
Nuclear Physics A509 (19YO) 800-822 

North-Holland 

COHERENT ELECTROMAGSETIC EXCITATION AND DISINTEGRATION 

OF RELATIVISTIC NUCLEI PASSING THROUGH CRYSTALS 

AA. SHIROKOV and S.A. VOROBIEV 

Nuclear f/yics Insrirure, 634150 Tomsk, P.O. Box 25, USSR 

Reccivcd 17 June 1988 

(Rcbised 21 July 1989) 

Abstract: The energy dependence of electromagnetic excitation and electromagnetic disintegration cross 

sections for relativistic nuclei passing through crystals is invcsti~atcd both thcorctically and bj 

means of computer simulation. For electromagnetic excitation, resonant peaks are found at detinite 

energy values. An increase ofelcctromagnctic excitation and disintegration cross sections in crystals 

at very high energies is found to be due to coherent addition of amplitudes. ?lumcrical results 

are presented for the electric dipole excitation of fluorine nuclei and electromagnetic deuteron 

disintegration. 

1. Introduction 

Besides nuclear reactions, hea\:y-ion collisions lead to electromagnetic excitation 

(EE) or electromagnetic disintegration (ED) of nuclei. These phenomena have been 

studied in detail both experimentally and theoretically at non-relativistic energies ‘) 

and now are under study at high energies 2-4) on the new heavy-ion accelerators, 

with ion energies up to 200 GeV/nucleon. Both the developed theory and experi- 

ments usually deal with the interaction of relativistic nuclei with amorphous targets. 

Recent experiments at GANIL :) have shown the possibility of relativistic nuclei 

channeling in crystals. Relativistic channeling has been previously studied for rr 

and K mesons, electrons and positrons and leads to various new effects, e.g. 

channeling radiation “) and pair production ‘) in the electric fields of the crystal 

planes or axes. Channeling of the positively charged particles is, as is known (see 

e.g. ref. “)), motion along specific trajectories between the crystal planes or axes. 

Nuclear collisions with small impact parameters are suppressed at channeling, 

therefore a relative increase of the electromagnetic channel of the nucleus-nucleus 

interactions at high energies should be expected. Since the electric field of the crystal 

is periodic, it has to affect the EE and ED processes in a specific way, as compared 

to an amorphous target. 
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Let us consider qualitatively the possible effects in the electromagnetic excitation 

of relativistic nuclei passing through a crystal. The periodic potential of the crystal 

can be represented in the form: 

~(r)=C~(r-r,)=_ee-‘k”~k, (I) 
a k 

where k = (2&/u,, 2nm/a,, 27rn/a,) is a reciprocal lattice vector and CI,, a,, u, are 

the lattice periods. Let us consider the case when the relativistic nucleus penetrates 

through the crystal along the straight-line trajectory r(r) = I.J. 1, where u is the mean 

velocity of the nucleus. The electromagnetic scalar and vector potentials appearing 

in the rest frame of the nucleus depend on the time t’ through exp [ir(n. k)t’], 

where y = (I -/I’) L” and fl= u/c. It follows immediately, under the condition 

(2) 

where wg is the transition frequency between the nuclear levels, that resonant 

excitation may occur. In this case the amplitude of the process becomes proportional 

to the number N of atoms along the trajectory of the nucleus in the crystal and the 

excitation probability becomes proportional to the square of the number of atoms 

N’. Below we denote this process as the coherent resonant excitation (coherent but 

non-resonant excitation is considered in sect. 3). In addition to the condition (2) 

one should require /‘&I’ # 0 and we obtain, for example, for a monoatomic crystal 

a system of equations, which determines the conditions of the resonant coherent 

EE of relativistic nuclei: 

where S(k) is the structure factor ‘“) of the crystal. The general conditions (3) are 

more simple in the two following cases: 

(i) u. k, = o * ky = 0 - the mean velocity of the nucleus is perpendicular to the 

plane of the reciprocal vectors (k.,, k,) and is parallel to the crystallographic axis. 

The corresponding perturbation frequency w, = (27yu/a,)n, II = +l, k2,. _ . is pro- 

portional to the transit frequency of the nucleus between two atoms in the crystal 

string calculated in the rest frame (see fig. la). This case is usually called axial 

channeling. 

(ii) D. k., = 0 - the mean velocity of the nucleus is perpendicular to the chain of 

reciprocal lattice vectors ky and is parallel to the system of the crystallographic 

planes (fig. lb). In this case the perturbation frequency w,,( = w,~ + w,, where w,, = 

(2rryq/u;)n, n = *l, -2,. . . is proportional to the transit frequency between two 

atoms in the atomic strings along OZ axis and w, = (2~rz;X/uX)I, 1= *I, 12,. . . is 

proportional to the transit frequency between the neighbouring strings. This case is 

usually called planar channeling. 

Thus, the periodic electric field of the crystal can lead to the resonant EE of the 

compound particle passing through the crystal. 
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Fig. 1. The schematic drawing of the nucleus motion in the crystal under axial (a) and planar (b) 

channcling. In the case (a) the incident nucleus velocity c(O) = cj3,, is parallel to the crystallographic 

alris and in the case Cb), ~(01 is parallel to the crystallographic planes. 

Okorokov was the first “.“) who payed attention to the possibility of a resonant 

excitation of ions and nuclei under axial channeling. The theory of resonant coherent 

excitation of electronic levels of channeled ions was developed in the refs. 13-‘j). 

The experimental investigations led to reliable observation of this effect (see e.g. 

ref. ‘“) and references therein). In our papers ‘lV’o-‘y ) the relativistic nucleus - crystal 

interaction was considered at first theoretically, and the cross sections of the coherent 

EE and coherent ED were estimated using the method of virtual photons. The 

resonant coherent EE cross section in crystals was estimated for y < 20 in refs. ‘7,‘s) 

and for y> lo2 in ref. ‘I’). Th e coherent ED cross section was estimated for y < 10’ 

in refs. ‘.I’). 

The purpose of this paper is to study the energy dependence of the coherent EE 

and coherent ED cross section over a wide range of nuclear energies. The space-time 

approach to the interpretation of the process of the coherent EE and ED in the 

crystal is reported, too. A new method of calculation of nuclear EE cross section 

in a crystal is developed. It is based on computer simulation of nuclear trajectories 

in crystals. The simulation results confirm suggestion about the possibility of resonant 

excitation. 

2. Virtual photons under axial channeling 

Let us consider a relativistic nucleus passing along a straight-line trajectory parallel 

to a crystal axis, fig. la. The range of validity of the straight-line trajectory approach 

is discussed below. Hoffmann and Baur showed “), that for the Coulomb potential 

both the perturbation theory (Winther-Alder method ‘)) and the virtual photon 

method (Weizsacker-Williams method “)) lead exactly to the same results in the 

calculation of the dipole EE and ED of relativistic nuclei. As one can show, the 
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same is true for the collisions of relativistic nuclei with an arbitrary electromagnetic 

scalar potential. Although both approaches are equivalent, the WW method is more 

convenient for the study of the energy dependence of coherent EE and ED cross 

sections. 

Let h be the impact parameter of the collision of the nucleus with the atom during 

the straight-line motion with y% 1. According to the WW method, we can replace 

the electromagnetic nucleus-atom interaction by the interaction of the nucleus with 

the flux of virtual photons (VP) belonging to the target atom in the rest frame of 

the nucleus. The spectral density of the electric dipole VP flux depends on the 

impact parameter b = (bl and for arbitrary atomic potential it has the form: 

= J AE q(h, z) exp (-ioz/yc) , 
27r 

where k = (k,, w/ yc) and e,, is the Fourier component of the atomic potential 

which we define as 

cpk = d7r e-““q(r). J (5) 

In the VP spectrum (4) the first term represents the contribution of the component 

of the electric field E’, which is perpendicular to the OZ axis, whereas the second 

term represents the contribution of the component E i, which is parallel to the OZ 

axis in the rest frame. As a rule “), the second term contribution is ignored when 

y* 1 because EL/E’, - y ‘. As it is shown in ref. ‘I), when calculating the EE or 

ED cross sections, the second term is responsible for the transitions with change 

of angular momentum projection AM = 0. As one can prove, if one substitutes the 

Coulomb potential F(T) ==Ze/r into eqs. (4) and (5), one obtains the standard VP 

spectrum from ref. “), p. 722. The first of the two representations of 4(w, b) in eq. 

(4) is essentially convenient for the calculation of the VP spectrum in collisions 

with atoms, since pk is connected with the atomic form factor and is often approxi- 

mated by simple expressions. 

When the relativistic nucleus penetrates through the crystal parallel to an atomic 

string at a relatively small impact parameter b < a, fig. la, one need to take into 

account only the potential of the nearest string, which is defined by: 

N 

cF,(r)= 1 p_(r-r,,), r,, = lb, z,) , 
n= 1 

(6) 
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where v, is the coordinate of the nth atom and N is the number of atoms in the 

string. The Fourier component of the potential (6) is 

\’ 
PC= (Pk 2 erk.r,i, (7) 

n--I 

where ‘pk is the Fourier component of the atomic potential (5). After substituting 

(7) into (4) and neglecting the second term in (4), and then averaging over possible 

deflections of the atoms in the chain due to the thermal vibrations (the procedure 

is similar to those used in the theory of neutron and X-ray diffraction and in the 

coherent bremsstrahlung theory, e.g. ref. ‘(I) j one obtains the following formula for 

the VP-flux spectral density for the case when u is parallel to the atomic string: 

dn.v(o, 6) 

dw 

(8) 

I,(w, b) = 
d2k’ d’kl 

.---(k_ kl,)q”rcF:,exp[i(kL-k:)b-i(k,-k’)’c?], 
(2rr)’ (2rr)3 

(9) 

II & 2 

12(&l, h) = 
(27T)j 

k,qkexp[ik,b-$kfrr’] , (10) 

k’=k:+(co/yt’)‘, (k’)‘= (k:)-‘+(o/yz;)‘, (11) 

where U’ is the mean-square amplitude of uncorrelated thermal vibrations of atoms. 

After integrating over all impact parameters b, which corresponds to the assump- 

tion of a uniform particle flux, and after performing the n-summation, the following 

more simple expression appears: 

It should be mentioned that I,(w) contains a logarithmic divergence since & - k ’ 

for k + m (Coulomb at small distances) and one should use k,,,,,-- R,,,rc, according 

to the VP method. The closer collisions contribute to the FE process too, but cannot 

be distinguished from the usual nuclear reactions ‘). 
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The VP spectrum (eqs. (8) and (12)) affecting the nuclei during the motion parallel 

to the atomic chain in the crystal has sharp maxima at the frequencies w, = (2ryu/a)n, 

n=1,2,..., which are proportional to the frequency of transit between neighbouring 

string atoms in the nucleus rest frame, see fig. 2. When w = w,, the VP spectrum 

dn,(w)/do is proportional to the square of the number of atoms along the straight- 

line part of the nuclear trajectory near the string. The region between the nth and 

(n + 1)th basic maxima includes N -2 lower maxima. The width of the basic I:\ 

and the lateral I.,, maxima are: I’,% = 2f’,, 5 w, IN. With fixed y and N s 1 we have 

F, + 0 and the coherent part of the VP spectrum (eqs. (8) and (12)) becomes a sum 

of delta-functions tike 6(0 -w,,). With fixed N and increasing y the width of the 

basic and lateral maxima increases and can exceed the nuclear level width 11 The 

relation between r, = &( N, y) and r appears to be very important in analysis of 

coherent relativistic EE (see sect. 3, below). 

Note, that the VP spectra (eqs. (8) and (12)), similar to other cross sections 

connected with the particle-crystal interaction, e.g. ref. l(j), include a coherent part 

proportional to 11, exp (iwan/y~)j~ and an incoherent one. The incoherent part is 

Fig. 2. The VP spectrum effecting the nuclei under axial motion parallel to the (110) atomic string in 

the gold crystal, calculated according to eq. (I 5). The crystal temperature T- 293 K and U, 2 2.8 x 10 -’ cm. 

For the y-value chosen thr position of‘ the third harmonic in the spectrum coincides with the transition 

energy kw, 2 110 keV between the lowest levels of the “F nucleus, i.e. the equality o(, = 2~y~z,‘ff_ with 

n = 3 iy = 8.467) takes place. 
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proportional to the number N of atoms and disappears for cr*+ 0 in (12) or for 

b> (+ or for y> 1 in (12). At the same time the obtained VP spectrum (8) of an 

atomic string shows a new peculiarity in comparison with the VP spectrum (4) of 

the individual atom. That is, the absence of divergence of the coherent part in (8) 

at b+O for the atomic potential with the screening of Moliere type, as compared 

to (4) (for details see ref. “j). The physical reason for this behaviour lies in the fact 

that the mean-square displacement of atoms in the string from the OZ axis does 

not equal zero,-but equalsthe mean,square amplitude of thermal vibrations of atoms 

in the crystal. Therefore, the coherent part of VP spectrum is maximal for the nuclei 

passing at the distance b - u from the atomic string. The incoherent part of the VP 

spectrum (S), due to the presence of I,(w, b) has the divergence even for the Moliere 

atomic potential at b +O. The distances b = cr are thus most important for the 

resonant EE of relativistic nuclei. The coherent part of the VP spectrum exceeds by 

approximately N times the incoherent one at h = o, if w = o,! and PI < 10 (see fig. 2). 

3. Energy dependence of the EE probability in a crystal 

When the VP spectrum is known, the probability of the electric dipole EE is 

found immediately (see, e.g. ref. “)): 

J dn,\(w, 6) 167~” w 
P;(b)= dw dw 9 z R(El)p,Xo), (13) 

where B(E1) is the standard reduced probability of the electric dipole transition 

between the nuclear levels (see e.g. ref. ‘)) and p,(w) is the density of final states. 

The cross section of EE follows from (13) after integration over impact parameters 

b. The resonant excitation of the nuclear low-lying levels by means of the specific 

VP spectrum dn,v/dw, with its sharp maxima at o = w, (see fig. 2), is of great 

interest. In this case one should make the replacement [see, e.g. ref. ‘), p. 411 

(14) 

where w0 is the resonant transition frequency between two nuclear levels and I‘ is 

the full width of the excited level. With 

zr,+ 1 
B(EI)=gAf;., - 

g=2zi+l’ 
(15) 

where hf i is the radiation width of the excited level, and considering r = II we 

obtain for the EE probability in the crystal the following formula: 

(16) 
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Here the shape of the VP spectrum dn,%,/dw, e.g. the maxima positions, depends 

on the nucleus Lorentz-factor y. By changing y one can try to get a coincidence of 

w, and wO. This case corresponds (see below) to the coherent addition of the 

excitation amplitudes from the various atoms of the string in a crystal with the 

corresponding phase shifts being a multiple of 25;. 

In any experiment a real nuclear beam has a certain energy spread Ay. If the VP 

spectrum is calculated for a definite y-value corresponding to the centre of the 

distribution over y, a distribution of the nuclei over the velocities v: occurs in the 

primed (rest) frame. This results “) in a Doppler broadening of the VP absorption 

cross section by the nuclei, which can be taken into account by substituting in (16) 

l-t, for I‘ and I vT,, for I ‘2,. The Doppler width for this case is defined “) by 

(17) 

As a rule, A y/ y = lo-’ and I;,* r,. Another way to take into account the energy 

spread in the incident nuclear beam is discussed in ref. 23). 

To analyze the energy dependence of the relativistic coherent EE in a relatively 

thin crystal, where the nuclear flux is uniform, it is convenient to introduce the 

dimensionless ratio 

R(Y) = 
UN(Y) =- 

NOT, ’ 
(18) 

Here the denominator represents the EE cross section in nuclear collisions with 

N separate atoms. For the estimations it is convenient to use the Doyle-Turner 

atomic form factors 14) 

pk = i a, exp (-/J/C’), 
i=l 

(19) 

with the constants ai, hi tabulated for various crystals. It should be stressed that 

(19) is unphysical at large k-values and this decreases the contribution of small 

impact parameters to the incoherent rate. Further, since in this case no divergence 

appears during integration over h, we can integrate over all impact parameters. This 

simple model (a more realistic estimation is given below, compare eq. (33)) leads 

to the simple final expression for R(y), when 1;, s r,,: 

R(Y) = * ni!, exp (iw~nulyv) ’ exp I-(w,ju/yu)2] 

+ +y 
[ 

exp L-1 WP/Y~)‘I , (20) 
1 wo 1 

where I,(w,J, I,( wo) are the same as in eq. (12). In the opposite case, l-,, s Tr,, 

numerical integration over w should be done in the formula (16). Fig. 3a shows 
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Fig. 3. The R(p) dependence for N = 10” in the wide y-region (a) and near the resonance with 11 = 5 

(y -5.2142) for N = lo3 (b) and for diftercnt energy spread in the nuclei beam: I - fyiy= IO-‘. 

11 - Ay/ y = lo-“, 111 - Jy/y; 10’ ‘. 130th figures are given for “F nucleus and {110) Au axis, T- 293 K. 

The dashed line in (a) rcprcsents incoherent background. 

that for the EE of 110 KeV of “F nucleus (E3 electric dipole trans;tion). Two specific 

regions are clearly seen: the region of resonances at y < lo2 and the region of 

increasing oscillations at y % IO’. The behaviour of R(y) near one of the resonances 

is shown in fig. 3b; where the resonances are the results of the numerical integration 

over o in eq. (X6). Similar results, but without taking into account the y spread, 

were obtained earlier in ref. “). Thus, the energy spread of the nuclear beam 

influences signihcantly the magnitude and the width of the resonance in the EE of 

nuclei passing through the crystals. 

Let us consider the space-time interpretation of the development of the EE process 

in the crystal, following ref. I’)). According to the VP method, resonances in the 

coherent EE of relativistic nuclei under axial channeling take place when wO= 

(Z~yv/u)n, i.e. when the transition frequency between two nuclear levels is a multiple 

of the transit frequency between two atoms in the string, calculated in the rest frame 

of the nucleus, or coincides with the position of the nth maximum in the VP spectrum 

in the crystal. On the other hand, as one can see from eqs. (8) and (12) the 

interferential multiplier exp (inw,,a/ycj results due to addition of the same ampli- 

tudes with the different phases 4, = /tJ = II (cooa/ yu). The resonant condition means, 

from this point of view, d = 27rk(k = 0, i,2,. . .). In this case the region of sharp 

resonances in fig. 3a corresponds to d = 2zrk with k 2 1. For the case y 3 1 we obtain 

3 + 0 and that means, the phase shift between any two neighbouring exponents is 



negligible: 

(21) 

Here T is the transit time between two neighbouring atoms of the string, calculated 

in the rest frame of the nucleus. The inequality (21) corresponds to partial (incom- 

plete) coherence. If the phase shifts between all N exponents in eqs. (S), (12) are 

negligible, i.e. 

Nd = Nw,,r<2n, (22) 

or 

N woa 
Y ’ Y‘y.,W = 27 u 7 

, 

(23) 

then all amplitudes of EE are added coherently and we are in the limit of full 

(complete) coherence. In this case the amplitude of EE under axial channeling is 

proportional to the number N of atoms in the string, the cross section increases 

and R(y)+ N, if y*l. 

After introducing t = Nu,/v - the transit time through the crystal, calculated in 

the laboratory frame, and the characteristic “intrinsic” nuclear time T = 27/w,,, the 

inequality (23) can be rewritten in the form: 

yT>l. (24) 

The inequality (24) means, that when the time of the development of the process 

of nuclear EE, yT, exceeds the transit time t through the crystal, the amplitudes of 

EE resulting due to interaction with all N atoms of the crystal string are added in 

phase, or coherently (here, we do not take into account any damping processes 

during the transit time). After multiplying eq. (24) by t;, it can be rewritten in the form: 

L,,= yvT> L= No, (25) 

where L,, means the length of the development of the nuclear EE and L= Nu is 

the string length. Thus, if the length L,, of the development of EE exceeds the 

length of the atomic string L, the cross section of this process is proportional to the 

square of the number of atoms in the string. When L,, greatly exceeds L, the order 

of arrangement of the atoms along the OZ axis is not important. 

Let us qualitatively consider the energy dependence of coherent EE by means of 

the VP method. Fig. 4 represents the VP spectra corresponding to various y-values. 

Fig. 4a corresponds to the case of resonance for EE of the 110 KeV level of the ‘OF 

nucleus at y, =25.4, when the lirst-order maximum in the VP spectrum coincides 

with the position of the maximum in the photoabsorption cross section w,). In this 

case the EE cross section is defined by integration over w of a(w), multiplied by 

dn,;/dw and is obviously proportional to N2. Fi g. 4b represents the nonresonant 

case with w1 =2rry,c/a*ti0, yz> y,. This kind of VP spectrum results in a R(y) 

dependence like that given in fig. 3a for y-values --lo’- 10’. Fig. 4c shows that 
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with further increasing y value ( y3 5 yz) the VP spectrum near w = o,, is determined 

by the vicinity of the “zero-order” maximum. The width of this “zero-order” 

maximum, r, =2ryo/aN, can exceed wg and in this case the EE cross section is 

proportional to N’. The region of y-values where L,, > L is not connected with any 

resonances and is called the region of complete coherence. Thus, for L,,> L the 

full EE cross section of relativistic nuclei passing through thin crystals is proportional 

to a, NL N’, where N, is the number of the strings, with which the nuclei interacted, 

and N is the number of atoms along the straight-line path of the nucleus near these 

strings. 

For quantitative comparison of the relativistic EE in crystals with that in an 

amorphous target one should calculate the VP spectrum (4) integrated over impact 

parameters b > R,i,, with R,i” being the sum of the radii of the colliding nuclei. 

For such small b-values one should use a Moliere-type form factor instead of the 

Doyle-Turner (eq. (19)): 

(Pk = i 4rQize 

,=, k’+ic; ’ 
(Yi = (0.1; 0.55; 0.35) ) Kj = K{6.0; 1.2; 0.3}, (261 

where K -I is the Thomas-Fermi screening radius. 

Further, when y> 1, one can neglect the longitudinal terms in the VP spectrum 

and obtain 

(K:,)‘=K;+(W/y?$, ff = e’lhc, (27) 

where K,(x) is a McDonald function. The integration of (27) over b > R,,,i, results 

where .$ = K:R,~~,~ and the EE cross section in a nuclear collision with 

atom has the form 

(28) 

a separate 

(29) 

From the formula (29), in the limit of very sharp resonance in the photoabsorption 

cross section, it follows that 

(30) 
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For the estimation of (~>‘(y, R,,,,,) one can use the approximate formula 

Z,e2 2 
m:‘( Y, R,,,,, = - )( > hC 

which follows from eqs. (28), (?O), if we take 5, = [, = K,,R,i,l= & and consider 

6. < 1 (where C = 0.681085). If we put K = 0, we obtain the approximate formula 

for relativistic dipole excitation, given by Winther and Alder [ref. ‘), formula (1.15)] 

for the case of nuclear collisions with the nonscreened Coulomb potential at y > I. 

Since for the typical resonant gamma values (y G 20) we have l, b 1, it is necessary 

to use the exact formulae (28), (30) for the calculation of (T,( y, R,,,,,,). Using these 

formulae and K, = K, = K one can compare for example, the cross sections with 

h > R,,,, and with h> R:,,,,, calculating F(y) = a,(y, R:,,,,),/v,(y, R,,,,,): 

x = ~c.,R:n,,, , ?’ = ~wR,n,,, . (32) 

Fig. 5 presents F(y) values for the concrete case of the El transition in ‘“F( IIW,, = 

110 KeV), interacting with Au atom, for different R:,,, values. This result shows the 

relative contribution of distant collisions to the EE cross section in this y-region. 

IFig. 5. The f-(y) &prn&ncc for the case of excitation ol’ the 110 keV Icxel 01‘ a nucleus in collision 

\slth Au atom CK ’ - 0.109 x 1W’ cm. Z : 79) for ditferem R:,,,, I alues. The F( y 1 1 alues are calculated 

for the firrt 10 resonrlnl y-\r\lues in the (1 IO) direction in the Au cr~,tal. 1 he Hi,,,,, \aluc> used corrc+ond 

10 the mean-square amplitude 1, of thermal vihralion ofthc Au atom at the taryet tcmperaturch T y IO0 K, 

200 K and 293 K, respecti\cl). 
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Using eqs. (28), (30), one can estimate more accurately, in comparison with eq. 

(20), the relative value of the effect of resonant coherent EE under axial alignment 

as 

(33) 

where dn:)“(w), dny( ) w are defined by formula (12) for the Doyle-Turner and by 

formula (28) for the Moliere atomic form-factors, respectively, and R(y) is the 

same as in eq. (20). Since 

exp[-(h,+b,)(wlYt.)‘l 

(b,+b,)’ ’ 

using this result, we guess: 

fl.v(Y) 

NuY(Y, Kin) 
= R( y)(5 x 10-‘-2x 10 -‘) , 3~~~25. 

(34) 

(35) 

At the resonance (oO = w,) we have R(y) = N, but this relation is very sensitive 

to the N and dy values, see fig. 3. Thus at the resonant condition o, = w. (or for 

y> y_) the relativistic EE cross section in the crystal can exceed sufficiently the 

EE cross section in an amorphous target, if the number N of atoms along the 

straight-line path of the nuclei near the separate atomic string is enough large. The 

number N is estimated usually as N = K ‘/4,.a where fit. is the Lindhard’s critical 

angle “) and K ’ is the screening radius. Really, the N-value for the resonant y-values 

can reach N = lo’-lo3 and increases -6 with increasing nuclear energy in the 

region of complete coherence, y > yasz. 

In conclusion to this section, we note, that the relativistic EE under axial channel- 

ing conditions in the crystals leads, in the case of resonance to high probability for 

El dipole transitions with nuclear momentum projection change AM = kl (the 

transition probability with AM = 0 is negligible for y 2> 1). This phenomenon can 

be investigated experimentally at the modern relativistic heavy-ion accelerators. 

4. Energy dependence of relativistic deuteron ED in crystals 

Electromagnetic disintegration (ED) is another process which results during the 

interaction of relativistic nuclei with the target atoms. ED is possible both for 

relativistic projectile nuclei and the target nuclei. Below we consider only the ED 

of the projectile nuclei. 

Similar to the case of coherent EE under axial alignment in the crystals, the cross 

section of coherent ED is calculated by means of the VP method. Let y% 1, then 

the “longitudinal” part of the VP spectrum is negligible and 

(37) 
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Here, p,(w) is the final states density and we suppose that for qualitative analysis 

it is enough to use dnN(w, b)/dw calculated with the Doyle-Turner form factors 

(19) and integrate over all impact parameters. For the deuteron nucleus the El 

transition is dominant and the B(E1, u, 0) function is well known *‘). After using 

the R(E1, o, 0) value in the zero-range approximation from ref. I’) and integration 

over emission angles one obtains 

rrt,(w) dw, 

~ 
ti 

(w)_xirLy h’&(fw--e)31’ 
3 m (hW)3 ’ 

(38) 

(39) 

where (Y is the fine structure constant, E = 2.223 MeV is the deuteron binding energy 

and m is the nucleon mass. The results of the numerical calculations with the use 

of formulae (38) and (39) are given in figs. 6 and 7. The specific behaviour of CT~( y) 

is explained as follows. The coherent part of the VP spectrum (eq. (8) or (12)) 

consists approximately of ten harmonics (or basic maxima, see fig. 2), since the 

other ones are suppressed due to the “thermal” exponent, exp [ -(~,,a/ ye)‘]. This 

part of the VP spectrum, arranged in the region i\w, shifts linearly with the y-value 

increasing. At y< 10’ and y> 103 this region lies far away from the region where 

the photodisintegration cross section trtr(w) is more effective, and that leads to the 

decreasing of cra( y) at those y-values, see fig. 5. When y% 103, the effects of 

incomplete coherence occur, like in the coherent EE (cf., e.g. with fig. 3a). That 

occurs when 

i.e. when the phase shift between ED amplitudes from two ncighbouring atoms in 

the string becomes small and that leads to the increase of the ED cross section, fig. 

6b. Finally, at 

y> y‘.*h= U~E~/~~~U}~ 103N, (41) 

the regime of complete coherence takes place. That means, all N amplitudes of ED 

from the atoms of the string are summing in the phase and LT~(Y) becomes propor- 

tional to N’, fig. 6b. From the point of view of the VP method, the conditions 

(40)-(41) mean that the effective region of the a,:)(w) is reached by the vicinity of 

the “zero-order” maximum in the VP spectrum of the string, with the width of the 

“zero-order” maximum I-,, = 2n-yu/aN. From the other point of view, the conditions 

(40)-(41) correspond, as in the case of the coherent EE (see, sect. 3), to the case 

when the length of the development of the process, L,, r= 2ryh~/~ exceeds greatly 

the atomic string length, L = Na. It is essential to note, that even at L,, > a the small 

longitudina1 (parallel to the OZ direction) thermal vibrations of the atoms in the 

crystal are negligible, because they lead to the additional small phase shifts between 
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Fig. 6. The energy dependence (a), (b) of the coherent ED cross section of the deutcrons in the crystal. 

Only El dipole electric transition is taken into account. Part (c) represents the behaviour of the incoherent 

part of the cross section. The dotted line is the ED cross section in the amorphous target with the same 

number of atoms. Calculations arc provided for (110) Au axis for T--29.7 K and N = IO’, using the 

Doyle-Turner approximation of the atomic form factor. 

Fig. 7. A more detailed behaviour of the coherent ED cross section of deutcrons in the crystal in the 

definite energy range. The upper curve represents the total cross section as the sum of the El and Ml 

transitions and the lower one shows the El transition only. The interference effects are clearly seen. The 

parameters arc the same as in lig. 6. 
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amplitudes. As a consequence, the incoherent part of the ED cross section rapidly 

decreases with the y-value increasing. What is more, at L,, 9 L the order of arrange- 

ment of the atoms along OZ axis is not so very important, similar to the EE in 

crystals (see sect. 3). This region of -y-values is not yet reached at the modern 

accelerators (e.g. for relativistic heavy ions in CEKN ‘y,_ = 2 x IO’). In principle, 

one could expect similar effects in the ionization cross section of relativistic ions 

containing several electrons and passing through thin crystals. 

5. Computer simulation of the resonant EE in crystals 

The theory of coherent EE of relativistic nuclei under axial channeling in a crystal, 

developed in sect. 3, is valid for the interaction with a separate atomic string, or 

for the interaction with thin crystals. To estimate the EE probability for the nuclei 

passing through rather thick crystals, it is enough to add incoherently the amplitudes 

from the different strings, as was done in ref. I’). But to calculate this probability 

more accurately, it is necessary to take into account the bending ofthe real trajectories 

of the nuclei in crystals. The difference between the straight-line trajectories and 

the real ones should effect the magnitude of the resonances predicted by the theory, 

see fig. 3. Below we give the new method of the analysis of this phenomenon based 

on the computer simulation of the nuclear trajectories in a crystal together with the 

calculation of EE probabilities for the simulated trajectories. 

The nuclear trajectories in the crystal are determined by way of the,standard 

binary collision model ‘“) which was successfully used recently in the computer 

simulation of the spectral and polarization characteristics of channeling radiation 27). 

According to this model the scattering angle in the collision with the separate atom 

is calculated using the impulse approximation. The nuclear velocity changes instan- 

taneously from uk to uk,r after the kth collision and remains constant between the 

collisions during the time dam = rL7, - 7,. Thermal vibrations of the crystal atoms 

are taken into account by choosing the atomic coordinates according to the normal 

distribution relative to the equilibrium. The energy losses in the target are not taken 

into account here and El dipole transition is considered. 

When the nuclear trajectory is defined, the amplitude of the El dipole transition 

of the nucleus from the ground state to the excited one is determined by means of 

perturbation theory (cf., e.g. ref. ‘)): 

:V X] 1 
ait.= C ai= ,,X, z ,E;_, J!G (-1)‘“P~(fIJ~(E1 -p)(i) , 

t, -1 

(42) 
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Here, aif represents the sum of the transition amplitudes a:r resulting from nth 

collision and with taking into account the phase shifts between amplitudes. Here 

N is the total number of nuclear collisions with the crystal atoms, -pp(r(t)) is the 

potential of the 11th atom calculated in the nucleus rest frame, and M(El -y) is 

the standard defined [see, e.g. ref. ‘j, p. 151 dipole matrix element and w = (E,-- Ei)/ h 

is the transition frequency between nuclear levels. 

Ifthe nuclei in the initial beam are not polarized and no polarization measurements 

are made, the EE probability is to be averaged over the momentum projections in 

the initial states and to be summed over those in the final states. Using the Wigner- 

Eckart theorem for the tensor operator of the first rank and well-known orthogonality 

properties of the vector addition coefficients, the following expression for the El 

transition probability is obtained: 

Here B(El) is the standard reduced probability of the electric dipole transition ‘), 

and S& are the three components of the orbital integral for the total collision in 

the crystal: 

The partial integration involved in going from (42) to (45) requires the fact that 

(p(a/2) is small. The orbital integrals (44), (45) depend on s,, y,, z, which are the 

coordinates of the point of the minimum distance between the nucleus and nth 

atom of the crystal. The OZ axis coincides here with the nearest crystallographic 

axis. The integration is performed in the laboratory frame along the trajectory 

defined by computer simulation, which leads to the knowledge of all values x,,, J:“, z,,. 

The obtained expression (43) is to be averaged over all possible trajectories 

according to the initial conditions: 

ME1)) =b E G(El)@(r,,(O), o,,(O)), (46) 
m I 

where PF(El) is the EE probability for the nucleus passing through the crystal 

along the mth trajectory defined by the point of incidence r,(O) and the initial 

velocity u,(O), and 0(r,,,(O), u,(O)) is the number of nuclei with those initial 

conditions. 

The results of computer simulation are presented below for the concrete case of 

EE of the 110 keV level in the fluorine nucleus passing through a gold crystal. As 
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is shown in sect. 3, the straight-line approximation leads to sharp resonances in the 

EE probability for definite y-values, namely when 6 = w/ ye = 2m/u. This is a 

consequence of the fact, that the amplitudes are adding in phase in (42) and (43) 

and the EE probability is then proportional to the square of the number of collisions 

N2. 

The computer simulation allows one to understand how the shape and the 

magnitude of the resonance change when one deals with real trajectories instead 

of the straight-line ones. Fig. 8 represents the results of a computer simulation of 

the EE probability in the crystal for the same incident conditions, as in fig. 3b. Fig. 

8a shows the results of a computer simulation with A4 = 400 nuclei and fig. 8b - 

the same with M = 900 nuclei. The crystal thickness was L = 0.3 pm which corre- 

sponds to N = 10’ collisions. The EE probability for every trajectory was calculated 

using the formulae (43)-(45) and averaging (46) with the uniform distribution over 

points of incidence was done. From the comparison of fig. 3b and fig. 8a, b it follows 

that the bending of trajectories leads to dramatic broadening of the resonance and 

the maximum value of the EE probability is approximately less by an order of 

magnitude than in fig. 3b, calculated with the straight-line trajectories. 

In comparing figs. 3b and gb, the observed reduction is completely due to curvature 

of trajectories, because we consider here a rather thin crystal, where the nuclei 

collide only with separate (or several) atomic strings, and therefore the reduction 

is not caused by a non-uniform ion-flux, typical for various channeling problems “). 

c Pif) ,10” (a) 
8 

5.2127 5.2147 5.2167 

Fig. 8. Computer simulation results for the depcndencc of the EE probabilit! P(y) of 19F nuclei upon 

the Lorenw-factor y near the resonance with n 2 5 (as in fig. 3h) under (I IO) axial motion in Au with 

the statistics 400 (aj and 900 (b) nuclei. The upper curves in parts (a) and (b) are obtained for T- 0 

and the lower ones for 7 x 293 K. In part (a) are given the ab\olutc values of P(y, and in fig. (b) -- the 
ratio R(y), the same as in tip. 3h. 

d 
167 
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The results given in fig. 8a. b are obtained for the case when the nuclei are passing 

near the separate atomic string in the crystal, i.e. L-L,. The computer simulation 

shows that at L> L, the nuclei are interacting with several atomic strings during 

the penetration through the crystal. As a result, the nuclear trajectories turn out to 

be more complicated and various interference effects between the amplitudes corre- 

sponding to different strings are possible. This leads to oscillations in the thickness 

dependence of the EE probability &(El) and as a consequence, resonant behaviour 

like &-- N2 at 5 = 2m/a is not observed for Na = L > L, (the incidence velocity 

v( 0) was parallel to the atomic strings). On the contrary, when the incident angle 

between the velocity of the incident nucleus v(O) and the atomic strings is not zero, 

but the velocity is parallel to the crystallographic planes (as in fig. lb), the nuclear 

trajectories are quasiperiodic and are relatively stable in comparison with the axial 

channeling case. This kind of motion of nuclei between crystallographic planes is 

called planar channeling. The trajectories of this type lead to more ordered addition 

of the amplitudes from the different atomic strings. The resonant condition for this 

case depends on the crystal structure factor and for the case considered below, the 

(100) planar channeling in a gold crystal, is 5 = 2m cos B/a with n = 1,3,5,. . . and 

0 being the angle between the initial velocity and the (110) axis. The n = 1,3,5,. . . 

values are characteristic for the face-centered lattice and (110) and (100) planar 

channeling. 

Indeed, the computer simulation results confirm the suggestion about the advan- 

tages of the planar channeling. Fig. 9a shows a typical trajectory of a nucleus under 

(100) planar channeling and fig. 9b represents the EE probability of the nucleus ‘“F 

Fig. 9. (a) Projection of the typical planar channeled trajectory of nucleus in the ( 100) Au planar channel 

(the angle between ~‘(0) and (1 10) axis is 0 = 10-j). The value y = 25.6 is chosen and that is the condition 

for resonance with )I z I. (b) Dependence of the E:E probability upon the crystal thickness for the 

simulated trajectory in part (a), curve II isce the details in text). 
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passing along this trajectory in terms of dependence on the collision number in the 

crystal (curve II). For comparison, two characteristicdependences, Pi,(N) - N’P,,-(l) 

(curve I) and c,(N) - Ne,(l) (curve III) are given. Curve I corresponds to the 

case of “pure” resonance with the N” dependence, typical for the straight-line 

trajectories, and curve III corresponds (qualitatively) to the case of an amorphous 

target, with characteristic linear dependence on N. The behaviour of curve I1 leads 

to the conclusion about the constructive interference of the EE amplitudes corre- 

sponding to the different atomic strings, i.e. about the resonant EE under planar 

channeling of nuclei in the crystal. As follows from fig. 9b, at N = 106 (the corre- 

sponding crystal thickness is L = 300 pm) the EE probability of the projectile nucleus 

in the crystal reached a rather high value P= lo-” and that is the favourable case 

for the experimental investigation of this phenomenon. 

Thus, the developed method of the computer simulation leads to the conclusion 

that the effect of the coherent resonant EE of relativistic nuclei in crystals occurs 

even if we take into account the difference between the straight-line trajectories and 

the real ones. The computer simulation results show that the more favourable case, 

from the point of view of possible experiment, is probably the planar channeling 

case. We suppose to provide the complete analysis of the EE under planar channeling 

in a separate paper, after obtaining the necessary statistics. In any way, our pre- 

liminary computer simulation results lead to the greater value of coherent EE 

probability in comparison with those obtained without taking into account the 

constructive interference between the separate-string amplitudes “). 

Finally, we considered here a gold crystal in comparison with a thick diamond 

one in ref. “), because our purpose was to estimate the effect of coherent EE in a 

thin crystal and to obtain a greater value of the EE probability, which is proportional 

to Z’ of a target. On the other hand, a thin gold crystal was used in successful 

experiments on coherent excitation of electronic levels of channeling ions “), there- 

fore one can compare the atomic and nuclear effects of coherent excitation in the 

same crystal. If would be very interesting to provide computer simulation of this 

effect in thick silicon and germanium, which have Z greater then diamond and 

which are often used in channeling studies due to high quality of samples. 

6. Conclusion 

A theoretical analysis of the energy dependence of coherent EE and ED in the 

crystal is provided. The main results are as follows. There exist at L> L,, sharp 

resonances in the EE probability of the projectile relativistic nuclei passing through 

the crystals, at the definite y-values, and only the broad maximum in the ED 

probability calculated as a function of y. At L < L,, the characteristic increase of 

the EE and ED cross sections in the crystal is observed, which is connected with 

the coherent addition of the amplitudes at very high energies. The width and the 

magnitude of the resonances in EE change sufficiently when taking into account 
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the bending of the nuclear trajectories by means of computer simulation. These 

results lead to the conclusion about the possibility of the experimental investigation 

of resonant EE of relativistic nuclei in crystals. 

It is necessary to note that the possible applications of the processes considered 

here are relativistic neutron (antineutron) generation via deuteron (antideuteron) 

coherent ED, or monochromatic photon generation via coherent EE. The shape of 

the VP spectrum (fig. 2) with the position of maxima determined by the y-value is 

probably of interest for the nuclei spectroscopy or for the spectroscopy of compound 

elementary particles. 

We are grateful to A. Winther for comments about the validity of the virtual 

photon method for EE problems. We are grateful to V.V. Okorokov and M.I. 

Podgoretsky for the helpful discussions and to R. Fusina and J.C. Kimball for the 

presentation of the paper ‘>) before its publication. One of the authors (Y.L.P) 

wishes to thank J.U. Lindhard for useful discussion, and to thank the Niels Bohr 

Institute, where this work was completed, for the warm hospitality extended to him. 

IVote added in proof: Various reasons (bending of the trajectories, damping 

processes, energy loss processes, the calculation without using the perturbation 

theory, etc.) can lead to the break of the effect of the full coherence which appeared 

in sect. 3 as a consequence of the straight-line trajectories approximation and 

perturbation theory. Therefore, the N’-dependence (see fig. 3a and sect. 3) is a very 

idealized case which appears only in the frame of this simplified model. 
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