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10. Disordered Materials 
 

The physics of non-crystalline structure is very popular nowadays. A great number 

of substances are non-ordered. In them there is no a distant order but there is a close 

order of atoms. Those substances are called amorphous substances.  

The non-crystalline substances with the shear viscosity coefficient more then 10
13

 

- 10
14

 Nс/m
2
, are called amorphous solids. The can be of dielectric, semiconductor, 

and metal properties.   

The structure of metals, semiconductors, and dielectrics are justified by the distant 

order. Discovery of the fact those amorphous substances have the like properties that 

crystalline ones lead to reevaluation of periodicity. In 1960 Ioffe and Regel assumed 

that the electric characteristics of amorphous semiconductors depended on not the close 

but distant order. The theory of non-ordered structures was developed, which explained 

many experimental data.      

 

10.1 The Structure of Non-ordered Substances 
 

The ideas concerning the structure of amorphous substances are usually deduced 

from X-ray and electron diffraction experiments. It was shown that in a non-ordered 

structure, the first coordination sphere limits the strict close order.     

Indeed, the first coordination spheres of amorphous and crystalline silicon are 

practically identical. The second coordination sphere of amorphous silicon is not as 

distinct as in a crystal one. In the amorphous silicon, the third coordination maximum of 

the radial distribution of atoms totally vanishes. Thus we can stay that the structure of 

amorphous silicon is characterize by the close order (as the structure of crystal) dut the 

close order region is restricted by the first coordination sphere.  

We can assume that atoms of an amorphous solid are arranged in a three 

dimensional continuos net, which is like the lattice of a crystal.  That lattice (opposite 

to crystal) is a little deformed.  

The accidental distortions of bonds and angles accumulate and lead to complete 

diminishing of the distant order. The distortions can be also due to fluctuations of 

chemical composition. Fig.10.1 shows the structure of an crystalline and amorphous 

body.  

 
 

 
Fig.10.1.The crystalline structure (a); non-ordered substances (b). 
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10.2 Electrons in a Non-crystalline Medium 
 

The zone theory can be applied with success while investigating the amorphous 

bodies. Unfortunately the concepts of the Fermi surface and Brillouin zone can be of 

use.  

We are going to discuss only the main aspects of the theory in order to understand 

the peculiarities of the electron energy spectrum.   

In a non-ordered system the distant (sometime even close) order is violated. The 

charge current carriers are in accidental electric fields.  

 Dependence between the carrier concentration and density state distribution N(E) 

is shown in Fig.10.2.  
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f(E) – the Fermi distribution function.  

                                                 
 

1

1
)(




 TkEE BFe
Ef                                        (10.2) 

 
Fig.10.2. The density of states in non-crystalline substances..  

EF – the Fermi level at zero temperature; the localized states are dashed; а – 

liquid or amorphous metal; б – semimetals; в – semimetals with a deep 

pseudo slit; г – intrinsic dielectric; д – the impurity zone in a strongly 

compensated electron semiconductor. 
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The function N (Е) depends on approach we make.  

Assume that electron scattering by an atom is small and electrons are 

characterized by the wave functions with a definite wave number k. The free path L is 

great and with accordance that Lk ~ 1, k/ k << 1. In first approximation: 
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That condition is true in liquid metals. The quantity m is not necessary the mass of a 

free electron.   

Assume that the interaction is strong: k/k ~ 1, the free path is small (kL ~ 1). The 

probability of the state localization is appreciable (Fig.10.2). When k/k ~ 1 there can 

be strong deviation from the free electron model. The situation denoted by б, в,and г 

correspond to k/k ~ 1.  

 

10.2.1 Localized States 
 

The density of states at the zone edges diminishes sharply to zero (Fig.10.2г). The 

zone states are localized. The impurity states are localized. In amorphous bodies, the 

local states are of importance. They violate the periodicity.  

In any case, we are to solve the Schrödinger equation:  
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In the strong bond approximation, the potential wells of a crystal produce the 

narrow band of levels (Fig.10.3). They are produced for example in d-zone of transit 

metal or donor, which form the metallic impurity zone in a semiconductor. Assume that 

the wells are far from each other and the intersection of the atomic wave functions (r)  

is small. The Bloch wave function of an electron is a superposition of wave functions of 

separate wells:   
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nk Rikzyx Rr  exp,,ψ                                      (10.4) 

Assume that the functions  are spherically symmetric (s-function). Let the quantity 

W0 be the energy of an electron in an isolated well. The energy of an electron in a 

simple cubic lattice can be written as follows:  

,0 kWWE                                                (10.5) 
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Рис.10.3. Плотность состояний 

а – потенциальные ямы кристаллической решетки; 

б – потенциальные ямы решетки Андерсона. 

                                                         Fig.10.3                                  

 

The quantity I  is called the superposition integral: 
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Ĥ is the Hamilton operator. Assume that the intergral can be represented as follows:  
RIeI α                                                   (10.8) 
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The quantity D0 is the depth of the well, R – the distance between the wells 

(R = а for a simple cubic lattice). The effective mass т* at the zone bottom:  
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The zone width:  

,2zIJ                                                   (10.10) 

Z  is the coordination number. 

Let us discuss the transformation of an energy zone if the potential becomes non-

periodical. Such potential can be produced by two ways.  

We can displace each center at an accidental distance. The energy of an electron would 

be 02
1 U . 

We can add the accidental energy to potential energy of each well. The enegy of an 

electron would transform: 02
1

0 UW  . 

Assume:  
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The potential energy V is shown in Fig.10.3б (the Anderson potential).  

If the potential 0U is small its action leads to the free path L. That quantity can be 

evaluated from:  
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The quantity Е and и are at Fermi level; а
3
 is an atomic volume.  
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Introducing (10.2) into (10.11) we arrive at:  
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We remind our readers that if kL < 1, the concept f the free mean path is of no use.  

At the middle of a zone kа ~ 1; and parameter а is the minimal free path. The sing of the 

wave function changes chaotically from well to well. In accordance with (10.12) it can 

be if:  IU0   ~ 7, i.e.   12
7

0 IU   at z = 6.  

Assume that at zero moment an electron is located in a well. What happens later? 

Anderson found that if  IU0  > 5 (z=6), there is no diffusion. Thus all the states are 

localized. The dependence of the critical quantity  IU0  on the coordination number is 

weak. If the ratio  IU0  is less then the critical one, delocalizated states would appear 

in the cener of a zone (Fig.10.4). Experimental data confirm it.  

The localized states discussed are due to the energy fluctuation. Indeed, if defects 

are distributed accidentally and their concentration is small the energy levels in the 

forbidden zone depend only on the properties of defects. The -form maximums would 

appear on the function N(E).   

The situation would change if the concentration of defects becomes great. The 

collective properties of the field would be produced. The discrete energy levels 

generated are called the fluctuation levels. The probability of great fluctuation is small. 

Thus the density of states decreases rapidly with the distance from the allowed zone 

boundary. Function N(E) is uninterrupted. The states are localized (in certain energy 

interval).  

Two situations are possible: there is a distinct boundary between levels Ec and Ev, 

discrete levels fill entire region between Ec and Ev, which are the borders of conduction 

and valence zone. The last situation takes place for amorphous substances when there 

are distinct borders between localized and non-localized states.  

The density of states as the function of energy for amorphous semiconductors is 

shown in Fig.10.4. The slit of mobility (Ec-Ev) is shown in Fig.10.4,а and б. A rather 

peculiar form is shown in Fig.10.4в. 

The “tails” of localized states are rather long and can overlap near the middle of 

mobility slit. If there is a Fermi 

level in the overlap region, the 

electrons can freely pass from 

the ceiling of valence zone into 

the bottom of conduction zone.  

Besides the fluctuation 

levels in non-ordered system, 

there can be defects, which are 

the centers of localization of the 

free charge carriers. Those 

defects produce the narrow 

peaks, which can be widen 

when there are accidental fields.  

 
 
Fig.10.4. The density of states in the Anderson model. 

The dashed area – the localized states  
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For situation а, б and г the concept of forbidden zone is valid, i.e. there is a region 

where the density of states is zero. Fig.10.4г represents the situation when discrete 

levels fill entire energy interval. The localized electrons transport the electric charge 

only by ‘over-jumps”.  

The region populated by discrete levels is called “ the mobility slit” (Ec - Ev) 

(Fig.10.4, б). 

We remind our readers that if the Fermi level is in the region of non-located states, 

the substance is a metal. If the Fermi level is in the region of localized states, the 

substance is semiconductor or dielectric.   

Two types of conductivity are possible:  

a) The carrier transport along non-localized states;  

b) Jumps between the localized states.  

 

 
10.2.1 Amorphous Substances 

 

There are three types of amorphous semiconductors.  

1. Compounds A
III

B
V
, which in an amorphous modification are manufactured 

as thin films by precipitation.  

2. The glasses containing the atoms of sulfur, selenium, and tellurium produced 

by cooling of melting material. 

3.  The glasses composed of the elements of the fifth group.  

The main features of amorphous substances can be listed as follows.  

Conductivity for energy E > Ec is of a usual zone type. When E < Ec, the ‘jumps’ 

between the localized states generate the conductivity.  

There are three mechanisms of conductivity.  

а) Conduction by the excited in a non-localized state carriers (E>Ec). When the current 

is due to the holes, we get (see Fig.10.4):  
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When the energy of a carrier reaches the critical one, the mobility changes by the factor 

of 1000. In the jump conductivity region, the temperature dependence of mobility is:  

  kTEexp .   

1. Conductivity through the de-localized states. The holes produce the electric current in 

many amorphous semiconductors.  
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The quantity о of many materials is in the interval of 100 - 500 ohm
-1

сm
-1

 and can be 

written as follows: oCo kTEeN  )( . If the quantity о does not depend on 

temperature,   Т
-1

. The dependence between lg and inverse temperature is linear.  

2.Conductivity through the localized states with energy closes to EА or EВ.  
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Е – the activation energy of jumps,  ЕВ – energy of the zone edge.  
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Fig.10.5. The jump mechanism of 

conductivity 

 
 

Fig.10.6. The temperature dependence of conductivity  

 (Е) = e N (E)  (E) f (E);  Т1  Т2  Т3. 

  

3. Conductivity through the localized states with energy close to the Fermy level. The 

charge transportation is performed by jumps through the localized states (Fig.10.5). The 

process is like the conductivity through impurities of strongly alloyed semiconductors. 

If the states are localized an electron can move only by jumps from one state to another 

exchanging the energy with phonons. 

There are two types of electron 

conductivity: the current depends on 

electron mobility (the energy is near the 

Fermi level), the conductivity (Е  ЕF ) 

is small in comparison with that one of 

electrons of conduction zone.    In the 

first situation if the states are localized, 

the conductivity:  
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over-jump, R is the length of a jump, 

the factor  фон depends on phonon 

spectrum (10
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), ЕS is the jump activation energy. When localization is strong, 

an electron approaches the closest neighbor:  
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The activation energy is small only when the factor Re   is also small to make the 

electron jump to the nearest center. It can be at high temperature. In Anderson model, 

the quantity ЕS is of the zone width order. At low temperature, the jump conductivity is 

defined by: ,exp
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Thus:  

 dEEfEENe )()()(  ,                                 (10.19) 

f(E)-the energy distribution function..  
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Fig.10.7. The temperature dependence of 

conductivity according the model of the density 

of states shown in Fig.10.6 

The functions N(E), (E),  f(E), and (E) are shown in Fig.10.6..  

 

      

The function  1ln  Tf  

for all mechanisms discussed is 

shown in Fig.10.7. Rgioin а 

represents transportation through 

non-localized states, region б 

represents transportation through 

the zone tail states, region в and г 

represents transportation through 

localized states near the Fermi 

level. The Mott law is true in the 

last region.  

If the density of states 

produced by defects is great, there 

would not be the temperature 

interval where the process б 

dominates and the region а 

smoothly transforms into region в. 

The experimental data confirms it.  

  

.  

In the de-localized state region of amorphous semiconductors, the charge mobility:  

,τμ me                                                (10.20) 

τ  - the relaxation time. We can represent (10.20) as follows:  

.μ vmel                                        (10.21) 

The quantity l is the  free path, v  - the mean speed of an electron. When Е > Ес the 

motion of carriers follows the Boltzmann equation.  

The electron density:  
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The conductivity:  
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We can formally use the concept of mobility in the region Е < Ес, where the 

charge transportation is performed by jumps. If the conductivity is described by the 

equation like (10.16):  
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Fig.10.8. A mobility threshold 

We neglected the factor е
-2R

, that can be done at great degree of localization. Usually 
1210v с

-1
. Near Ес , TkE B . Thus, when the energy approaches Е = Ес (or Еv in 

valence zone), the mobility increases by the factor of about 10
3
 (Fig.10.8).  

 

Amorphous semiconductors 

(opposite to crystalline ones) are almost 

insensible to alloying.  

Besides amorphous semiconductors, 

there are amorphous dielectrics, which 

are widely used in microelectronics. 

The conductivity is performed by the 

charge carrier jumps from one localized 

state to the other. The activation energy 

of the process is considerably lower 

then the activation energy of impurity 

conductivity of crystalline dielectrics.  

The density of amorphous 

dielectrics is lower then that one of 

crystals. Hence its dielectric 

susceptibility is also lower.     

The energy losses of amorphous 

dielectrics strongly depend on the width 

of the mobility slit. If the mobility slit is 

small, the losses are due mainly to the 

jump conductivity.  

In the last years, a new type of materials amorphous metals (metallic glasses) is of 

great interest. The amorphous state f metals was observed long ago while depositing 

from electrolytes and pulverizing upon a cool base. An effective and high productive 

technology is developed to produce amorphous metals. The technology is based upon 

fast cooling (more then 10
6
 К/с) of a thin stream of melting metal. It was shown that 

impurities promote the formation of amorphous layers.   

Investigations show that in amorphous metals there are no grain borders and point 

defects. The chaotic continuous distribution of spherical particles with tight packing is 

supposed to be in metallic glasses.  

While heating the metallic glasses are being crystallize. That peculiarity is due to 

the metallic type of a bond.  

The metallic glasses are very stabile. The critical strain of metallic glasses is 

greater then that of a steal.  

The metallic amorphous alloys are rust-durable.  

The specific resistance of amorphous metals  [(1 - 2)10
-4 

ohmсm] is 2—3 times 

more then that one of crystalline alloys that is due to the small free path.   


