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F ig u re  4.20 The series R L C  circu it and its m echanical analog.

Taking the derivative with respect to time, we have

r d2i(t) , n di(t) 1 dv,(t)
dt2 dt C dt

Dividing through by L, we obtain

d2i(t) R d i ( / )
dt2

uu 1 V r t -  ld V 'M  
+ L dt + L C ! L dt

Now we define the damping coefficient as

R
a =

2 L

and the undamped resonant frequency as

(4.58)

(4.59)

(4.60)

two =
V l c

The forcing function is

Using these definitions, Equation 4.59 can be written as

d2i(t) di(t) , 2>/^
+ 2a—;---- b (DqI (t) =  f{t)

dt2 dt

(4.61)

(4.62)

(4.63)

This is a linear second-order differential equation with constant coefficients. Thus 
we refer to circuits having two energy-storage elements as second-order circuits. 
(An exception occurs if we can combine the energy-storage elements in series or 
parallel. For example, if we have two capacitors in parallel, we can combine them 
into a single equivalent capacitance, and then we would have a first-order circuit.)
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4.5.2 Mechanical Analog

The mechanical analog of the circuit is shown in Figure 4.20b. The displacement 
x of the mass is analogous to electrical charge, the velocity dx/d t is analogous 
to current, and force is analogous to voltage. The mass plays the role of the 
inductance, the spring plays the role of the capacitance, and the damper plays the 
role of the resistance. The equation of motion for the mechanical system can be 
put into the form of Equation 4.63.

Based on an intuitive consideration of Figure 4.20, we can anticipate that the 
sudden application of a constant force (dc voltage) can result in a displacement 
(current) that either approaches steady-state conditions asymptotically or oscil­
lates before settling to the steady-state value. The type of behavior depends on 
the relative values of the mass, spring constant, and damping coefficient.

4.5.3 Solution of the Second-Order Equation

We will see that the circuit equations for currents and voltages in circuits having 
two energy-storage elements can always be put into the form of Equation 4.63. 
Thus let us consider the solution of

where we have used x(t) for the variable, which could represent either a current 
or a voltage.

Here again, the general solution x(t) to this equation consists of two parts: a 
particular solution xp(t) plus the complementary solution xc(t).

Particular Solution. The particular solution is any expression xp(t) that satisfies 
the differential equation

forcing function^ For dc sources we can find the particular solution directly from 
the circuit by replacing the inductances by short circuits, replacing the capacitances 
by open circuits, and solving. This technique was discussed in Section 4.2. In 
Chapter 5 we will learn efficient methods for finding the forced response due to 
sinusoidal sources.

x(t) = xp{t) + xc(t) (4.65)

(4.66)

The particular solution is also called the forced response.
We will be concerned primarily with either constant (dc) or sinusoidal (ac)
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Complementary Solution. The complementary solution xc(t) is found by solving 
the homogeneous equation, which is obtained by substituting 0 for the forcing 
function f{ t) . Thus the homogeneous equation is

d2xc{t) dxc{t) 2 ^
— —5----1- 2a— ------1-a)0xc(t) = 0

at^ at
(4.67)

In finding the solution to the homogeneotis equation, we start by substituting 
the trial solution xc{t) = AV'cThis yields

s2Kest +  2asKest + o&Ke*  =  0 (4.68)

Factoring, we obtain
(s2 + la s  +  a>l)Kest =  0 (4.69)

Since we want to find a solution Kest that is nonzero, we must have

s2 + 1 as +  col =  0 (4.70)

This is called the characteristic equation. 
The damping ratio is defined as

? = (Do
(4.71)

The form of the complementary solution depends on the value of the damping 
ratio. The roots of the characteristic equation are given by

it =  - «  +  yj>o r  — COZ

and

\[°S2 = —a — a2 — col

(4.72)

(4.73)

We have three cases depending on the value of the damping ratio t; compared to 
unity.

1. Overdamped case (f  > 1). If f > 1 (or equivalently, if a  > a>o), the roots 
of the characteristic equation are real and distinct. Then the complementary 
solution is

xe(t) = K\es'1 +  K2eS2t

In this case we say that the circuit is overdamped.

(4.74)
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2. Critically damped case (p =  1). If f  =  1 (or equivalently, if a — щ ), the 
roots are real and equal. Then the complementary solution is

xc(t) =  KieSl‘ + K2teS1’ (4.75)

In this case we say that the circuit is critically damped.
3. Underdamped case (p < 1). Finally, if i; < 1 (or equivalently, if a < «о), the 

roots are complex. (By the term complex, we mean that the roots involve the 
imaginary number V —I.)  In other words, the roots are of the form

il =  —a +  jcon and s2 — —a — jcon 

in which j  — v^-T and the natural frequency is given by

On =  /« о (4.76)

(In electrical engineering, we use j  rather than i to stand for the imaginary 
number V —1, because we use i for current.)

For complex roots, the complementary solution is of the form

xc(t) = K\e cos(cont) + K2e sin(w„f)

In this case we say that the circuit is underdamped.

(4.77)

Example 4.5  A dc source is connected to a series RLC  circuit by a switch that closes at t =  0
......................  as shown in Figure 4.21. The initial conditions are г (0) =  0 and uc (0) =  0. Write

the differential equation for vc(t). Solve for vc(t) if R — 300,200, and 100

Solution First we can write an expression for the current in terms of the voltage across the 
capacitance.

,dvc (t)
i(t) =  C-

dt
(4.78)

figu re  4.21 The circu it fo r Exam ple 4.5.
/ = 0

k = 10 V
6

-УЮ Ч— W r
10 mH

vc (t)

i(0) = 0 vc (0) = 0

гя
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Then we write a KVL equation for the circuit:

di(t)
dt

+  Ri(t) +  vc {t) = Vs

Using Equation 4.78 to substitute for i(t), we have

Lc f ^ l  + R C ^ l
dtdt2

Dividing through by LC, we have

+  vc(t) =  Vs

d2vc (t) ' R dvc (t) l  Vs
dt2 + L dt + L C Vc^ ~ L C

(4.79)

(4.80)

(4.81)

As expected, the differential equation for vc (t) has the same form as Equation 
4.64. i

Next, we find the particular solution. Sinfce we have a dc source, we can find 
this part of the solution by replacing the inductance by a short circuit and the 
capacitance by an open circuit. This is shown in Figure 4.22. Then the current is 
zero, the drop across the resistance is zero, and the voltage across the capacitance 
(open circuit) is equal to the dc source voltage. Thus the particular solution is

vcp(0 =  V, =  10 V (4.82)

(It can be verified that this is a particular solution by substituting it into Equation 
4.81.) Notice that in this circuit the particular solution for vc(t) is the same for all 
three values of resistance.

Next we find the homogeneous solution and general solution for each value 
of R . For all three cases we have

1
too =

V l c
104 (4.83)

Figure 4.22 The equivalent 
c ircu it fo r F igure 4.21 under 
s teady-state conditions. The 
inductor has been replaced 
by a short c ircu it and the ca­
pacitor by an open circuit.
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Case I (Л =  300 Я)
In this case we have

S ec tio n  4 .5  S econd-O rder C ircu its

R
a = —  =  1.5 x 104 

2L

1 8 5

(4.84)

The damping ratio is f =  a/«o =  1.5. Because we have f  > 1, this is the 
overdamped case. The roots of the characteristic equation are given by Equations 
4.72 and 4.73. Substituting values we have

5i =  - a  + yfi*1 ШК

= -1 .5  x 104 -  л/(1.5 x 104)2 -  (104)2 

=  -2.618 x 104

and

52 — —a — J a 2 — w{ 

= -0.3820 x 104

Щ  
m
m  

I .  
1

,  L

The homogeneous solution has the form of Equation 4.74. Adding the par­
ticular solution given by Equation 4.82 to the homogeneous solution, we obtain 
the general solution

vc (t) =  10 +  K\esi‘ +  K2eS1' (4.85)

Now we must find values of K\ and K2 so the solution matches the known ini­
tial conditions in the circuit. It was given that the initial voltage on the capacitance 
is zero.

vc ( 0 ) = 0

Evaluating Equation 4.85 at t — 0, we obtain

10 +  Ki + K2 = 0 (4.86)

Furthermore, the initial current was given as г(0) =  0. Since the current 
through the capacitance is given by

we conclude that

i(t) = C
dvc (t)

dt

dvc ( 0)
dt

=  0

Taking the derivative of Equation 4.85 and evaluating at t — 0, we have

—s\K\ — 52^2 =  0 (4.87)
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Differentiating Equation 4.89 and substituting t =  0 yields

s iK i  +  t f 2 =  0 (4 .91)

Solving Equations 4.90 and 4.91 yields K\ — —10 and Kj =  —105. Thus the 
solution is

vc (t) =  1 0 -  W 1' -  10V 1' (4.92)

Plots of each of the terms of this equation and the complete solution are shown 
in Figure 4.24.

Case Ш  (R =  100 £2)
For this value of resistance we have

a  =  —  =  5000 (4.93)
2 L

Because f =  а /щ  — 0.5, this is the underdamped case. Using Equation 4.76, we 
compute the natural frequency.

a)„ =  yJwQ — a2 = 8660 (4.94)

The homogeneous solution has the form of Equation 4.77. Adding the partic­
ular solution found earlier to the homogeneous solution, we obtain the general 
solution.

vc (t) =  10 +  K\e~at cos(<u„0 +  Кгё~м sin(«y„t) (4.95)

As in the previous cases, the initial conditions are ac(0) =  0 and dvc (0)/dt = 0. 
Evaluating Equation 4.95 at t — 0, we obtain

.
10 +  Кг = 0 (4.96)

.

■AtV

V

F ig u re  4.24 Solution for R =  200 £2.
Voltage
; (V)
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F ig u re  4.25 Solution fo r R = 100 Q.

Differentiating Equation 4.95 and evaluating at t = 0, we have

—ceK\ +  conK2 = 0 (4.97)

Solving Equations 4.96 and 4.97, we obtain K\ = -1 0  and Кг — -5.774. Thus 
the complete solution is

i>c(0 =  10 -  lOe cos(cont) -  5.774e sin(a>nr) (4.98)

Plots of each of the terms of this equation and the complete solution are shown 
in Figure 4.25.

Figure 4.26 shows the complete response for all three values of resistance.

F ig u re  4.26 Solutions fo r all three resistances.
vcd) 15 
(V)

10

R = 100 n

/  R -  200 fii

/ /  R-  
/

= 300 0

0 0.2 0.4 0.6 0.8 1.0
t (ms)
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Figure 4.27 A unit step 
function u(t). For t < 0, 
u(t) = 0. For t > 0, u(t) = 1.

4.5.4 Normalized Step Response of Second-Order Systems
When we suddenly apply a constant source to a circuit, we say that the forcing 
function is a step function. A unit step function, denoted by u(t), is shown in 
Figure 4.27. By definition, we have

u(t) =  0 t < 0

=  1 t > 0

For example, if we apply a dc voltage of A volts to a circuit by closing a switch, 
the applied voltage is a step function.

v(t) — Au(t)

This is illustrated in Figure 4.28.
We often encounter situations, like Example 4.5, in which step forcing func­

tions are applied to second-order systems described by a differential equation of 
the form

d2x(t) dx(t)
dt2

+  2 a -
dt

+ <x>q x(t) — Au(t) (4 .99)

The differential equation is characterized by its undamped resonant frequency <uo 
and damping ratio £ =  a/coo. [Of course, the solution for x(t) also depends on the 
initial conditions.] Normalized solutions are shown in Figure 4.29 for the initial 
conditions x (0 )  =  0  and x'(0) =  0.

Figure 4.28 Applying a dc voltage by closing a switch results in a forc­
ing function that is a step function.

t = o

■ H

v(l) = Au(t) 

A --------

1



1 9 0 C h a p te r  4 T ran sien ts

F ig u re  4.29 Norm alized step responses for 
second-order system s described by Equation 
4.99 w ith dam ping ratios of $j =  0.1, 0.5, 1, 2, 
and 3. The initia l conditions are assum ed to  be
* (0 )  =  0 and * '(0 )  =  0.

The system response for small values of the damping ratio £ displays overshoot 
and ringing before settling to the steady-state value. On the other hand, if the 
damping ratio is large (compared to unity), the response takes a relatively long 
time to closely approach the final value.

Sometimes we want to design a second-order system that quickly settles to 
steady state. Then we try to design for a damping ratio close to unity. For example, 
the control system for a robot arm could be a second-order system. When a step 
signal calls for the arm to move, we probably want it to achieve the final position 
in the minimum time without excessive overshoot and ringing.

4.5.5 Circuits with Parallel L and C

The solution of circuits having an inductance and capacitance in parallel is very 
similar to the series case. Consider the circuit shown in Figure 4.30a. The circuit 
inside the box is assumed to consist of sources and resistances. As we saw in 
Section 2.6, we can find a Norton equivalent circuit for any two-terminal circuit 
composed of resistances and sources. The equivalent circuit is shown in Figure 
4.30b.

We can analyze this circuit by writing a KCL equation at the top node of 
Figure 4.30b. This results in

dv(t) 1 ч
С ^ Г  +  R Vm  +

r

I P
f ■

I;  ■



This equation has exactly the same form as Equation 4.64. Therefore, transient 
analysis of circuits with parallel LC elements is very similar to that of series LC 
circuits. However, notice that the equation for the damping coefficient a is dif­
ferent for the parallel circuit (in which a = 1/2RC) than for the series circuit (in 
which a. =  R/2L).

F ig u re  4.30 Any circu it consisting of sources, resistances, and a parallel LC 
com bination can be reduced to the equivalent c ircu it shown in (b).

v(t)

Circuit 
of

resistances 
and

sources 
__________ __

T

---------- i ------------ »

► 1 ?
1 w

(a) (b)
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EXERCISE 4.9 Consider the circuit shown in Figure 4.31 with R =  25 fi. 
(a )  Compute the undamped resonant frequency, the damping coefficient, and 
the damping ratio, (b ) The initial conditions are u(0—) =  0 and «T(0—) =  0. 
Show that this requires that i/(0+) =  106 V/s. (c) Find the particular solution for 
v(t). (d ) Find the general solution for v(t), including the numerical values of all 
parameters.
Ans. (a )  wo — 10s , a = 2 x 105 and £ =  2; (b ) KVL requires that ic(0) = 
0.1 A =  Cv'(0), thus i/(0) =  Ю6; (c )  vp(t) = 0; (d ) v(t) = 2.89(e-°-268x105' -
e -3.73xl<A)

EXERCISE 4.10 Repeat Exercise 4.9 for R =  50 £2.
Ans. (a )  wo =  105, a  =  IQ5 and f  =  1; (b ) KVL requires that i'c(0) =  0.1 A  = 
Cv'(0), thus i/(0) =  Ю6; (c ) vp(f) =  0; (d ) v(t) = 106te~lo5‘.
EXERCISE 4.11 Repeat Exercise 4.9 for R =  250 £2.
Ans. (a )  wo =  105, a =  0.2 x  105 and f  =  0.2; (b ) KVL requires that 
j'c(0) =  0.1 A =  0 /(0 ) ,  thus v'(0) =  106; (c) vp(t) = 0; (d ) v(t) = 10.21e- 2x104' 
sin(97.98 x  103f).

PSpice and other programs derived from SPICE are capable of performing tran­
sient circuit analysis. For example, with transient analysis, we can easily produce 
plots of the step response oi RLC  circuits, even those that are too complex for 
practical manual analysis. PSpice can also readily analyze the transient response 
of nonlinear electronic circuits, including amplifiers and logic circuits. We consider 
these applications later in the book.

After running a transient analysis with PSpice, waveforms of currents and 
voltages can be displayed or plotted using a program called Probe. Output for 
Probe is requested by including the statement

in the PSpice program. After the analysis is completed, the Probe program is exe­
cuted, and the results are observed using menu commands. Free student versions 
of both PSpice and Probe are available for a variety of computers.

In addition to the dc sources that we learned how to specify in Section 2.9, 
we can specify several types of time-varying sources, three of which are described 
next.

4.6  TRANSIENT ANALYSIS WITH PSPICE AND PROBE

. PROBE

F ig u re  4.31 C ircu it fo r Exercises 4.9, 4.10, and 4.11.

L = 1 mH C = 0.1 |lF


