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and VCO. The output of the phase detector goes to a low-pass filter to remove higher- 
frequency components. The output of the low-pass filter, which is the output of the 
system, changes the frequency of the VCO such that the difference between the input 
and the VCO is reduced. This process continues until the input and the VCO have 
the same frequency. At this point, we say that the PLL is locked or is in phase 
lock. There is a difference between the phases of the input and VCO that produces 
an error voltage that keeps the PLL locked.

If the input to the PLL shown in Fig. 5.36 is an FM signal, then the output is the 
demodulated signal. In addition to FM demodulation, the PLL has numerous other 
practical applications. For some of these, the output of the VCO is the output of the 
system. Under this circumstance, the connection between the VCO and the phase 
detector is the feedback element.

Although the concept of the PLL was originated by British scientists in 1932, its 
utilization for most applications was economically unfeasible until its appearance as 
an integrated-circuit (IC) package in the 1970s.

5.5 The Laplace Transform

In Section 5.4 we saw that the transfer function HO) for a linear circuit or system 
is a ratio of polynomials in the complex-frequency variable s [see Equations (5.9) 
and (5.10)]. Such a circuit or system characterization was obtained by considering 
forced responses to damped sinusoids. Although this may seem like a very restrictive 
characterization, we will now see how we can generalize it so that complete re­
sponses to arbitrary inputs can be obtained without the need for writing and solving 
differential equations.

In order to accomplish this, the transformation of circuits from the time domain 
to the frequency domain will not be done by using phasors (for the sinusoidal case 
or the damped-sinusoidal case), but instead will be done with the use of a more 
sophisticated mathematical transformation—the Laplace transform.

Definition of the Laplace Transform

Given a function of time fit), we define its Laplace transform4—designated either
i£[fit)] or F(s)—to be

(5.12)

'Named for the French mathematician Marquis Pierre Simon de Laplace (1749-1827).
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where s = a  + jut. Because the lower limit of the integral in the definition of the 
Laplace transform is zero, the Laplace transform treats a function /(f) as if f(t) = 0 
for t < O s. Consequently, we will consider only such functions.

Example 5 . 1 1

Recall the unit step function u{t) defined by 

ft) for t <  0 s
u(t) = 1 for f > Os

Then the Laplace transform of a unit step function is

££[«(f)] =  u{t)e~st dt
Jo

= f  e~st d t=  -  -e~ "
Jo s

= - ~ ( o  -  1) =  -
о s s

For the decaying exponential e a'u(t), where a > 0, we have that

%[e~a,u(t)] = | e~atu(t)e~st dt = | e~(s+a)‘ dt

~(s + a)t

s + a
1 <o -  l) = 1

s + a s +  a

I

Drill Exercise 5.11

Determine the Laplace transform of the function /(f) =?. (1 — e a,)u{t). 

ANSW ER a /(s2 +  as)

Properties of the Laplace Transform

Although the Laplace transform of a function /(f) may be obtained by using the 
defining integral Eq. 5.12, sometimes it is more convenient to use some of the 
properties of this transform. We will now derive some of the more useful properties.
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If /(f) =  fi(t) + f 2(t), then

/•00 /*00

Ш т =  f(t)e~sl dt =  [/КО +  / 2(f)]<T“  dt 
Jo Jo

- f[fi{t)e~s‘ + f 2it)e -s‘] d t=  f\it)e~st dt +  / # ' * Л

з д « ]  +  m m \ (5.13)

In other words, the Laplace transform of a sum of functions is equal to the sum of 
the transforms of the individual functions.

If К  is a constant, then

/•00 /*00

Ш Ш  =  Kf(t)e~st dt = K \  f{t)e~sl dt = K£[f{t)] 
Jo Jo

In other words, if a function is scaled by a constant, then the Laplace transform of 
the function is scaled by the same constant.

The properties of the Laplace transform given by Eq. 5.13 and Eq. 5.14 collec­
tively are referred to as the linearity property of the Laplace transform. We also 
say that the Laplace transform is a linear transformation.

Example 5.12

Let us find the Laplace transform of f(t) — 3(1 — e~ll)u(t). 
Since we can express this function in the form

f i t )  = (3 -  3e~2,)uit) = 3u(t) -  S e^ 'u it)  = flit)  +  / 2(f)—21.

Now recall ^

/6eJ — cos

Replacing 0 b

e je =  cc

Since cos(—0)

e = cc.

By adding Eq.

cos 0 =  (£

and by subtract

sin 0 =  (

As we will no 
of sinusoids.

where /[(f) =  Suit) and / 2(f) = — Se 2'w(f). Then by the linearity property of 
Laplace transform

З Д * )]  =  £[Su{t)} +  i£ [ -3 e _2rM(f)] =  3i£[M(f)] -  3££[<Г2,и(г)]
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Oral! Exercise 5.12

Find the Laplace transform of e~â ‘~ l)u(t).

ANSWER ea/ ( s  +  a)

Now recall Euler’s formula (see p. 193) 

c'6 = cos 0 +  j  sin 0 

Replacing 0 by -0 ,  we get

e~j9 = cos(-0 ) +  j  s in (-0 )

Since cos(-0) = cos 0 and sin(—0) =  —sin 0, then 

e~j9 = cos 0 — j  sin 0 

By adding Eq. 5.15 and Eq. 5.16, we get 

cos 0 = (e79 + e~je) /2

and by subtracting Eq. 5.16 from Eq. 5.15, we obtain 

sin 0 =  (<r'9 -  e~fi) /j2

(5.15)

(5.16)

(5.17)

(5.18)

As we will now see, Eq. 5.17 and Eq. 5.18 can be used find the Laplace transforms 
of sinusoids.

Example 5.13

For the case that /(f) =  cos (3t u(t), then

££[cos (3f u(t)] =  ££ ~(e3 ‘ + e ^ ')u ( t) - !£ \e ^ ‘u{t) +  e jiitu(t)]

=  ^ [ A ( 0 ]  +  \ ^ [ e ~ 3 tu(t)]
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Just as r£[e alu(t)] =  l / ( j  +  a), so too £[e Ja'u(t)\ = 1 / (s  + ja ). Therefore,

££[cos u(t)] =
1/ 1 + 1/ 1

2\ s ~  jfi  2V  + jfi
1 s + j$  + s -  j$
2 (5 -  3 ) ( s  +  ;P )

s2 +  P2

Drill Exercise 5 .13  . V- ■ . i ЩШШ  1

Find the Laplace transform of f(t)  =  sin Br u(t). Ifl I f
ШШ

___ ____  „ 2 . л?л-ANSW ER P/(,2 + p2)

Differentiation

Another property of the Laplace transform involves the derivative of a function. 
Specifically,

2 dfit)
dt dt

■e~s’ dt = e —-— dt
dt

We may employ the formula for integration by parts:

и dv =  uv v du

By selecting и =  e st and dv =  [df(t)/dt\dt = df(t), we have that

du -se st dt and v =  f it)

Thus,

£
d m

dt
e~atm f( t ) [ - s e - st]d t = 0 - / ( 0 )  +  s [  f(t)e~st dt

0 do Jo

-до) + sm m  = -до) + ms)
И ip
I where df(0)/dt is
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This result is known as the differentiation property of the Laplace transform.

In order to find !£[d2f(t) /  dt2], we can apply the differentiation property twice to 
obtain

2
d2m
dt1

d m
dt

-  5/(0) + 52ЗД )]

where df(0)/dt is the derivative of /(f) evaluated at t = 0 s.
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Formulas for the Laplace transforms of higher-order derivatives can be obtained 
by repeated applications of the differentiation property.

Complex Translation

Another important property of the Laplace transform is obtained as follows: Suppose 
that F(s) =  [/(/)]. Then

r£[e~atf{t)} = I e~a,f{t)e~s' dt =  f  f(t)e~ (s+a)' dt =  F (s +  a)
Jo Jo

In other words, SE[e~a,f(t)] can be obtained from i£,\f{t)]—simply replace each s in 
i£[f(t)] by 5 + a. This result is referred to as the complex-translation property of 
the Laplace transform.

Example 5.15
Since ££[n(t)] = F(s) — l/v , then by the complex-translation property

!£[e~atu(t)] =  F(5 +  a) =

Furthermore,

s + a

s ------ al _ . . .  s +  a
i£[COS pf n(/)] = 2  ̂ r\2 => & ie a‘ COS Pt M(0 ] =

S +  p (s + a )2 + p2

Also,

££[sin p t u(t)] = 2 q2 
S + P

£[e~ a‘ sin pt n(0] =
(s +  a)2 + P2

I
Щ§. t{  i]

. ■ B f a"4 Щт ,
Complex

г '-Щ:: Given tha

) ’

; \■t Ь  l
ds

Thus,

%[t№

(4 44 and this is k)

Ш.



and this is known as the complex-differentiation property of the Laplace transform

Since !£[e a'u(t)] = 1 / ( s  + a), then

2 [te~a,u(t)] = -  4  1
d s \s  + a (s + a)

Setting a = 0, we get 

%[tu(t)] = l / s 2

яяш ш м яш ш ш яш т вт ш

DrilS Exercise 5.16

Use the complex-differentiation property to determine the Laplace transform of

ANSWER 2/ о  +  a)

A summary of some of the properties of the Laplace transform, as well as the 
;■ transforms of some important functions, is given in Table 5.1.
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Table 5.1 Table of Laplace Transforms

f(t) Property F(s)---------- ,------------------

f it ) Definition
fCO

f(f)e~st
Jo

dt

fi(t) + / 2 (0 Linearity F ,(s) + fL )

m ) Linearity *F(j)

df(t)
dt

Differentiation jF(j) -  /(0)

d2m
dt2

Differentiation s2F(s) -  sm  -

/ (0  *  
Jo

Integration - ms

t m Complex differentiation
d¥(s)

ds

e~a,f(t) Complex translation F(s 4- a)

f{ t  — a) u(t -  a) Real translation e~asF(s)

u(t)
1

e~a,u(f) 

cos (3f u(t) 

sin (3r u(t) 

e~at cos (3r u(t) 

e~al sin (Jr u(t) 

t u(t) 

te~a,u(t)

1
s + a 

s
s2 + p2

P
52 + p2

.y +  a

(* + a)2 + P2
P

(5 +  a )2 +  p 2
J_
52

1
(s + a)2
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5.6 Inverse Laplace Transforms

Given a function F(s), in order to determine the function fit)  such that i£[/(t)] = 
F(s), we must take the inverse Laplace transform of F(s)—which is denoted as 
2T'[F(5)] = /(r). Although this can be done with the use of a mathematical formula, 
such an approach requires the use of advanced mathematics. Therefore, we will take 
inverse Laplace transforms instead by inspecting the table of Laplace transforms (see 
Table 5.1) to see what function/(r) has the Laplace transform F(v). If F(v) is not in 
the table, we will decompose it into functions that are in the table or are readily 
obtainable by using the properties of Laplace transforms.

Just as the Laplace transform is a linear transformation, so too the inverse Laplace 
transform is a linear transformation. Specifically, if F(s) =  F,(v) + F2(v), then

r lms)] =  <T‘[F ,(5) + F2(s)] = i£- 1[F1(s)] + % ~ 1IF 2(S)]

Furthermore,

Г ' Т О ]  = K X ~ l [F(s)]

Example 5.17

Let us determine/^r) given that its Laplace transform is

ш т  =  f ^ v) =  -
145 +  23

5Z + 45 + 5

By completing the square for the denominator, this function can be written in the 
form

Fi (s) =
145 +  23 _  14(5 +  2) -  5

(5  +  2)2 +  l 2 _  (5  +  2)2 +  l 2

14(5 +  2)_________ 5(1)
(5  +  2)2 +  l 2 (5 +  2 )2 +  l 2

Since the inverse Laplace transform of a sum is equal to the sum of the individual 
inverse Laplace transforms, by using Table 5.1, we get

fi(t)  = Me ъ  cos t u(t) -  5e Zfsin t u(t) =  e Zf(14 cos t -  5 sin t)u(t)
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Next let us find f 2(t) given that its Laplace transform is

« и ™  -  "  T T ir h

In this case the denominator cannot be put into the form (s + a)2 + (32, where a 
and (3 are real numbers. However, it is true that—and we will see why shortly—

F2(s)
14s +  23 3 11

+
s2 +  5s +  4 5 +  1 5 +  4

(5.19)

If the degr 
that is. tb"

Therefore, from Table 5.1, the inverse Laplace transform of F2(s) is 

f 2(t) = 3 e~‘u(t) +  11 e~A,u{t) =  (3e~‘ + \ \e ~ 4t)u{f)

■ .
If we set s

Dries Exercise 5 ,1 7

Determine the inverse Laplace transform of ■
‘ У - Щ Ш Ж

2s +  26
s2 + 65 +  25

ANSW ER e“ 3'(2 cos 4/ +  5 sin 4t)u(t)
1Й 1 et cetera.

Partial-Fraction Expansions

In Example 5.17, Eq. 5.19 indicates that F2(s) can be expressed as the sum of two 
functions, each of which is in the form of a function in Table 5.1. There is a sys­
tematic method for decomposing a function into a sum of simpler functions—such 
a decomposition is called a partial-fraction expansion, and we now describe a 
procedure for obtaining it.

Suppose we are given a function F(j ) =  N(j)/D (\), where N(s) and D(j ) are 
polynomials in s with real coefficients. If the roots of D(j ) are s1; s2, s3, . . . s„, we 
can write F(.s) in the form
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F(J) =
N(5) = _______________ N(5 )_______________
D(s) (s -  s,)(s -  s2)(s -  s3) • ■ ■ (s -  sn)

(5.20)

If the degree of D(s) is greater than the degree of N(5), and if the roots of D(s)— 
that is, the poles of F(s)—are distinct, then we may write

Ki K2 K3 
F(j) = -----—  + ---- —  + -----—  + +

K„
s ~  s„S — Si S — S2 s — s3

I  To find Ki, first multiply both sides of Eq. 5.21 by s -  S\. This yields

Kn{s -  5j)

(5.21)

и  -  =  к ,  +  +
s — s2 s — s3

If we set s = then this equation becomes

+
s -  sn

(s -  Si)F(s)

Similarly,

(* ~ i2)F(5)

et cetera.

=  K\

=  K2

Example 5.18 

Let us take the partial-fraction expansion of

1two ■ 'ФШщ. &
> »“
1 h
e a
“I

e
we J

m 2s2 +  П 5  +  19 Ki
+

K2 K3 
+  3

(s +  l)(s +  2 )(s +  3) 5 + 1  5 +  2 5 +  3

Multiplying this expression by s +  1 and then setting 5 =  —1, we get
8

Ш

Ki =
2s2 +  115 +  19
(5  +  2 )(5 +  3) S=~ 1

2(—l)2 +  l l ( - l )  +  19 
( - 1  +  2)(—1 +  3)
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Multiplying FO) by s +  2 and then setting 5 =  —2, we obtain

K-, =
2 s2 +  l b  +  19
0  + 1)0 +  3) s— —2

Finally,

К ,

Hence

2 r  +  l b  +  19
0  +  1)0 +  2) s = — 3

2(—2)2 + 11 (—2) + 19 
( - 2  + 1)(—2 + 3)

2(—3)2 +  11(—3) +  19 
( - 3  +  l ) ( - 3  +  2)

m  =
5 2

+
5 + 1  5 + 2 5 + 3

Ш Ш Н

and from Table 5.1, the inverse Laplace transform of FO) is

f(t)  = 5e~'u(t) -  5e~2tu{i) +  2e~3luit) -  (5e_f -  5e~2' +  2e~3t)u(t)

ш яш ш яяяааш ш ш ш яяш ш ш ш яш аш вш аяяаааяяаяяш ш ш ш ш

OrsM Exercise-5ЛД 

Determine the inverse Laplace transform of 

600
53 + 4052 + 3005

ANSWER (2 -  Зе~10г +  e~30t)u(t)

Multiple and Complex Poles

In Example 5.18, the function FO) has poles that are both distinct and real. In 
general, however, the poles of FO) can be nondistinct or complex—occurring in 
conjugate pairs. Although there are formal procedures for taking partial-fraction ex­
pansions for these cases as well, we will study only circuits or systems whose com­
plexity is such that we may deal with these cases by utilizing the technique for 
distinct, real poles.
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and from Table 5.1, we get that

/ 2 ( 0  =  —3u(t) +  Se~‘ cos 21 u(t) +  14e- 's in  21 u(t)

■
I

Ш

Drill Exercise 5.20

Determine the inverse Laplace transform of

145 -  50
5 3 + 6 /  +  25s

ANSW ER - 2 u(t) +  2e~3'cos  At u(t) +  5e~3's in  At u(t)

5.7 Application of the Laplace Transform

One very important application of the Laplace transform is to the solution of differ­
ential equations.

Example 5.21 ШЯШЮ И М Ш Н Ш «nHHgj|gw£ ни

Suppose that we wish to solve the linear, second-order differential equation 

d2x(t) „dx(t)
- j p -  +  3 +  2x(t) = Ae u(t) (5.22)

subject to the initial conditions x(0) =  2 and dx(0)/dt =  —1. Taking the Laplace 
transform of this differential equation, if we let X(s) =  Z£[x(r)], then

s2X(s) -  sx(0) -
dt

+ 3[jX(s) -  x(0)] +  2X(j )
5 +  3

from which

s2X(s) -  2s +  1 +  ЗлХ(5) -  6 +  2X(5) =
5 + 3
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Therefore,

9 , 4 ,  2s2 + l b  4- 19
(s +  3s +  2)X(j) — — ;—г +  2s +  5

and hence

m  =
(s + l)(s + 2)(j +  3)

By Example 5.18, the solution to Eq. 5.22 subject to the given initial conditions is 

x(t) = (5e~' -  5e-2' +  2e~3,)u(t)

Щ
Ls

We then define t
tra

DriH Exercise 5.21

Find the solution of the differential equation

Ш  +  8^  + 1Э Д  =  0
d r  dt

subject to the initial conditions x(0 ) =  0  and dx(0)/dt =  - 1 2 . 

ANSW ER (3e~6' -  3e~2‘)u(t) (See Drill Exercise 3.12 on p. 155.)

(a) Time domain 

Fig. 5.37 Resistor

For an indue ч

Taking the Lap- c 

V(s) = L[sb 

from which

Application to Circuit Analysis

Of course, we can write the differential equation or equations that characterize a 
circuit and then use Laplace transforms to solve such equations. However, we can 
avoid writing differential equations if we employ Laplace-transform (frequency- 
domain) concepts directly. Let’s see how this is done.

For a resistor having a value of R ohms, we know that

v(t) = Ri(t)

For the case o f . j 

V(j) = Lrl(s
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The time-domain circuit symbol for an inductor is shown in Fig. 5.38a, whereas Fig. 
5.38b shows the circuit symbol in the frequency domain when the initial current is 
zero. For the case that the initial current is not necessarily zero, the parallel connec­
tion shown in Fig. 5.38c models the frequency-domain description given by Eq. 5.24. 
Note that if z(0) = 0 A, then the model in Fig. 5.38c is equivalent to the one in 
Fig. 5.38b.

m
s

I ( s )
Z L(s) = Ls

V(i)

К»
r 6 h

Ls
-Ы5$^

V(f)

(b) Frequency domain— (c) Frequency domain—
nonzero initial currentzero initial current

Fig. 5.38 Inductor circuit symbols.

For a capacitor having a value of C farads, 

,dv(t)
i(t) =  C-

dt

Taking the Laplace transform, we get

The circ 
with zero

uit syrr 
and n

C ■

(a) Time doi I .
main

Fig. 5.39 Cape- 1

Since 
and capaci 
analysis ti 
functions

we havi 
tors as 

:echni i 
rather i

L a

У,(()~ 14«(t)

1(5) = C[sV(j) -  v(0)] = CsV(5) -  CKO)

from which

(5.25)

Vis) =  ~~ 1 (5) +  ^  
Cs s

(5.26)

The impedance Z c (s) of the capacitor (for zero initial voltage) is

I d s )
Vis) ^  1 
1(5) Cs

Fig. 5.40 A

1 .
h ( {}
seric

domain.
[i ! ij "Л 

]
be a 
simr

■

or

I! У
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1:. The circuit symbols for a capacitor in the time domain and the frequency domain,
1 with zero and nonzero initial conditions, are shown in Fig. 5.39.

f;
i 1 Pi;.;-

' ... уШ■IH  c
z c(J)= p r 

1(0 Cs
! K0)

а д  c s  '
• Ш|й; If ~ 1 1 —  и  - ГГЛ

-  И - +  П - +  1 '  V (0 -
1 : vto V(j)

• ' " f
- H i (a) Time domain (b) Frequency domain— (c) Frequency domain—

. fr- zero initial voltage nonzero initial voltage

f.
I I|; .V

Fig. 5.39 Capacitor circuit symbols.

Since we have the same expressions for the impedances of resistors, inductors, 
and capacitors as we had for the damped-sinusoidal case, we can use the same circuit 
analysis techniques—the difference being that we use the Laplace transforms of time 
functions rather than their phasor representations.

Example 5.22

pil4u(t)

Suppose that the series RLC circuit shown in Fig. 5.40a has zero initial conditions. 
Let us find the step response v{t).

(a) Time domain

v(r) Vf(f) =  -  
8 s

(b) Frequency domain

Fig. 5.40 A series RLC circuit (a) in the time domain, and (b) in the frequency 
domain.

Ц ; Figure 5.40b shows the circuit in the frequency domain. Of course this circuit can 
be analyzed by using either mesh analysis or nodal analysis. However, even more 
simply, by voltage division we can write

4 s )  =
50 s

50 s +  s +  2
V i5 ) =

50 / 14^
s + 2s +  50\ 5

or
i
S:tя



= 3s/(s +  3). Find
! ' V o v . ,

Я Р " ® *

11. The Laplace transform is a linear transforma­
tion that can be used to solve linear differential equa­

tions or analyze linear circuits.

|| Problems

5.1 Sketch the phase response ang(V2/V i) versus 
в for the high-pass filter given in Fig. 5.5 on p. 269.

5.2 For the circuit given in Fig. 5.5 on p. 269, 
I  replace the capacitor C with an inductor L, and sketch

the phase response ang(V2//v ,)  versus w for the re- 
Ц i l  suiting low-pass filter.

5,3, Sketch the amplitude response of У2/У  i for the 
op*amp circuit shown in Fig. P5.3. Determine the half­
power frequency. What type of filter is this circuit?

12. The inverse Laplace transform can be found 
by using a table of transforms and various trans­
form properties, as well as partial-fraction expan­
sions.

13. The impedance of an Я-ohm resistor is R, of an 
L-hcnry inductor is Ls, and of a C-farad capacitor is
lies.

14. An inductor (or a capacitor) with a nonzero ini­
tial condition can be modeled by an independent 
source and an inductor (or capacitor) with a zero ini­
tial condition.

15. Circuit analysis using Laplace transforms re­
sults in complete (both forced and natural) responses.

!

Jill
Я
Уails

i -tatty factor are meas» 
rlitude response.

expressed as a function . 
f can other parameters - *, 
t n.

a ratio of polynomials 
ane with a pole-zero

!

Fig. P5.3

5,4 Show that for the circuit given in Fig. P5.4 the 
voltage transfer function is

| L = b = _____ n » + > а ,с ,> _____
■ n  V, (S, + fe) + J»S|ffj(Ci + C2)

Fig. P5.4

5 .5  For the circuit shown in Fig. P5.4, suppose 
that Ri = R2 = R and C, = C2 = C. Sketch the 
amplitude response and the phase response of 
V 2/ V 1.

5 .6  For the circuit shown in Fig. P5.4, suppose 
that Ri = R2 = R, С, = C and C2 = 0 F. Sketch 
the amplitude response of V2/V |. What is the half­
power frequency?

5 .7  For the circuit shown in Fig. P5.4, suppose 
that R\ — R2 = R. C\ “ OF and C2 = C. Sketch 
the amplitude response of V2/V i. What is the half­
power frequency?

5 .8  For the op-amp circuit shown in Fig. P5.8, 
sketch the amplitude response of У2/У ь indicating 
the half-power frequency. What type of filter is this 
circuit?
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If only the forced response of an ac circuit is of interest,5 Laplace transform 
techniques can be avoided by taking the simpler phasor-analysis approach discussed 
in Chapter 4. In particular, for this circuit see Example 4.4 on p. 204.

Drill Exercise 5.24

For the circuit given in Fig. 5.42, replace the i-F  capacitor with a ±-H inductor. 
Use Laplace transform techniques to determine i(t) and va(t).

ANSWER [3<T2' -  3 cos 2t + 3 sin 2t]u(t) A,
[ - 3 e -2' +  3 cos 2t + 3 sin 2t]u(t) V

Application to Linear Systems

Suppose that the input to a linear system has a Laplace transform of XU), and 
suppose that the Laplace transform of the output, given that all the initial conditions 
are zero, is YU). Then the transfer function HU) of the system is defined to be

If the transfer function of a linear system is known, then when the input is specified, 
the output transform can be determined from the equation

YU) =  H U )X U )

Taking the inverse Laplace transform of YU) yields the corresponding output у(t) in 
the time domain.

Example 5.25

Consider a low-pass filter with a voltage transfer function of

1 V2U) 3
H U )

V,U) 5 +  3 я

The natural response is negligible after just a few time constants— in this example the time constant is |  s.



Taking the inverse Laplace transform of I gives us
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Drill Exercise 5.25

A high-pass filter has the voltage transfer function H(s) =  3s /(s  + 3). Find 
the output voltage v2(/) when the input voltage is vj(t) =  2е~ъ,и(() V.

1
ANSW ER (6e - 3 1 18f<T3'M 0  V

1. The frequency response of a circuit consists of 
the amplitude response and the phase response.

2. The frequencies at which the amplitude re­
sponse drops to l /V 2  of its maximum value are the 
half-power frequencies.

3. The frequencies at which an impedance (or ad­
mittance) is purely real are the resonance frequencies 
of the impedance (or admittance).
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and zeros, the pc 
the form of the 1

8. A linear sys 
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puter).

9. Systems are 
grams.

10. Feedback 
can be used for pi
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5.1 Sketch the :
Щ1': « for the high-pass

Щ i ■ 5.2 For the ci—
.B f replace the capac : 

the phase response 
suiting low-pass fill

4. The bandwidth and the quality factor are meas­
ures of the sharpness of an amplitude response.

5. An impedance can be expressed as a function 
of the complex frequency s, as can other parameters 
like the voltage transfer function.

6. The poles and zeros of a ratio of polynomials 
in s can be depicted in the s plane with a pole-zero 
plot.

5.3 Sketch the 1 

op-amp circuit show 
power frequency. У

5.4 Show that fr-  
voltage transfer fui

HOto) = ^  = _  
V, ->
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V2 -  У! V 2 “  2A 2 +

s/ 2 8 / 5

-16V ! -  (s2 +  16)V2 =  25 +  8 (5.28)

Using Cramer’s rule to solve simultaneous Eq. 5.27 and Eq. 5.28 results in

y 2  =

5 + 1 0
- 1 6

- 5
25 +  8

5 + 1 0
- 1 6

- 5
5Z +  16 

(5 +  10)(25 +  8) -  80 4 - 2
+

(5 +  10)(52 +  16) -  160 5 +  2 5 +  8
■ 'ьш

Since V = V2, then

v{t) =  4e 'u(t) — 2e~&,u(t) = (4e 2r — 2e V

and this is an example of an overdamped natural response (see Example 3.12 on p. 
153).

£»
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“л

-

Zikb-:

if

Ф  =
6 sin 2 tu(t)

Fig. 5.42 A
domain.

Drill Exercise 5.23

Determine v(t) for the series RLC circuit shown in Fig. 5.41 when R = 4 ft, 
L -  1 Ft, and C =  i F subject to the initial conditions v(0) = 2 V and 
/(0) =  1 A. (See Example 3.15 on p. 163.)

ANSW ER (2e 2‘ +  8te 2‘)u(t) V

Circuits with Sinusoidal Sources

In Chapter 4 we saw how to find forced sinusoidal responses by using phasors. We 
will now see an example of how to determine the complete response to a sinusoidal 
source (which is zero for t <  0 s) by using Laplace-transform techniques.



. I  Шщего Initial Conditions

Having analyzed a circuit with zero initial conditions, let us now consider the case 
Щ of a circuit with nonzero initial conditions. In the following examples, we will sim- 

I plify the notation by replacing Vi(s), V2(s), and V(s) with Vb V2, and V, respec-

: ~  28 
2s + 50

Example 5.23 ш т т т & ш т ш т т .

Suppose that we wish to find v(t) for the series RLC circuit shown in Fig. 5.41a 
subject to the initial conditions v(0) =  2 V and г(0) =  1 A.

o f  the  resistor 
s te p  response

K g  W

Fig. 5.41 A series RLC cirpuit (a) in the time domain, and (b) in the frequency 
domain.

In the frequency domain, the circuit is as shown in Fig. 5Alb. Here, the initial 
voltage across the capacitor is modeled with an independent voltage source, and the 
initial current through the inductor is modeled with an independent current source. 
Note that the voltage (transform) V that is to be determined is the voltage across the 
series combination of the |-F  capacitor and a voltage source having a value of 
у(0)Д = 2/s . Although two node voltages Vt and V2 are indicated in Fig. 5.41b, 
note that V2 = V.

Summing the currents directed out of the node labeled V1; by KCL, we get

v  P'

a- 'тШЖШт
ш

V, V, -  V2 1
-1  + 4—1— 4 + - = о
5 | s / l  s

(s + 10)V! -  10V2 = - 5  (5.27)

By KCL at the node labeled V2, we obtain
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V(s) =  2 , T  , ^  =  — + F(s)s(s +  2s +  50) s

where

K0 = s \( s )
700

s = 0 s2 +  2s +  50
=  14

s= 0

Thus

F(s) = \ ( s )  -  —
700 14 — 14i -  28

s s(s +  2s +  50) s s +  2s +  50

Hence

V(5) =  -
s

14

14s +  28 
s2 +  25 +  50

14(s +  1)_________________
(,s +  l)2 +  72 (s + l)2 +  72

14 _  14s +  28
5 (s +  l)2 +  72

(2)(7)

Therefore, from Table 5.1, the inverse Laplace transform of V(X) is

v(t) = 14и(г) — 14e~' cos I t  u(t) — 2e~' sin I t  u(t)

=  [14 — e~f(14 cos I t  + 2 sin 4t)]u(t) V

and this is the complete response—i.e., forced and natural responses—for an under­
damped series RLC circuit. (See Example 3.17 on p. 170.)

Drill Exercise 5.22
иаявма

For the series RLC circuit shown in Fig. 5.40, change the value of the resistor 
to 16 fit, change the value of the inductor to 2 H, and find the step response 
v(f) when yg(t) — 6u(t) V. (See Drill Exercise 3.17 on p. 172.)

Pa*'
A N S W E R  [6 -  e 4f(6 cos 3/ +  8 sin 3t)]u(t) V
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