
швшшаввя

108

Cs  С, + С2 + С3 

= 0.1 + 0.05 + 0.025 = 0.175 /uF-1

hence

Cs  =
0.175

= 5.714 juF (Ans.)

Note
The value of Cs is less than the smallest capacitance (10 juF) in the circuit.

6.16 CAPACITORS IN PARALLEL

When capacitors are in parallel with one another (Figure 6 .8(a)), they have 
the same voltage across them. The charge stored by the capacitors in the

fig 6.8 (a) capacitors in parallel and (b) their electrical equivalent 
capacitance

figure is, therefore, as follows 

Qi = C, Vs 

0.2 = c2 vs 
Q3 =C3VS

The total charge stored by the circuit is

Qi + 02 + Q3 = c ,  Vs + C2 VS + C3 Vs = Vs (Ct + C2 + C3)

The parallel bank of capacitors in diagram (a) can be replaced by the single 
equivalent capacitor Cp in diagram (b). Since the supply voltage Vs is
applied to Cp, the charge QP stored by the equivalent capacitance is 

Qp = VSCP
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For the capacitor in diagram (b) to be equivalent to the parallel combi
nation in diagram (a), both circuits must store the same charge when con
nected to Vs- That is

Qp ~ Q\ + 62 + Q3
or

VSCP = VS(C1 + C2 + C3)

when Vs  is cancelled on both sides of the equation above, the expression 
for the capacitance Cp is

CP ~ Ci + C2 + C3

The equivalent capacitance o f  a parallel connected bank o f  capacitors is 
equal to the sum o f  the capacitances o f  the individual capacitors. It is of 
interest to note that the equivalent capacitance o f  a parallel connected 
bank o f  capacitors is greater than the largest value o f  capacitance in the 
parallel circuit.

Example
Calculate the equivalent capacitance of three parallel-connected capacitors 
of capacitance 10, 20 and 40 microfarads, respectively.

Solution

Ci = 10 pF\ C2 = 20 pF\ C3 = 40 pF 

equivalent capacitance, CP = C\ + C2 + C3 = 10 + 20 + 40

= 70 pF (Ans.)

Note
The value of Cp is greater than the largest capacitance (40 pF) in the 
circuit.

6.17 CAPACITOR CHARGING CURRENT

In this section of the book we will investigate what happens to the current 
in a capacitor which is being charged and what happens to the voltage 
across the capacitor.

The basic circuit is shown in Figure 6.9. Initially, the blade of switch S 
is connected to contact B, so that the capacitor is discharged; that is the 
voltage Vc across the capacitor is zero.

You will observe that we now use the lower-case letter v rather than the 
upper case letter V to describe the voltage across the capacitor. The reason
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fig 6.9 charging a capacitor. The blade o f switch S  is changed from 
position В to position A at time t = 0

t  = 0

is as follows. Capital letters are used to describe either d.c. values or ‘effec
tive a.c.’ values (see chapter 10 for details of the meaning of the latter 
phrase) in a circuit. Lower case (small) letters are used to describe instan
taneous values, that is, values which may change with time. In this case the 
capacitor is initially discharged so that at ‘zero’ time, that is, r = 0 , we can 
say that Vq = 0. As you will see below, a little time after switch S  is closed 
the capacitor will be, say, half fully-charged (that is vc  = ^S_). As time pro
gresses, the voltage across C rises further. Thus, vc  changes with time and 
has a different value at each instant of time. Similarly, we will see that the 
charging current, /, also varies in value with time. We will now return to 
the description of the operation of the circuit.

When the contact of switch S is changed to position A at time t = 0, 
current begins to flow into the capacitor. Since the voltage across the 
capacitor is zero at this point in time, the initial value of the charging 
current is

. _ supply voltage — voltage across the capacitor

( ^ - 0)
R

circuit resistance

Vs
R

Let us call this value i0 since it is the current at ‘zero time’. As the current 
flows into the capacitor, it begins to acquire electric charge and the voltage 
across it builds up in the manner shown in Figure 6.10(a).

Just after the switch is closed and for a time less than ST  (see Figure 
6 .10), the current through the circuit and the voltage across each element 
in the circuit change. This period of time is known as the transient period 
of operation of the circuit. During the transient period of time, the voltage 
V(j across the capacitor is given by the mathematical expression

vc  = Vs (1 — e~fl T) volts

I I
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fig 6.10 capacitor charging curves for (a) capacitor voltage, (b) 
capacitor current

steady-state
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where vc  is the voltage across the capacitor at time t seconds after the 
switch has been closed, Vs is the supply voltage, T  is the time constant of 
the circuit (see section 6.18 for details), and e is the number 2.71828 
which is the base of the natural logarithmic series.

... ,  •' v- 1

I
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For example, if the time constant of an RC  circuit is 8 seconds, the 
voltage across the capacitor 10 seconds after the supply of 10 V has been 
connected is calculated as follows

vc  = 10(1 -  e~ l°ls) = 10(1 -  e~ 1A25)

= 10(1 -  0.325) = 6.75 V

The curve in Figure 6.10(a) is described as an exponentially rising curve.
During the transient period, the mathematical expression for the 

transient current, i, in the circuit is

i = Io e~ t/T

where / 0  is the initial value of the current and has the value

The curve in Figure 6.10(b) is known as an exponentially falling curve.
After a time equal to 5T  seconds (57’= 5 x 8 = 40 seconds in the above 

example) the transients in the circuit ‘settle down’, and the current and 
the voltages across the elements in the circuit reach a steady value. The 
time period beyond the transient time is known as the steady-state period.

As mentioned above, T  is the time constant of the circuit, and it can be 
shown that after a length of time equal to one time constant, the voltage 
across the capacitor has risen to 63 per cent of the supply voltage, that is 
Vq = 0.63 F5. The charging current at this instant of time is

. _ ( Vs — voltage across the capacitor)
1 R

_ ( t 's  — 0.63_Fg) _ 0.37 Vg = 0  37 /q

R R

This is illustrated in Figure 6.10. That is, as the capacitor is charged, the 
voltage across it rises and the charging current falls in value.

On completion of the transient period, the voltage across the capacitor 
has risen practically to Vs , that is the capacitor is ‘fully charged’ to voltage 
K5. At this point in time the current in the circuit has fallen to

. _ (P's — voltage across C) 
R R

Thus, when the capacitor is fully charged, it no longer draws current from 
the supply.

I I I
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6.18 THE ТШЕ CONSTANT OF AN R C CIRCUIT

For a circuit containing a resistor R  and a capacitor C, the time constant, 
T, is calculated from

T  = RC  seconds

where R  is in ohms and C is in farads. For example, if R = 2000 Cl and 
C= 10 pF, then

T = RC=  2000 x (10 x 10"6) = 0.02 s or 20 ms

If the supply voltage is 10 V, it takes 0.02 s for the capacitor to charge to 
0.63 VS = 0.63 x 10 = 6.3 V.

The time taken for the transients in the circuit to vanish and for the 
circuit to settle to its steady-state condition (see Figure 6.l0ds about 5T  
seconds. This length of time is referred to as the settling time. In the above 
case, the settling time is 5 x 0.02 = 0.1 s.

6.19 CAPACITOR DISCHARGE
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While the contact of switch S in Figure 6.11 is in position A, the capacitor 
is charged by the cell. When the contact S is changed from A to B, the 
capacitor is discharged via resistor R .

Whilst the capacitor discharges current through resistor R, energy is 
extracted from the capacitor so that the voltage Vc across the capacitor 
gradually decays towards zero value. When discharging energy, current 
flows out of the positive plate (the upper plate in Figure 6.11); that is, 
the current in Figure 6.11 flows in the reverse direction when compared 
with the charging condition (Figure 6.9)..-------------------------------------------

fig 6.11 capacitor discharge. The blade o f switch S is changed from 
A to В at time t = 0

The graph in Figure 6.12(a) shows how the capacitor voltage decays 
with time. The graph in diagram (b) shows how the discharge current rises 
to a maximum value of 22̂ 5. at the instant that the switch blade is moved I

I l I I i I -I (
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fig 6.12 capacitor discharge curves for (a) capacitor voltage, 
(b) capacitor current

0-7T T 5Г  time

to position В (the negative sign implies that the direction of the current is 
reversed when compared with the charging condition); the current then 
decays to zero following an exponential curve.

The mathematical expression for the voltage vc  across the capacitor at 
time t after the switch blade in Figure 6.11 has been changed from A to В 
is

vc  = Vce*/T  v°lts

where Vc  is the voltage to which the capacitor has been charged just 
before the instant that the switch blade is changed to position B. The time
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constant of the circuit is T -  RC (T  in seconds, R  in ohms, C in farads), 
and e = 2.71828. The expression for the discharge current is

/ =  -  Y c e - ^
R

Once again, it takes approximately 5T  seconds for the transient period 
of the discharge to decay, during which time the current in the circuit and 
the voltage across the circuit elements change. When the steady-stage 
period is reached, the current in the circuit and the voltage across R  and 
C reach a steady value (zero in this case, since the capacitor has discharged 
its energy).

Theoretically, it takes an infinite time for the transient period to dis
appear but, in practice, it can be thought of as vanishing in a time of 5T.

6.20 TYPES OF CAPACITOR

Capacitors are generally classified according to their dielectrics, for 
example, paper, polystyrene, mica, etc. The capacitance of all practical 
capacitors varies with age, operating temperature, etc, and the value 
quoted by the manufacturer usually only applies under specific operating 
conditions.
Air dielectric capacitors Fixed capacitors with air dielectrics are mainly 
used as laboratory standards of capacitance. Variable capacitance air 
capacitors have a set of fixed plates and a set of moveable plates, so that 
the capacitance of the capacitor is altered as the overlapping area of the 
plates is altered.
Paper dielectric capacitors In one form of paper capacitor, shown in 
Figure 6.13, the electrodes are metal foils interleaved with layers of paper 
which have been impregnated with oil or wax with a plastic (polymerisable) 
impregnant. In the form of construction shown, contact is made between 
the capacitor plates and the external circuit via pressure contacts.

In capacitors known as metallised paper capacitors, the paper is metal
lised so that gaps or voids between the plates and the dielectric are avoided. 
Important characteristics of this type when compared with other ‘paper’ 
types are their small size and their ‘self-healing’ action after electrical 
breakdown of the dielectric. In the event of the paper being punctured 
when a transient voltage ‘spike’ is applied to the terminals of the capacitor 
(this is a practical hazard for any capacitor), the metallising in the region 
ot the puncture rapidly evaporates and prevents the capacitor from deve
loping a short-circuit.
Plastic film dielectric capacitors These use plastic rather than paper 
dielectric and are widely used. The production techniques provide low


