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9. Defects of a Crystalline Lattice and Diffusion in 
Solids 

 
9.1 Classification of Defects 

 

In real crystals there are defects, i.e. the violations of periodicity. These structural 

defects strongly affect the crystal properties: electric conductivity, stability, plasticity, 

photoelectric conductivity, luminescence, color and others.   

The defects are subdivided in accordance with their geometry. Four classes of 

defects are known: the point or atomic, linear, surface, and volume defects.  

Atoms of impurity, vacancies in crystal nodes, atoms displaced from normal 

position and like are called the point defects.  

The shift of a great number of atoms from their normal position is called the linear 

defect.  

The boundary of grains, mosaics, and twinning, an interface between the solid and 

liquid phase, the external surface of a crystal are called the surface defects.  

When there are volume defects, the second phase is produced. In produced 

heterogeneous system, the second phase does not affect much structural properties of 

the mother phase, but the properties of the substance as a whole can be appreciatively 

changed.  

Very often an atom displaced to the surface of a crystal and produced vacancy is 

called the Schottky defect In crystals formed by the different sorts of atoms there can 

be several types of the Schottky defects with differ surrounding of the vacant node. 

Usually in binary compounds the defect concentrations of both components are the 

same. Thus, the Schottky defect is a pair of volume charges  of opposite sing, which are 

not necessarily located near each other. The defects are observed in crystals with tight 

packing where formation of inter-node atoms is performed with great difficulty. The 

generation of the Schottky defects increases the crystal volume. These defects dominate 

in alkaline-haloid crystals.  

An atom displaced from the node to the crystal surface is called the inter-node 

atom.. If an atom is displaced from a node (the vacancy is formed) to the inter-atomic 

place inside the crystal the pair defect is generated too. That defect is called the Frenkel 

deffect. Those defects have been thoroughly investigated. The Frenkel defects are easily 

generated in crystals when the distance between atoms is great.  

The generation of defects is shown in Fig9.1. The vacancies and inter-node atoms 

can move through a crystal. 

The point defects can be in thermodynamic equilibrium at room temperature. The 

linear and surface defects are metastable.  Thus it is possible to produce a crystal 

without linear and surface defects (not taking into account the external surface) but the 

point defects are present always.  

Defects affect the structure. They interact with each other and form associations. 

For example, the vacancies can build pairs or even bigger complexes. The inner 

dislocations unite with the edge dislocations building steps along the dislocation line. 

The impurity atoms and vacancies form the impurity ‘atmosphere’ around dislocations. 

Impurities strongly affect the electric, magnetic, optic, thermal, and mechanic 

properties. Even more, the equilibrium concentration of intrinsic defects depends on that 

one of impurities.  
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9.2 Point Defects in the Equilibrium State 
 

Assume that generation of point defects is an equilibrium process. In an euilibrium 

state, the free energy of a system is minimal.  

The process performs at constant pressure and the Gibbs potential is to be used:  

 

TSHG                                                          (9.1) 

 

The quantity H is enthalpy. S is entropy. It is known that [5]:    

PkS B ln                                                            (9.2) 

The quantity kB is the Boltzmann constant, P is a thermodynamic probability. 

Thermodynamic probability is a number of possibilities by which the system can be 

build.   That kind of entropy is called (in the theory of defects) the configuration 

entropy because it describes the redistribution of lattice atoms.  

Assume that atoms (N) of a crystal occupy all the nodes. While heating, a small 

(in comparison with N) number of atoms (n) displace on to the external side of the 

crystal. Thus n new nodes and vacancies are formed. The number of unlike 

combinations to distribute the atoms into (N + n) nodes:   
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In accordance with the Stirling formula:  

 NNNN  ln!ln                                                            (9.4) 

It follows from (9.4):  

    nnNNnNnNP lnlnlnln                                     (9.5) 

Assume that the number of vacancies п (n < N) is the only variable and the quantity ESh     

is the enthalpy increment when one vacation is produced, then for all vacancies: 

Н = пESh. The Gibbs potential:  

    nnNNnNnnNNTknEG B lnlnlnlnSh                  (9.6) 

The equilibrium condition:  

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.9.1. Thermal defects in crystals  

The Schottky defect  The Frenkel defect  
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Differentiating (9.6):  
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Having in mind that п << N: 
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For copper the activation energy ESh  1,610
-19

 jole. At temperature of 1000 К:  
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In binary compounds when cation and anion vacancies are formed in pairs, a crystal is 

electrically neutral:   
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It corresponds the Schottky model. Following the mentioned procedure:  
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ES is the pair vacancy enthalpy. Hence:  
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Let us use the Frenkel model. Assume that there are N nodes. A certain quantity of 

atoms (n) leave their nodes and occupy the (N') places between the nodes. The number 

of possibilities for n vacancies to be distributed into N nodes:  
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The number of possibilities for n vacancies to be distributed into N' inter-nodes:  
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The configuration entropy increment:  
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Applying the Stirling formula:  
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If the enthalpy of a Frenkel defect is E, Н = п E. Following the standard procedure we 

get:  
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Having in mind that п << N and п << N’ the number of Frenkel pairs:  
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Discussing the both types of defects, we have not taken into account the 

oscillation frequency change caused by vacancies and inter-node atoms, which distort 

the crystalline structure. To take that circumstance into account, a thermal entropy SТ is 

of use. That quantity characterizes the number of ways to distribute the energy between 

the frequencies.  

When there are z closest neighbors near a vacancy, a number of oscillators (3nz) 

with frequency ’    and (3N - 3пz) with frequency  are generated. The calculation 

leads to:  
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In accordance with the standard procedure, the Schottky defect concentration:  
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The Frenkel defect concentration:  
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For NaCl, the quantity (/’)
3z 
 64.  

When the vacation concentration is great, the associations of two, three, and more 

vacancies are built. Cavities can be formed. The energy of vacancy complexes is always 

less then the energy of isolated vacancies. For example the energy of a binary vacancy:  

cVV2 2 EEE   ,                                              (9.21) 

The quantity cE  is the bond energy. VE is the energy needed to build up a vacancy.  

In real crystals there are impurities. The complex defect-impurity can be produced. 

Its production depends on defect and impurity concentration. The concentration of 

vacancy-impurity atom complex (in equilibrium state): 











 Tk

E
zV

CI

C

B

c

0

exp .                                            (9.22) 

 

The quantity С and I0 is the concentration of complex and impurity (in atomic units), z –

 coordination number of impurity, Ес – the bond energy between the vacancy and 

impurity atom, V – the relative concentration of vacancies.  

We can expect the vacancies are attracted to the constriction zones and intr-node 

atoms are attracted to lengthening zones. The theory of defect-impurity interaction is 

very complicated.  

 

9.3.  Diffusion 
 

The Fick lows describe the phenomenon. Assume that component concentration of 

a binary alloy is not uniform. C is the impurity concentration, which depends on time 

and space. The diffusion flux is produced.  

The first Fick law states that the diffusion flux is proportional to the concentration 

gradient:  
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The quantity D1 is called the diffusion coefficient. The sign ‘minus’ in (9.23) means 

that the direction of the flux is opposite the gradient. It was observed that the flux in a 

given direction is proportional to gradients along other directions ( the generalized Fick 

law):  
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The quantity Dij is a flux in (i)-direction produced by the (j)-component of 

gradient.  

Introducing three ort i1, i2, and i3, the density flux:   
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The analysis shows that the quantities Dij are components of a tensor of the second rank:  
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Thus the Fick law:  

C DJ .                                                          (9.29) 

 

The second Fick law can be deduced from the first one. The continuity equation:   
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The equation states that the mass increment in s given volume is due to the fluxes of 

mass entering and leaving that volume.  

Introducing (9.29) into (9.30) we arrive to the second Fick law:  
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In scalar terms, equation (9.31) is written as follows:  
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 (9.32) 

 

We can chose a coordinate system in which the tensor is diagonal:  
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The quantity D1, D2, and D3 are called the principal diffusion coefficients. The axes of 

the coordinate system are called the principal axes of the diffusion tensor.  

In isotropic cubic structures D1= D2= D3. The diffusion laws are:  

 

CD J ,                                                        (9.34) 
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The temperature dependence of diffusion coefficient very often is:  

 

 TkEDD B/exp0  .   (9.36) 

 

.The quantity Е is the activation 

energy. The experimental data 

of diffusion of carbon in α-iron  

(Е=0.87 eV, D0= 0.020 cm
2
/с) 

are shown in Fig.9.2. . 

To diffuse, an atom has to 

pass the potential barrier 

produce by its closest 

neighbors. Let us discuss 

diffusion of impurity atoms 

through inter-nodes. The result 

could be applied while 

discussing the diffusion of 

holes. If the barrier height is  Е, 

the probability of penetration 

through the barrier is 

proportional to ехр(—Е/kBТ). 

The probability per second 

 

  TkEP B/exp  .                                                (9.37) 

Fig.9.2. The temperature dependence of diffusion 

coefficient of carbon in  - iron 
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The quantity ν (about 10
14

) is a number of strokes onto barrier per second (frequency).  

Let us imagine two parallel planes filled with impurity atoms located in inter-node 

positions. The distance between the planes designate by ‘a’. The number of atoms in 

one plane is S. The number of atoms in the other plane 
dx

dS
aS  . The atomic flux per 

second 
dx

dS
pa . If N is the impurity concentration, then S = аN atoms/cm

2
. The 

diffusion flux density:  

dx

dN
paJ N

2 .                                                         (9.38) 

Comparing (9.38) and (9.34) and having in mind (9.37) we get 

 TkEaD B/exp2  .                                                (9.39) 

Thus: 2
0 aD  .                                                 

Using the equation qDTkB   we find the ion mobility and conductivity:   

 

   TkETkaq BB /exp/2  ,                                           (9.40) 

   TkETkaNqNq BB /exp/22  .                                (9.41) 

 

N is the impurity ion concentration (the charge q).    

When the two valence metallic ions dominate the number of vacancies, the 

relative quantity of vacancies does not depend on temperature. The derivative of the 

dependence of lnσ on 1/kBT determines the activation energy (Е+ ) needed for positive 

ion vacancies to overcome the potential barrier.  At room temperature about one 

vacancy overcomes the barrier per second. At 100 °К, that quantity diminishes to 10
-25

. 

When the heat generation of defects dominates the relative number of vacancies:  

 

  TkEf Bf /exp  .                                                (9.42) 

 

 Еf  is the activation energy of the vacancy pair. The derivative [in accordance with 

(9.40) and (9.42)] is Е++Еf /2.  

The direct measurement of the diffusion coefficient can be made by the 

radioactive indicator method. To do it, it is necessary to find the variation of the initial 

time-space radioactive ion distribution. The found quantities can be compared with 

those ones from ion conductivity measurements. The data of the two types of 

measurements do not coincide. May be it is due to some diffusion mechanism, which is 

not associated with the electric charge transportation. The diffusion of vacancies of the 

opposite sign and two valence ion-vacancy complexes may be the cause.  

While investigating the vacancy diffusion, the diffusion coefficients measured by 

two mentioned methods must differ a little.  

The diffusion coefficient of radioactive atoms is smaller then that one of 

vacancies. Let us imagine that a radioactive atom passed the barrier (forward) and 

occupied the vacancy. The vacancy is ‘behind’ the atom. There is a probability that 

atom can ‘jump’ back and populate the vacant node. 
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Diffusion of basic atoms of a substance is called the self-diffusion. The activation 

energy needed to initiate that process in copper according to calculation of Handingtone  

is 2.4 – 2.7eV (along vacancies) and 5.1 – 6.4eV (along inter-nodes). The experimental 

data are 1.7 – 2.1eV.  

Thus the migration energy of metals is about 1eV, and the effective frequency is 

about 10
13

 с
-1

. At temperature 1000K the number of jumps is about 10
8
 per second. That 

quantity rapidly decreases with temperature.  

 

9.4 The diffusion coefficient 

 

 
Таблица 9.1.  

Metal 

 

D0, 

cm
2
 /с 

 

E, 

cal/mol 

 

D0, 

cm
2
 /с 

 

E, 

cal/mol 

 
Aluminum 0,035 

 

28750 

 

Niobium 

 

1,1 

 Chrome 

 

0.20 

 

73700 

 

Palladium 

 

0,21 

 Cobalt 

 

0,83 

 

67700 

 

Platinum 0,33 

 Copper 

 

0,62 

 

49560 

 

Potassium 

 

0,31 

 Germanium  7,8 68500 Silicon 

 

1,800 

 Gold 0,091 41700 Silver 

 

0,44 

 α-Iron 2,0 

 

57300 

 

Sodium 0,145 

 Lead 1,37 

 

26060 

 

Tantalum 

 

0,124 

 Lithium 0,39 

 

13490 

 

β-Thallium 

 

0,7 

 Molybdenum 0,1 

 

92200 

 

Α-Thorium 

 

 

 

1.2 

 Nickel 

 

1,9 

 

68000 

 

Tungsten 

 

42,8 

  

There are the following formulas:  
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Atomic concentration of vacancies:  
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Thus, the equation (9.43) – (9.54) can be written as follows:  
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The inter-node diffusion:  

                                                            2
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m
IVV *

.                                                           

Vacancy diffusion:  
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Self-diffusion:  
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fm VVV  * .                                                           

The quantity DI, Dv, and Ds are the coefficients of diffusion through inter-nodes, 

vacancies and intrinsic atoms;  is the frequency; rI, rL the distance between inter-nodes 

and the distance between atoms; VI, Vv are the migration volumes of an inter-node atom  

and vacancy; P is the pressure. The formula (9.50) are of success.  

 

9.5. Surface Defects 
 

An inter-grain boundary is a region between two neighbor grains of different 

space orientation. Five parameters are needed to characterize the orientation of grains.  

Three of them give position of the second grain relative the first crystal; two parameters 

describe the orientation of the boundary plane.   

Imagine two simple cubic crystals with a common axis  [001].  

Fig.9.3. The dislocation structure of the boundary between crystals  
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The grains are shifted at angle  relative each other (Fig.9.3). The boundary 

surface is the plane of symmetry. The boundary is called the simple or inclined 

boundary. When two disoriented grains are brought together a binary crystal is build. 

In boundary region there are two defects: displacement of atoms from their usual 

positions (Fig.9.3a) and the elastic deformation (Fig.9.3b). 

The boundary atoms can not provide the smooth conjugation of disoriented atomic 

structures. Thus, certain atomic planes do not pass through entire crystal, but end at the 

grain boundary and form the linear dislocations. The distance D between dislocations 

is given by:  

θ
2

θ
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D

b
                                         (9.51) 

The dislocation theory proves that: the row of dislocations is the only way to unite 

grains; dislocations are linear and parallel to the common axis. Their Burgers vectors 

are of [100] type  

The energy of elastic deformation per an unit square of the boundary surface:  

 ,lnθ-Aθ0EE                                           (9.52) 

The quantity А is a constant, the quantity Е0 depends on the dislocation type. For the 

simple inclined boundary:  
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G is a shear module,  is the Poisson ratio, В is a constant characterizing the energy of 

the dislocation nucleus.  

Dependence of inclined boundary energy on the angle between the grains is shown 

in Fig.9.4.  

The dislocation boundary strain field is the superposition of separate dislocation 

strain fields. The borders attract the impurity atoms and point defects, thus they are 

places of accumulation of impurities and defects. The surface concentration of impurity 

atoms at the boundary is about 10
14 

сm
-2

. Thus we can speak about the preferable 

segregation of impurities along the inter-grain border.  Those borders are the places of 

sharp changing of all properties of crystals.  

 

Twinning. When the condition for sliding does not hold the plastic deformation 

performs by twinning. Twinning is a special shearing when two parts of a crystals 

Fig.9.4 The bound energy as 

function of the shift angle 
Fig.9.5. Twinning  
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become the mirror reflection of each other relative the border (the twinning plane). If a 

crystallographic plane is a plane of twinning, it is called the coherent twinning border 

(Fig.9.5).    

The free surface energy of the coherent twinning border is very small in 

comparison with that quantity of others boundaries. While growing, the crystalline 

conglomerates are often formed. The conglomerates build of two or more crystals are 

called the twins. In twins, one crystalline aggregate is either turned relative the other at 

the angle of 180° or is a mirror reflection of the other.  

In a diamond structure, the plane {111} is the only coherent twinning border. In 

germanium, the twins are very thin plates formed spontaneously while uncontrolled 

crystallization from an overcooled liquid. It is used in the process of fast growing of 

dendrites. 

 

 

 


