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9.6 Dislocations 

 
The small critical shearing strains observed are due to the linear defect of structure, 

which is called the dislocation. Taylor, Arvin, and Pauline proposed concept of 

dislocations in 1934. They assumed that the sliding is the motion of dislocations.  

 

9.6.1 Edge Dislocations 

 
There are two ideal kinds of dislocations: the edge dislocation and the screw 

dislocation. The real dislocation is a 

superposition of those ones. The 

geometric properties of a dislocation 

can be easily described when the 

concepts of ideal dislocations are used. 

The atomic structure of an edge 

dislocation is shown in Fig.9.6. The 

space order of atoms near the edge 

dislocation in a crystal of a simple 

cubical structure is shown in Fig.9.7. A 

glance at the Fig.9.7 shows that the 

structural distortion is due to the 

additional atomic plane. The distortion 

is mainly located hear the low edge of 

the additional plane.  The distortion line 

along the edge of additional plane is supposed to be a dislocation. Thus the 

dislocation is a linear defect. All strong distortions are concentrated in closest vicinity 

of a dislocation line. At a 

distance of about several 

atomic diameters, the 

distortions are so small that 

the properties of a crystal at 

those points can be 

considered as ideal.  

The dislocation line 

region where distortions are 

great is called the dislocation 

nucleus. In that region, the 

local deformations are great 

too. At a far distance from 

the nucleus, the deformations 

can be considered as small 

and treated by the theory of 

elastic deformation. The 

region far off the nucleus is 

called the elastic region.  

The atoms located above the edge of additional plane undergo the action of 

constricting strains. Two atomic rows (from the left and right of additional plane) are 

pressed together. In close vicinity above the additional plane, the atomic structure is 

 
Fig.9.6. Cross-section of a crystal with 

dislocation 

 

 

 
 

Fig.9.7. The space atomic structure near an edge dislocation 

in a simple cubical crystal 
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lengthened. The local lengthening is called the dilatation.  The dilatation  at a point 

near the edge dislocation is defined as follows:  
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Parameter b is a module of the Burgers vector. That quantity characterizes the 

distortions produced by a dislocation. The quantity r is the distance between the given 

point and dislocation. 

 

9.6.2 Screw Dislocations 

 
The screw dislocation is shown in Fig.9.8. The screw dislocation is a border between 

the initial and displaced region 

of a crystal. The border is 

parallel to the direction of 

sliding.  

In order to understand 

the properties of a screw 

dislocation let us use the 

following speculations. 

Assume that a thin cut of a 

certain depth is made in 

crystal. Assume that we shifted 

one side of the cut upward at 

one atomic distance and the 

again unite the cut sides 

(Fig.9.8). A glance at the 

figure shows that the distortion 

line coincides with the cut 

edge. That line is called the 

screw dislocation.  

Thus the structure of atomic planes is changed. There are no more the fully 

filled planes perpendicular to the dislocation. All atoms are located on the same screw 

surface, which begins from one edge of a crystal and ends at the other edge. The 

screw can be of a clockwise or opposite type. The screw step can be from one up to 

several inter-atomic distances. The step of the dislocation described is one inter-

atomic distance.  

Analogues to edge dislocations, the distortions depend on the distance from the 

dislocation center.  

The screwing and shearing of the lattice are produced. Atoms located upon a 

screw surface are displaced from its natural position of an ideal crystal. The 

displacement correspond to the screw surface equation: 
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In Fig.9.8, the z-axis is directed along the dislocation, the quantity zu is a 

displacement along that direction. The angle is measured from the axis, which is 

perpendicular to dislocation. We remind that the vector b is the Burgers vector.  

 

 

 

 
 

Fig.9.8 A screw dislocation. The height of the step on the 

upper surface usually is equal to the lattice parameter. The 

atomic rows that are perpendicular to the dislocation are 
located on a screw surface. 
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9.6.3 The Burgers Vector 

 
Let us imagine two crystalline lattices: ideal and with defects. If in a real crystal 

there are point defects we can establish reciprocal correspondence between atoms of 

both crystals. In some places of the real lattice there can be no atoms, in some places 

exec atoms would appear, but in other parts it coincides with the ideal one. The region 

of a real crystal where reciprocal correspondence can be established is called the 

region of a good crystal. The region where it is impossible is called the region of a 

bad crystal.  

An arbitrary contour in a real crystal build in the region of a good crystal is 

called the Burgers contour. Using the reciprocal correspondence we can build 

analogues contour in the ideal crystal. If in the real crystal, the contour is build around 

a dislocation (Fig.9.9a), the corresponding contour in the ideal crystal would not be 

closed (Fig.9.9b).  

In order to close that contour, a vector b is needed. That vector is called the 

Burgers vector and represents the vector of shearing. The Burgers contour of a  

screw dislocation is shown in Fig.9.10 

The Burgers vector of an edge dislocation is normal to the dislocation line. The 

Burgers vector of a screw dislocation is parallel to the dislocation line.  

The contour can be displaced, lengthened, or constricted in the direction 

perpendicular to the dislocation line. The Burgers vector dies not change.  

The vector can change if while displacing the contour intersects the ‘bad” 

region. Thus the Burgers vector of a dislocation is constant and the dislocation can not 

break inside a crystal. The dislocation can break only on the surface of a crystal, inter-

 
 

Fig.9.9. the Burgers contour in a real (a) and in ideal (b) crystal. I is the ort 

tangential to the dislocation line 

 

 

 
 

Fig.9.10. the Burgers contour of a screw dislocation: a – real crystal, b – ideal 

crystal 
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crystallite border, or the other dislocation. Very often dislocations form close loops or 

nets inside a crystal.  

The Burgers vector of a contour surrounding several dislocations is the sum of 

vectors of separate dislocations. 
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Sometimes that vector can be zero: 
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The others linear defects can be present in a crystal: for example the chains of 

vacancies or inter-node atoms. The Burgers contour about those point defects is 

identical to that one of the “good” region, the Burgers vector is zero. 

The Burgers vector represents one of the lattice translation vectors. Its module 

and direction is discrete.  

 

9.6.4 The Strains Needed to Produce a Dislocation in an Ideal Crystal 

 
In order to produce a dislocation, it is necessary to make a shift in a sliding plane.  

 

 

 

 

 

Hence, to find the strains needed 

to build a dislocation, we are to calculate the shearing stability in an ideal crystal.  

A simple rectangular lattice is shown in Fig.9.11. While displacing the atomic 

planes, the shearing strain  tries to re-establish the equilibrium.  The lattice is 

symmetrical and at .0),,2,1,0(2/  nnbx  

When .0,2/;0,2/0   bxbifbx  The following function holds 

that condition:  
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When displacements are small: 
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In accordance with the Gook law: 

a

x
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G is the shearing module. Hence: 

Fig.9.11. The shearing of a 

plane relative another 

plane in a uniformly 

deformed crystal. The 

dependence of strain on 

the plane displacement 

from their equilibrium 

position 
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Comparing (9.57) and (9.61) we see that the coefficient is a maximal strain of the 

lattice when .4/bx   thus:  
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We can write: 
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More accurate calculation leads to:  
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The experiments show that the shearing in crystals begins at smaller strains: 

.)1010( 54 G   It is due to the fact that the shearing is produced not by 

displacement of atomic planes relative each other but by sliding of dislocations.  

Dislocations are being generated when the crystal grows (for example while 

hardening the melt). The generation of dislocations is initiated by residual of 

vacancies while cooling of crystals. When crystals are saturated with vacancies, the 

cavities and dislocations can form.  

The manufacturing of crystals without dislocations is a very difficult task. The 

dislocation density (the number of dislocation lines, winch intersect a unit square) is 
232 )1010( сm  in qualitative crystals of silicon and germanium and 

21211 )1010( cm in strongly deformed metallic crystals. 

 

9.6.4 Energy of Dislocation 

 
Assume that in the process of dislocation generation, the crystal is like an elastic 

body. Imagine that we make a cutting inside an ideal crystal (analogues to 9.6.3). Let 

us shift both sides of the cutting relative each other at a distance b.  The mechanic 

work done is the energy of dislocation: 

 .dSbFU d


                                         (9.65) 

The quantity dS is the elementary square of the 

cutting, F


is a mean force (per a unit square) 

acting upon the cutting side while shearing.  

Assume that the crystal is a set of coaxial 

cylinders (Fig9.12).  

For small shearing deformation, the Gook 

law is true: 

 

Fig.9.12 The cylindrical envelope about a 

dislocation: l– the length, dr – thickness, dz – an 

elementary shift, a  force fldr is applied to the 

cross-section, ldr – the elementary square, f – the 

force per a unit square. 

 

dr

линия дислокации

b
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It is assumed that the force time dependence is linear. Hence:  
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The dislocation energy:  
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The energy of a dislocation with the length l: 
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The interaction between dislocations leads to reciprocal compensation of elastic 

strains. The deformations diminish at a distance about an average interval between 

dislocations Experiments show that is about 410  inter-atomic intervals. Thus the 

quantity 1r  is of the same order.  

 

Table 9.2 Elastic modules and dislocation energy 
 

Material Young’s modulus E, 
210 /10 mN  

Shear modulus G, 
210 /10 mN  

dU  (eV) per an inter-

atomic interval 

Aluminium 2.5 2.85 3.1 

Copper 6.0 7.56 5.3 

Silver 12.0 4.40 4.5 

Diamond 95.0 43.0 29 

Germanium 12.9 6.7 18 

KCl 4.1 0.6 9.3 

Silicon 16.7 7.9 19 

Tungsten 50.0 15.1 13 

 

For region at a distance less the one lattice parameter from the dislocation 

centre, the theory discussed is not valid. At a distance of two-three inter-atomic 

intervals, the discrete structure of the dislocation nucleus is of importance. 

Displacements in that region are sufficiently great, and non-linear addends appear in 

the deformation equation. Taking into account that the external (around the nucleus) 

is great, and the phenomena inside the nucleus can be neglected.  

For example, the dislocation energy (9.71) is localised mainly in the deformed 

region (outside the nucleus) (the logarithms weakly depends on 0r . If that quantity is 

of order of one-two inter-atomic intervals, the ratio 01 / rr  is about .105 3  

The Burgers vector is about, A5.2 , the shear modulus ./10 211 mnG   Thus 

dU  is about 9104  joules per meter of a dislocation length or 6eV per an inter-atomic 

distance (2.5 A ). The range of screw dislocation energy is 3 – 10 eV per a unit 

distance along the dislocation line. The dislocation energy [see (9.71)] is listed in 

Table 9.1.  
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Displacement near an edge dislocation is more complicated then that one near a 

screw dislocation. The corresponding calculation is more tiresome but leads to the 

conclusions like the previous ones.  

The number of dislocations does not depend on temperature and is rather small 

(opposite to vacancies). It is due to the great energy of its generation. When the elastic 

energy per an inter-atomic interval is about 8eV, the exponential factor is of no 

importance. That is why the density of dislocation depends on the previous mechanic 

and thermal treatment of a crystal, method of its manufacturing and others.  

 

9.6.5 Crawling and Sliding  
 

Dislocations like point defects can move through a crystalline lattice. There are 

two types of the motion: crawling and sliding.  

When the edge of a dislocation plane moves in or out of the crystal, the process 

is called the crawling. The crawling corresponds to the motion of the dislocation 

upward or downward relative the sliding plane.  

Sliding is the motion of dislocation in the along the plane, which is called 

naturally the plane of sliding. While moving of an edge dislocation from one node to 

another, atoms of the dislocation nucleus perform a little displacement. As a result the 

sliding mechanism is produced (Fig.9.13).   
The motion of a dislocation is shown in Fig.9.14. When a dislocation appears at 

an edge of a crystal and begins to move to the other edge, the upper part of the crystal 

 
 

Fig.9.13. Sliding of dislocations. Coordinated motion of atoms leads to the sliding of a 

dislocation. 

 

 
Fig.9.14. The motion of an edge dislocation through a crystal along the sliding plane When the 

dislocation passes through the crystal, the upper part would displace relative the down one at a 

distance of the Burgers vector length. 
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displaces relative the down one at a distance equal to the lattice parameter. That is due 

to the shear strain.  

The smooth motion is also possible for screw dislocations. As it was said 

before, all planes containing the screw dislocation, contain the Burgers vector. That is 

why the screw dislocation can slide in any direction. Hence, all the planes with a 

screw dislocation are the planes of smooth motion. All dislocation lines, which are not 

parallel to its Burgers vector, have only one plane of sliding.  

After the screw dislocation has passed through a crystal, its form is changed in a 

way different then that one when an edge dislocation performs the throughout motion.  

A glance at Fig.9.8 shows that the step on the crystal surface is not parallel to a 

screw dislocation (opposite to an edge dislocation). The step appears at the end points 

of a crystal, and follows the dislocation when it moves through the crystal.  

 

9.6.6 Mobility and Reproducing of Dislocations 

 
To move and reproduce dislocations, the strains are not to be great. That fact is  

 

of very importance in the processes of plastic deformation.  

The relative small resistance of crystals is due to dislocations. The elasticity of 

crystals is small, and at the great strains a crystal either plastically deforms or breaks. 

In an ideal crystal, the elastic deformation should be about ½ before the plastic 

deformation would start. Opposite to that statement, the experiments show that the 

plasticity process begins at deformations about 34 1010   .  

To produce the residual deformation, the atoms are to displace from one place 

to another and can not return back. If the displacement is small, an atom can return 

back when the strain is released, and the deformation is elastic.  

The critical situation would be reached when an atom is displaced at a distance 

greater then the half of the lattice period. The atom would be displaced in another 

equilibrium position. According to Gook’s law to produce that, the strain must be the 

half of Yong’s modulus ( 211 /10 mN ). More accurate consideration leads to the 

quantity by the factor 10 less: ./10 210 mN  

In accordance with experimental data, the plastic deformations begin at the 

strains ./1010 265 mN   

Dislocations begin to move at the strains much less then the shear modulus. To 

move a dislocation from one row of atoms to another, very small change in atomic 

disposition is needed (see Fig.9.13). Inside the dislocation center, displacements of 

some atoms are great and a small force is needed to move them further. If the 

dislocation nucleus is great in comparison with the lattice parameter, the strain needed 

to shift a dislocation is very small. If the size of a dislocation nucleus is like that one 

of the lattice parameter, the shear strains are the same as the shear modulus.  

Many crystals with a small number of dislocations are soft and plastic (for 

example metals). The crystals like diamond, germanium, and silicon are not 

plastically deformed at room temperature; they just destroy. The fragility of those 

crystals is due to the fact that the process of destroying begins before then dislocations 

can produce great shearing.  At high temperature, the germanium and silicon crystals 

(and many others) become plastic.  

We assume that in the deformation process, the dislocation reproduce. Indeed 

the number of dislocations before the strain is applied is not sufficient to produce 
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great plastic deformations. An inspection of deformed monocrystals proves 

dislocations reproduce.  

Frank and Reed (Fig.9.15) proposed a mechanism of the dislocation 

reproducing.   

 

When the strain increases the initial dislocation segment b is curved and 

transforms in series b – c – d – e. When the jog e constricts the segment restores its 

configuration building the expanding dislocation loop.  

 

 

 
Fir.9.15. A Franck – Reed source. Plane or the figure is the plane of sliding of the dislocation 

segment DD’. The points D and D’ are the points of fixation.  is the strain applied to the 

lattice. b is the force acting upon the segment DD’. (a) – The linear segment of the dislocation 

DD’ is curved proportionally to the applied strain. (b) – A curvature reaches the maximum at a 

critical strain. The dislocation becomes unstable and expands. (c), (d) – The dislocation expands 

and transforms into a loop. (e) – Both sliding regions unite. A closed dislocation loop appears. 

The form of the segment DD’ is restored. The repetition of the procedure described leads to 

formation of the following loop and so on.  
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9.6.7 Interaction of Dislocations 
 

The experiments prove that the critical strain of plastic deformation depends not 

only on intrinsic mobility of dislocations but also in great measure on forces needed 

for a dislocation to overcome the different defects in a crystal. Indeed metallic crystals 

manufactured without impurities, grain boundaries etc., are very plastic. Impurities 

can strongly diminish the local energy of dislocation.  

In engineering attempts are made to produce alloys of very high stability. The 

following story is very typical. The iron monocrystals are very plastic. The plastic 

deformation begins at the strain about ./105 25 mN  From the other hand, a steel with 

a plastic deformation limit 100 times more can be produced. For that porpoise 

alloying by carbon, magnum, tungsten, molybdenum, vanadium is used. Those 

ingredients interact with dislocations and break its motion. The grains in steel are 

small. Thus the light sliding of a dislocation occurs at relative short distances till the 

border of a grain, which retards the motion of the dislocation.  

Dislocations strongly interact with each other. At the first stage of the plastic 

flow, an almost ideal crystal deforms very easily. But the greater is the deformation 

the greater are the strains needed to deform the lattice. It is due to the great increment 

of dislocations. Sa a result, dislocations intersect with each other and their motion 

becomes slower. That phenomenon is called the riveting and is widely used to 

increase the mechanic stability of metals. 

 


