д Изменить размер Повернуть → Изображение Инструменты Инструменты Изменение размеров и наклопа	3) 🔜 🖱 🥂 ∓ IR 86 - Paint	
	Изменить размер	<u>с</u> оздать	Сохранить как
	По горизонтали:	<u>Открыть</u>	осуданение в формате і Сохранение фотографий і изображения, для использ
	 По вертикали: 180 Сохранить пропорции 	Со <u>х</u> ранить	Изобра <u>ж</u> ение в формате J Сохранение фотографий в , для использования на кої
	Наклон (градусы) ↔ По горизонтали: 0	Сохранить как	Изо <u>б</u> ражение в формате і Сохранение любых изобра изображения, для использ
	По вертикали: 0	Сохранить как (F12) Сохранить текущее изображ	кение в формате (ние простого рис)
	ОК Отмена	файле.	сения, для использ

Рисунок 6. Изменение размера изображения

Преобразование изображения в матрицу температурного поля

На этом этапе открываем программу Origin и загружаем файл в формате «bmp». Нажимаем правой кнопкой мыши на открытое изображение и выбираем функцию «Convert to gray». Затем на панельной строке выбираем «View» - «Data mode» и изображение представляется в цифровом формате в восьмеричной кодовой системе, рисунки 7 и 8.

Рисунок 7. Изменение формата отображения обрабатываемых данных

:	File	Edit	View	Plot	Matrix	Image	e Analysis	s Tools	Format	Wind	low Help			
: [) 🖻	🗎 🚵	🔛 🖬	f:) 🙆	2 🖬	; 🔁 🗟 I		→ 123→ 1 Ⅲ Ⅲ ■		1009 😒 🚽	6 🔹 🌐	9 💽 🗄	1 🗾 🗉
E X	- Cha	<u>al</u> :	The De	fault: A	Arial	+ 0	• B	IU.	² x ₂	$\mathbf{x}_1^2 \mathbf{\alpha} \mathbf{\beta}$	A^ A ≣.	III. A -	1	🔊 🗸 🖉
: .	~	- • ·	abc wown		e H		A A1		£	T b	11 - 4		•	
	. 1	Z I	- HONE	G	2 1		지 지 국							
Project Explorer	+ [∕0 [∕⊕ <mark>&</mark>	IB	86.bmp											
2	Ξ,			1	2		3	4		5	6	7	8	9
	÷	1	1	122		123	135	14	8	147	137	133	131	
P	Ţ.	2	2	123		124	131	14	2	150	154	149	139	
lick		3	3	128		132	136	14	1	147	153	153	146	
T	褐	4	1	138		151	151	14	4	139	136	144	157	
ů,	$\langle g \rangle$	5	5	140		151	149	14	0	133	129	138	156	
	T	6	5	134		131	130	12	9	129	130	137	146	
z	1	7	7	135		121	120	12	6	131	137	140	143	
es	7.	8	3	143		129	127	13	3	140	149	151	148	
sag	1	9)	147		134	134	14	2	150	158	160	153	
les	_	10)	141		135	140	14	9	157	163	162	155	
5	_	11		135		136	143	15	4	161	161	158	154	
9	1	12	2	134		139	147	15	5	156	150	149	152	
	6	13	3	135		141	148	15	5	153	143	141	149	
		14	-	131		140	145	15	1	149	142	141	147	
	1	15)	132		135	140	14	7	146	137	135	141	
	-mr	16	5	140		130	129	14	1	141	129	123	126	

Рисунок 8. Цифровой формат представления изображения

Далее удобнее пользоваться функционалом Excel – копируем всю таблицу цифровых данных из Origin и вставляем в таблицу Excel, рисунок 9.

(ら、 (c) ·								-
<u> </u>	Гла	вная	Вставка	Разметк	а страниц	ы Фо	рмулы	Данные	Рецен	нзирование
	Ē,	K Ca	libri	* 11	· A A		= 들 🗞		Переност	гекста
	Вставить	🧹 ж	КЧ		🖏 - <u>A</u> -			• a •	Объедин	ить и поме
Бу	фер обмен	ia 😡	Ц	Јрифт	6			Выр	авнивани	e
	A	2	-	f_x	123					
	A	В	С	D	E	F	G	Н	1	J
1	122	123	135	148	147	137	133	131	127	121
2	123	124	131	142	150	154	149	139	132	131
3	128	132	136	141	147	153	153	146	143	145
4	138	151	151	144	139	136	144	157	163	163
5	140	151	149	140	133	129	138	156	167	167
6	134	131	130	129	129	130	137	146	154	158
7	135	121	120	126	131	137	140	143	148	152
8	143	129	127	133	140	149	151	148	147	149
9	147	134	134	142	150	158	160	153	149	147
10	141	135	140	149	157	163	162	155	150	148
11	135	136	143	154	161	161	158	154	151	148
12	2 134	139	147	155	156	150	149	152	150	145
13	135	141	148	155	153	143	141	149	149	138
14	131	140	145	151	149	142	141	147	143	128
15	132	135	140	147	146	137	135	141	135	119
16	i 140	130	129	141	141	129	123	126	123	118

Рисунок 9. Таблица цифровых данных в Excel

Следующий лист «Настройки» (Рисунок 10) используем для определения границ чувствительности. С помощью этих данных составим формулу чувствительности, который показывает шаг разбиения диапазона данных на шкалу из 256 частей (8 бит).

<u> </u>	· · · · · · · · · · · · · · · · · · ·													
	сумм - 🔹 🛪 🗸 🏂 -МАКС('Исходный до'!А1:FX180)													
	Α	В	С	D	E	F	G	н	- I	J	К			
1			Диапазон шкалы								(Проверка) Диапазон на рисунке			
2		max light	24,9	255		чувст	0,013281			=МАКС('И	С('Исходный до'!А1:FX180)			
3		max dark	28,3	0						37	7 27,7953125			

Рисунок 10. Определение диапазона шкалы

В этом же листе проверяем диапазоны шкал, то есть выявляем максимальное и

минимальное значение шкалы из таблицы «Исходный.

Следующий лист содержит в табличной форме восстановленное температурное поле

коллектора (Рисунок 11), построение диаграммы которого позволяет графически

убедиться в отсутствии ошибок обработки на предыдущих этапах (Рисунок 12).

Рисунок 11 – Температурное поле коллектора

Рисунок 12 – Диаграмма температурного поля коллектора

Детектирование отдельных секций

Медный коллектор состоит из 61 ячейки, каждая ячейка имеет собственную массу. Измеренные значения масс указываем на отдельном листе «Массы», рисунок 13.

			Массы					
			0,550833	0,5765	0,5572			
	0,516033	0,5494	0,5189	0,565167	0,560333	0,547233	0,5473	
	0,5423	0,5564	0,553733	0,531567	0,579067	0,541	0,586367	
0,5241	0,556167	0,502133	0,587167	0,541567	0,5657	0,5452	0,564167	0,5499
0,4839	0,5433	0,559033	0,539233	0,558867	0,535633	0,5557	0,5561	0,5232
0,572367	0,5585	0,588867	0,569733	0,567033	0,5678	0,5527	0,508533	0,5801
	0,5568	0,5598	0,554133	0,5653	0,529233	0,565267	0,5144	
	0,5904	0,505533	0,553167	0,524633	0,565267	0,5642	0,5637	
			0,569267	0,5712	0,569			

Рисунок 13 – Массы ячеек

Для расчета количества тепла каждой ячейки необходимо знать разницу температур. Для этого составляем таблицу 9х9 с усредненными значениями температур каждой ячейки, рисунок 14. Из таблицы температурного поля выбиралась матрица значений температур размером 3х3. Главным критерием выбора матриц является не пересечение с матрицами других ячеек.

D2	-	0	<i>f</i> _x =CP3	ƒ _∗ =СРЗНАЧ('ТемпПоле до'!DD13:DF15)						
А	В	С	D	E	F	G	Н	I.		
			СРЗНАЧ(д	иап ячеек	секции)					
			27,47951	27,3954	27,26701					
	27,43229	27,37326	27,44262	27,32899	27,41606	27,42491	27,28767			
	27,30095	27,30538	27,32457	27,28325	27,33342	27,24488	27,45738			
27,21832	27,41311	27,30833	27,33785	27,60347	27,42934	27,40868	27,38802	27,26111		
27,35113	27,19913	27,32899	27,36589	27,21684	27,21832	27,35556	27,32604	27,1947		
27,2434	27,3408	27,29653	27,41901	27,4559	27,32899	27,24635	27,47509	27,21832		
	27,27292	27,24488	27,30391	27,19175	27,298	27,19323	27,33047			
	27,29653	27,30686	27,39983	27,24783	27,29653	27,14748	27,21684			
			27,23012	27,15191	27,16667					

Рисунок 15 – Среднее значение температур

В конечном счете, для определения количества теплоты или плотности энергии имеются все необходимые данные. Создаем таблицу «Джоули» размерностью 9х9 и по известной формуле (1) заполняем таблицу значениями Q. Теплоемкость материала коллектора учитываем на этом же листе, рисунок 16.

		Q, Дж						
			0,79788	0,793461	0,73239	2		
	0,764477	0,788936	0,738358	0,807082	0,72727	8 0,755667	0,734304	
	0,862237	0,862211	0,884191	0,795642	0,82660	3 0,785173	0,753738	
0,823176	0,850158	0,819199	0,879865	0,741996	0,78920	3 0,753789	0,738343	0,718422
0,711649	0,883273	0,870739	0,820598	0,873019	0,81755	4 0,795458	0,767595	0,743288
0,866142	0,840716	0,925905	0,84047	0,833587	0,79793	9 0,796815	0,659467	0,778641
	0,795767	0,807369	0,764566	0,885317	0,74945	3 0,806583	0,655969	
	0,837079	0,742315	0,768575	0,744728	0,7918	1 0,788072	0,718517	,
			0,773156	0,787789	0,78346	2		
					Суммарн	ная Q	48,34716	
		N		0	P	0	2	
	тепл	поемкост	ь	0,3	85 с, Дж	/(г*градус	;)	

Рисунок 16 – Суммарная энергия

5. Задание к работе

- 1. Описать параметры диагностического оборудования и схему проведения экспериментов.
- 2. Собрать схему генерации электронного пучка и инжекции его в атмосферу.
- 3. Определить чувствительность термопарного и тепловизионного калориметров.
- 4. Получить осциллограммы ускоряющего напряжения, полного тока диода и тока выведенного пучка (усреднённые по 16).
- 5. Измерить полную энергию электронного пучка термопарным Получить калориметром (3 раза). осциллограммы ускоряющего напряжения, полного тока диода (усредненные по каждой серии импульсов).
- 6. Измерить полную энергию электронного пучка тепловизионным калориметром раза). Получить осциллограммы (3 ускоряющего напряжения, полного тока диода (усредненные по каждой серии импульсов).
- 7. Измерить распределение энергии электронного пучка В сечении с помощью секционированного калориметра (3 раза). Получить осциллограммы ускоряющего напряжения, полного тока диода (усредненные по каждой серии импульсов).
- 8. Оформить отчёт. Полосков А.В. poloskow@tpu.ru

6. Оформление отчета по работе.

Отчет должен быть выполнен на компьютере и представлен в напечатанном виде и в формате Word. Он должен содержать следующие разделы.

• Список выполнивших работу.

• Описание схемы эксперимента, параметры диагностического оборудования.

• Осциллограммы ускоряющего напряжения и полного тока диода.

• Значение энергии, переданной электронным пучком за импульс, по показаниям термопарного калориметра с погрешностью.

• Значение энергии, переданной электронным пучком за импульс, по показаниям тепловизионного калориметра с погрешностью.

• Термограммы поверхности коллектора калориметра со шкалой.

• Графическое отображение распределения энергии в горизонтальном сечении.

• Выводы

7. Контрольные вопросы

- 1. Какой вид потерь энергии ускоренного электрона обуславливает нагрев мишени?
- 2. Каким требованиям должен отвечать коллектор калориметра?
- 3. Что определяет чувствительность калориметра?
- 4. Зачем обратную сторону коллектора калориметра красят черной краской?
- 5. К какому типу калориметров относятся калориметры, изученные в лабораторной работе?
- 6. Как определить минимальную толщину медного или алюминиевого коллектора калориметра для вашего режима работы ускорителя ASTRA-M?

Цитируемая и рекомендуемая литература

- 1. Степовик А. П., Хмельницкий Д. В. Диагностика мощных пучков электронов с помощью калориметров полного поглощения // Прикладная механика и техническая физика. 2003. Т. 44, № 262. С. 4–11.
- Кирьянов К.В. Калориметрические методы исследования// Учебнометодические материалы по программе повышения квалификации «Современные методы исследования новых материалов электроники и оптоэлектроники для информационно-телекоммуникационных систем», Нижний Новгород, 2007г.
- 3. Рогельберг И. Л., Бейлин В. М. Сплавы для термопар: Справ. М.: Металлургия, 1983. 360 с.
- 4. Pushkarev A., Kholodnaya G., Sazonov R. et al. Thermal imaging diagnostics of high-current electron beams // Review of Scientific Instruments. 2012. T. 83, № 10. P. 103301.
- 5. I. Egorov, M. Serebrennikov, Yu. Isakova, A. Poloskov, Sectioned calorimeter for quick diagnostic of the electron beam energy distribution, In Nuclear Instruments and Methods in Physics Research Section A: Accelerators,

Spectrometers, Detectors and Associated Equipment, Volume 875, 2017, Pages 132-136, ISSN 0168-9002, https://doi.org/10.1016/j.nima.2017.09.002.