8.1 Polarization of Dielectrics.

While describing the polarization of dielectrics (without conduction) in an external
field, the dependence of a polarization vector and the macroscopic field strength is
under investigation. Besides the local electric field is being found. The dipole moment
of an atom depends on that field strength.

8.1.1 Polarization

The dipole moment of a unit volume is called the polarization:

P = Np;j, (8.1)
N — the number of molecules per unit volume, p; — the dipole moment of a molecule.
A constant voltage is applied through a capacitor

¥ -a A (Fig.8.1). The quantity o is the surface-bound density
+ (= > - of free charges. A dielectric installed inside the
+ (=1 +—=|- capacitor would be polarized. Upon the external
= +—=|"- surfaces of dielectric, the bond charges would be

I '; - N ~ |- generated (the surface density o’).
+ |Es—]- N ] The macroscopic field consists of two
+ = - . components: the external field Eo and the polarization

e field E1:
. g' -3 g' E=Eq+E;. (8.2
- , T A glance at Fig.8.1 shows that the polarization
%0 < field is opposite to the external one.

In an isotropy dielectric, the polarization is
Fig.8.1. A capacitor with a proportional to the effective field:
dielectric
P =yeoE, (8.3)
The quantity y is called the dielectric susceptibility, o is called the electric constant.
Because of polarization, the electric field inside the dielectric differs from the
external field. The bound charge density ¢’ and normal component of polarization P,
are related by: o’ = Py, i.e.
c'=yegE, (8.4)
E is the normal component.
The electric field strength in dielectric:

Ez(G_G):(G'XSOE)’ (85)
€0 €0
The Gauss theorem:
feoEds =(q+q), (8.6)
The quantities g and g’ — the free and bound charges. Having in mind that §Pds =—q'
f(egE+P)ds=q. (8.7)
The displacement vector:
D=goE+P. (8.8)
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The field acting upon a molecule can considerably differ from the macroscopic
one (Fig.8.2). Lorenz has shown that the local field strength is represented by:

E;=Eqg+E;+E>;+E3 (89)

E, — the field produced by external charges, E; - polarization field produced by the

-—

E,

- ——

0%

Eg-Bremnee noae; E1 - aenonapusyiomee no.ie, CES3AHHOE ¢ 3apARAMH Ha
BHelHel nokepxaocTH 06pasya; K- momne, cozgapaemoe sapsamamMu ma
BHyTpeHHel NoRepxHOCTH cdepbl; K3 - noJie ot guN0JIeH BHYTPH NOJIOCTH.
JLIA KpHCTALIOE KyOH4eck ol cuvmerpun E 3 pasHo Hymo.

Fig.8.2. The intrinsic electric field acting upon an atom

bound charges. E, —the Lorenz field (in a cavity), Ez—an atomic field inside the cavity.

The sum of external and polarization field is an effective macroscopic field in
dielectric: E = Eq + E;. The field E3 is the field produced by the molecules, which are
located inside the sphere in its center. It was shown [2] that usually (because of the
spherical symmetry) Es is zero. It takes place in gases, non-polar liquids and crystals of
cubic structure.

Let us imagine that there is a spherical cavity inside of a uniform dielectric. There
is a molecule inside the sphere. The size of the molecule is much less then that of the

PT sphere. Upon the sphere surface, a bound charge is
Rsin® induced. Its density:

/- - o =P, =Pcosh. (8.10)
/ The induced charge generates the field £, (Lorenz, 1878).
8.1.2. The Lorenz Field

In the spherical coordinate system, the elementary
A area:
3 dS = R?sin0dode . (8.11)
In accordance with the Coulomb law, taking into
account (8.10), the electric field strength in the sphere
Fig.8.3. A Lorenz field center:
dE - csst2 _ Pcossin Oded(p. (8.12)
4megR 4ne
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Obviously:
Pcos20sin 0dodo

dE, = dEcos = (8.13)
47'580
Integration of (8.13) leads to:
T 21 cos30 )
4megE, = P [cos?0sin0do [de = 2nP| - (8.14)
0 0 3 0
Thus:
E, = (8.15)
380
The local field strength (SI-units):
E, =E+ P (8.16)
3,
The ratio between the local and macroscopic field is as follows:
E, :8;25 (8.17)

When ¢>1, E_. ~E. Wheng>>1, E_ > E.

Thus the field acting upon a molecule differs from the macroscopic field. The
local field strength consists of three components: the macroscopic field, Lorenz field,
and molecular field.

8.2 A Klausius — Mocotty Equation

The equation connects the permittivity and polarizability of a dielectric.
Polarization of dielectric is proportional the field strength:

P=g,noE, . (8.18)
The quantity » is the concentration of molecules, o -polarizability.
The quantity o is a sum of an electron (o ) and dipole (agip) polarizability. For

non-polar dielectrics: o = o.er; for polar dielectrics: o = oter + oLgip.
Substituting (8.17) into (8,18) we get:

P :aona%E. (8.19)
Having in mind that:
P=¢gp(e-1E. (8.20)
We arrive at The Klausius — Mocotty equation:
e-1_no (8.21)
e+2 3
For a mixture of molecules:
e-1 N
= : 8.22
eE+2 z 3 ( )
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8.3 Polarizability

There are three components of polarizability: electron, ion, and dipole. The first
one is due to the electron shell displacement, the second the displacement of ions. The
third one is caused by the orientation of polar molecules in an electric field (see
Fig.8.4).

Fig.8.4. The basic components of polarization
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At high frequency, the electron polarizability is of importance (because of inertia of
atoms and molecules). In the optic frequency region, the equation (8.22) transforms
into:
n2 -1 . niOL?I
n? +2 i 3
Experimental data confirm that formula.

(8.23)

8.3.1 An Electron Polarizability

The frequency of resonance absorption of electromagnetic waves by atoms:

2
o = (B/m)*?, (8.24)
The quantity B is called the force constant. The electron displacement produced by the
field can be found from:
—€Ejoe = BX = MwfX. (8.25)
For static electron polarizability:
2
of =B o2 o2 (8.26)
Eloc Eloc Mg
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An atomic electron may be considered as a harmonic oscillator, which oscillates in
a periodical electric field E;y. sinot:

d 2X 2 .
Mm——-+MogX = —Ejoc SNt (8.27)
dt
The solution is chosen as: X = Xg Sinwt . Thus:
m(— o? + 0§ )xo = —€E}qc. (8.28)
The dipole amplitude:
2
e“E
Po =—€Xg = > loc >\ (829)
Miwg — o
Hence:
2
o el (8.30)
2_ 27 '
Wy —

In an optical frequency region, the dispersion is rather weak for a great number of
transparent substances.

8.3.2 An Orientation (Dipole) Polarizability

We remind our readers that quantity p = gl is called the dipole. In an electric field,
the dipole tends to orient along the field direction. The heat motion violates the
orientation influence of the electric field.

The torque:

M = pEsin®, (8.31)
0 is the angle between p and E. An elementary work performed by the field while
rotating the dipole through the angle do6:
dA = Mdb = pEsin6do, (8.32)
The dipole potential energy:
U = [Md6 = —pE cos, (8.33)

In accordance with the classical distribution, the probability of orientation inside the
space angle dQ:

U pEcoso
do=ae “dQ=ae Y dQ, (8.34)
The number of electrons with dipole moment oriented inside the angle dQ:
pPE cos 6
dn=nae K dQ. (8.35)
Polarization of the substance:
dP = pcos6dn, (8.36)
- pE cos 6 o
P=[pcosodn=[pnae KT cosOsin6do [do. (8.37)
0 0
Designate by p the molecule dipole (along the field direction). (8.38)
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Introduce the coordinates:

y=co0s6, x=pE/KT. (8.39)
Equation (8.38) takes the form:
+1
[e¥ydy
p=pt——r: (8.40)
[eXdy
-1

The denominator integral is elementary. The standard procedure is used to calculate the
numerator integral:

i[ieyxdy = %(ex —e_x) (8.41)
i[ieyxydy:%(ex —e‘x)—xiz(ex—e_x) (8.42)

Hence:

—= X —X
Bzi_izcthx_lz L(X). (8.43)
P eX_e X X X

The function L(x) is called the Lanjeven function. When x < 1 (weak field, or high
temperature) the function can be decompose in series:

3
X X
L(X)==——+.... 8.44
() T (8.44)
We can write:
= 22
P_PEN_PET (8.45)
p 3kT| 15k°T?
In zero approximation:
2
. p°E
=——, 8.46
P 3KT (8.46)

If E = E., = 3KT/p, p=p, polarization saturates.
Having in mind that

ﬁ = So(ldipE . (8.47)
and comparing (8.46) and (8.47) we get:
2
Ofin = ——— . 8.48
9P = 3 kT (8.48)
The Klausius-Mocotti equation:
) 2
el _Njel, P° | (8.49)
e+2 3 3eokT
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Assuming € + 2 = 3:

pz

g-1=n o + : (8.50)
380kT

At room temperature, dipole polarizability ogip is of the same order as electron one o,

The dependence of the quantity (e - 1) on the inverse 1/T is lineary (Fig.8.6). At high

temperature, ¢ -1~ na® (if T — oo, ogip— 0). The inclination angle is defined by:
2

_p
top = 3gok
Oxides, vapors of water and organic substances are polar gases.

Polarizability of polar liquids

The water, alcohol, cellulose are polar liquids. The dipole
E, moments of water and alcohol are about 6-10°
30 Col-m ~ 2debye. The intrinsic electric field is about
10° V/m. That field handicaps the dipoles to orient in an
external field.
Let us assume that besides the local field E, (8.16), the

additional field E; >> E, acts upon a polar molecule.

A Orientation of E, is arbitrary. Because E, >> E; we assume
T that 6 ~ y (Fig.8.5). The equilibrium condition:

{ E|siny=E,sing, (8.51)

Fig.8.5. An electric
field of polar liquids  that can be written (6 = ) as follows:

: E .
Sln(p=—|S|n9, (8.52)
Ea
The electric field strength:
By = E2 +E] +2E,E; cos0. (8.53)

Having in mind that E; >> E; and decomposing the radical:

Ei = Ea(1+ Ecosé)j. (8.54)
Ea
The average projection p of the molecule dipole moment p upon the field direction E;

can be described [see (8.43)] as follows:

p PE;

P BBy, 8.55

- (ij (¥) (8.55)
y=PE_PEaly, B oso. (8.56)

kKT ~ kT | Ea

Introducing X =

E . . . .
P Ta and decomposing the Lanjeven function in series by the powers

of E| /Ea we get (in the first approximation):
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_ E _ du(x), B
L(y) = LHH E, cos eﬂ = L(x)+ o X E, cos 6. (8.57)

The dipole moment projection p; (onto the macroscopic field E):

_ dL(x)_ E
= p| L(X)+——%Xx——c0s0 |. 8.58
Pt p{() o “E, } (8.58)
The projection onto the field E;
P = Pt COS . (8.59)
Taking into account (8.52) and that the angle is small:
cos y = cos(8 — @) = cosBcose + sindsing = coso + :—'sinch , (8.60)
a

P = Pt (cose+|§—'sin2(p] =

a

, (8.61)
=p L(x)+dL—(X)xﬂcose cose+ﬂsin2(p
dx Ej Ea
Finding the average quantities and having in mind that L(x)= L(x):
cos6=0; (8.62)
—— 14 1™ 5 2
sin® 6 =— [sin 6dQ = — [sin“ 62rsin 6d6 = = ; (8.63)
47 0 47 0 3
2 147 2 1% 5 . 1
cos“ 0 =— [cos 6dQ = — [cos” 62msinOdO = . (8.64)
47 0 47 0 3
In thefirst approximation:
p; = p| L(x)cosO + L(x)ﬂsin2 0+ OII'(X)xﬂcosz 0=
E, dx Ej
(8.65)
= pi[ZL(X)-I- x—dL(X)}
3E, dx
Differentiating the Lanjeven function with respect to x:
_PEIf 2 )] (8.66)
= 3T | |
PI = €p0dipEr - (8.67)
It follows from (8.66) and (8.67):
2 2
P b— 12 (x)] P Rx). (8.69)

Odin = =
dip = 3 kT 3ekT

The quantity R(x)=1- L2(x) is called the reduction factor. It is a ratio of

polarizability of the liquid and gas. There is an intrinsic friction inside the liquid. Hence
that quantity is less then unit. The reduction factor of water is 0.2.
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Thus the Klausius-Mocotti equation for polar liquids differs from (8.49) only by
the reduction factor:

_ 2
R L - - ) (8.69)
e+l 3 3eokT

In order to find polarizability, the solution of polar dielectrics in non-polar solvent is
used. At low concentration the distance between soluble molecules is great. The gas

approximation is valid [see (8.49)]. Having in mind that oy = ocgl +Olgep

el el 2
c-1 Mo noo n
I e SN et B 2P

e+l 3 3 OgpkT '

(8.70)

8.3.3 Polarization of lon Dielectric Solids and Heterogeneous
Compounds

In any dielectric there are two types of polarization: electronic and ionic. The relaxation
time of electron polarization is 10 ¢. The relaxation time of ion polarization is 10™ c.
The relaxation time depends on the free-running frequency of dipole oscillation. For a
binary crystal, the effective mass must be used:

= M' (8.71)
Ml +M 2
The frequency of free oscillation:
o=.k/M, (8.72)

The quantity k is the elasticity coefficient. Hence: ®°M = Jk/M .

Under action of the force qE, ions displace from an equilibrium position at a
distance Ax = qE/k. A dipole moment is produced: p = g°E/k. Taking into account that
p= SoOiE:

2
Mi+M
o =~ 2T T2 (8.73)
ggo° MMy
Multiplying by the square of the Avogadro number:
2
N
0ti=q ;\_H1+M2' (8.74)
EQO HiH2
ug and pp is a molar mass. Introducing the ion concentration N we arrive at:
2
N
pj =goN A HLTH2 g (8.75)
EQO Hik2
Taking into account the electron polarization:
2
N
pizaoN(ocel+oci)E:eoN o + 9 ?-““”2 E. (8.76)
gQO HiH2

The quantity o :ocf' +(ng is the sum of electron polarizability of components.

Having in mind that:
p; =go(e—1)E, (8.77)
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we arrive at last to:

2
Na® + N3 N?-“”“Z —g-1 (8.78)
) H1k2

That equation is known as the Born formula. The quantity € includes the electron
and ion polarization. Sometime it is convenient to use the optic permittivity e.:
-1 N
E7 N (8.79)
e+2 3

e+2~3
£ =1+a®. (8.80)

We remind our readers that n =,/ u . For non-magnetic substance: ¢, = n?. Thus,
we get:

2
N q NA . Hg +Ho (881)

800)2 Hik2

It should be noted that the theoretical quantities are always less the experimental
data. It is due to the fact that the macroscopic field was used instead the local one. For
crystals with great permittivity, the formula (8.81) is not true.

For a two-phase heterogeneous compound, a Lichteneker formula is valid.

e™ =xe]" +(1—x e (8.81)

e=n’+

The quantity x; and (1- x;) is the volume concentration, &; and €, is permittivity, m
depends of the system geometry. The formula is widely used when the permittivity of
slide dielectric is under investigation.

8.4 Polarization of Dielectrics in an Alternating Field and the
Dielectric Losses

In previous section, the polarization of dielectrics in a constant electric field has been
discussed. In the following section, the transition processes are being investigated.

8.4.1 Transition Process when a Field is Switched in and
Switched off

Assume that an external uniform electric field E is switched in instantaneously. The
polarization P retards from the field, and its maximal magnitude P. is installed only
after a certain time interval. That interval can be subdivided into two parts.
In time interval of order of 10™* - 10, the “non-inertial” polarization (P..) is installed.
In the following period, the relaxation polarization is installed.
For the non-inertial polarization:

P, =gg(es -1)E, (8. 82)
The installed magnitude:

P. =gg(ec -1)E. (8. 83)
The relaxation polarization:
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Pye =P - Py =g0(ec - €0 )E. (8. 84)

The time dependence:
t

P,=P,|1-eT|. (8. 85)

If in the dielectric there are no volume charges and its resistance is constant, the
displacement current and relaxation polarization current density can be easily found.
When an external field is switched in, the polarization instantaneously is
diminished by P, In the following time interval:
t
P,=P,e . (8. 86)

There is a relation between the relaxation time (t) and the lifetime of relaxators

(’E It) .

_ Tore
T= —— , (8.87)
1- OLd N

N kis the molecule concentration.
Thus the speed of polarization is dominated by the dipole component.
Obviously:

LA L (8.88)

Sc-l_sOO-l n

= —0l . 8.88a
6ct+2 e, +2 30 (8.882)
Hence:
gc+2
T= Toe s 8.89
€op +2 e ( )

The formula (8.89) is a relation between the relaxation time and lifetime of a molecule.
Because &; > &4, T > 1. Inequality t > 1, is due to the fact that the local field acting
upon a relaxator increases up to its stationary magnitude.

For an arbitrary alternating field:

t—t;
Py 0)= solec ) [ Ee © % .50
The entire polarization:
t-t;
P() = Py + P, =060 ~DE(t)+ 20 (6 — 520 j E(te - d% (8. 91)
8.4.2 Polarization in an Alternating Field
Assume that the polarization field follows the law:
E(t) = Ey,sinot. (8.92)
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In accordance with (8.91):

¢ t-t,

dt;

P(t) = &g (eo —1)Em sinot +&q(ec —€4 ) j Em Sin((ot)-e_ T —. (8.93)
T
The integral:
5
t T ey
| Emsin(ot)-e Tdtj = ———(sinot ~orcoswt).
o 1+ (oot)
Hence:
P(t) = 80(800 —1)Em sinot + So(SC — & )E—mz(sin ot — ot cos (ot). (8.93a)
1+ (ot)

At low frequency and t, when mt << 1:
P(t) = gg(esp —1)Em Sinot +&q(ec — &4 JEm Sinot =gg(ec —1)Ep sinwt. (8. 94)

The field and polarization are in phase.
When the condition wt << 1 is not valid, the formula (8.93) is true. Designate:

P (1) = £0 (20 ~D)E(t) (8.95)
Pp(t) = eo(ec — € ):Hfﬁ)z(sin ot — oTcosot). (8.96)

Then:
P(t) =P, (t)+ Pp ®. (8.97)

An «active» and «reactive» polarization in a sine field

Retarding of polarization from the polarizing field leads to the energy dissipation,
i.e. to energy loss.

The component of relaxation polarization associated with liberation of power is
called the active component P,,. The component coinciding in phase with the external
field is called the reactive component P,.

In accordance with (8.96) the active component is shifted by the angle n/2 relative
to the field.

1+(0)t)
The reactive component [see (8.96)]:
E . .
1+ (1)

The reactive component is in phase with the external field.

We should remember that the non-inertial polarization P, coincides in phase
with the external field. Thus the resulting polarization, which coincides in phase with
the field is:

Py (t)= Py (t)+ Ppr =| £0(ewe —1)+L_8;°) E sinot. (8.100)
1+ (ot
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8.5 The Energy Loss in Relaxation Polarization and Through
Conductivity Dielectrics

In an alternating field, the energy loss in dielectric is greater then in a constant
field. In alternating field there are the polarization and through currents, in constant
field there is only the thorough current.

The electric current in dielectric consists of displacement and conduction
components.

j = jdis + jcon ! (8101)

Jcon

=oE =oFE_ sinat = G:j/m sinat (8.102)

_dD _d(g,E+P)
JdIS dt dt
The quantity o is the specific conductivity in a constant field, d is the thickness of
dielectric, Vi, = End is an external voltage. The dielectric losses of conduction do not
depend on frequency and depend on the current strength and voltage.
Having in mind (8.97), equation (8.103) can be written as follows:

, (8.103)

. V., Vv,
Juis = aoa)Fcosa)t +e,(e, —1)a)Fcos ot +

. 8.104
V, (wcosat_+ w?rsinat) (8109
+80(SC _800)_ 2
d 1+ ()
The current density:
J=lJamSinot+ jmcosot . (8.105)
The amplitude of active and reactive current density:
. Vv otV
Jam =0 +eg(ec —€0 )1 (8.106)
d 1+ (o) d
. \Y, ® V
Jrm = 8080+ 80 (8¢ 800 )5 1" (8.107)
d 1+ (o) d

The current component that is in phase with the field is called the active one. The
current component shifted at angle n/2 with respect to the field is called the reactive
current. The active component causes the energy loss. At high frequencies, the active
current amplitude reaches its maximum:

: Vv \%
Jam =0 +ep(ec —£00 )1 (8.108)
d td
The dielectric loss:
1T
W == [ jsvdt, (8.109)
To
T is the period, S — the cross-section. riomiaas ceuenus. Having in mind (8.105):
T T
lgmV : lymV .
W :yjsm2 mtdt+%fsm ot cos otdt . (8.110)
0 0
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The second addend in (8.110) is zero because sinwtcosot = <sin2wt.

2
T T
[sin otdt = [1705200 g T gy
0 0 2 2
lamV V2 2t V2
W =-am-.nm =cs—m+so(gc—goo)ﬂ—m. (8.111)
2 2d 1+ (wr)? 2d
The effective voltage:
V =Vp /42, (8.112)
2 2 2
Wy W :GSV—+80(8C _800)80)—12\/_. (8.113)
d 1+ (1) d
The fist addend is the energy loss of
conductivity:
I vZ2 y?
a) 0 lg(m‘r) W = GS T = F (8114)
W R =d/(sS) is the electric resistance of dielectric at
zero frequency..
The second addend in (8.113) is the relaxation
W I energy loss:
: 2 2
0 lg((.l)T) W. =¢ ( So“t V
—gg(eg €0 )———5— (8.113)
i P T (r)?

Fig.8.6. The relaxation
(a), and total (b) energy
loss as function of
frequency

The relaxation loss is proportional to the
active relaxation polarization amplitude and
frequency. The energy loss frequncy dependence is
shown in Fig.8.6.

At low frequency (wrt << 1), the dielectric loss depends only on the through
conductivity. When ot~1, the function curvature decreases and the saturation is
reached...

8.5.1. The Dielectric Loss Angle

The dielectric loss angle characterizes the process of the
energy liberation in a dielectric (see Fig.8.7).
The electric power liberated in a dielectric:

W =VI cos @ =Vl 5 =VI g5 . (8.114)

The quantities V and 1is an effective voltage and current:
® V =V, /v2, I =1,/+2. The ratio of the effective current

T v I, to the reactive current I, is the tangent of the energy loss
Fig.8.7. A vector angle:

current diagram of a . .
capacitor tgd=1a/lr =lam/lrm =Jjam/Jrm- (8.115)
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Introducing (8.106) and (8.107) into (8.115):

tgd 2
0T
G+80(SC _800)1()2
tgs = oY (8.116)
“ soswco+eo(sc —8p)
1+ ((m)
5 When ®—0:
| o
@7 w7 g0 = : (8.117)
€€ ®
tgd, ) S
w When the electric conductivity is small:
T
b (¢ —€co )1()2
tgs = ot | (8.118)
o+ — o
1+ (oor)
Fig.8.8. (a) tgd as function of frequency At high frequency (ot >> 1):
and temperature at different o; (b)
dependence of the energy loss W and
tgd on frequency for relaxation -
’ Igolarization tgd = lec —ox (8.119)
2
E¢ +E€x ((D’C)
Let us find the maximum of (8.119):
2 2
dtgo _ (ac — €4 )|8C + €y (cor) |— 2, (cor) (sc - soo) . (8.120)

d(or) o + . (002 f

The denominator is not a zero. Hence:

(¢ —aoo)lsc —soo((or)zJ: 0. (8.121)

Having in mind that g, >> €.

OmT=+/6c/Ec0 - (8.122)

Thus:

(gc _Soo) €c
(tgd),, 2o, -~ (8.123)
The function tgd = f(wr) is shown in Fig.8.8a. When the conductivity is great the
maximum of (tgd)m is not expressed distinctly (Fig.8.8a). For comparing, the power W
and tgd as function of frequency for relaxation polarization is shown (Fig.8.8b).
For good dielectrics with electron polarization, tgd already at the frequency 50Hz is
small (of the order of 10™). For dielectrics with relaxation polarization, at the same
frequency tgd ~ 102. The magnitude of the relaxation maximum depends on the type of
conductivity. For ferrits at 50Hz, tg6>>1.
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8.6. The Complex Dielectric Permittivity. The Cole-Cole Diagram

The dielectric permittivity can be represented as a complex quantity:

e=¢—ig" (8.124)
Analogously, the current density:
j = ja - ijr (8-125)
From the other hand:
j=dQ/dt, (8.126)
Q - the density of the surface complex charge:
Q =iCoV = £CoVpe'; (8.127)

Co = go/d — the capacitance of a plate vacuum capacitor of unit square. V :Vmei“’t is a

complex voltage.
The current density:

j=¢"0CqV +£'oCqV . (8.128)
Comparing (8.128) and (8.125):
jg =€"0CoV =" 0CoVye'™ (8.129)
i; = € 0CV = ¢ 0CyVpe' . (8.130)
Thus:
t9d = jam/irm =¢€'/¢’, (8.131)
g'=g"tgd. (8.132)

We see that ¢” is defined by the energy losses. The quantity ¢’ is the dielectric
permittivity €. Hence, the real part of (8.124) is usual dielectric permittivity. Comparing
(8.106) and (8.107) with (8.129) and (8.130) we arrive at the Debye formula:

A G ‘Sw);’“ , (8.133)
g0®  1+(owr)
f=g, +L‘C’°°2. (8.134)
1+ ((m)
When o is small and ot >> :
tg5=g_l=wl (8.135)

&€ g+ 800(0)1:)2

Equation (8.134) coincides with (8.119). The position of maximum of the relaxation
component €” is a little shifted from that one of tgs. At low temperature:

"= —(gc - SOO);OT , (8.136)
1+ (1)
Finding the extreme of & we get:
omT=1. (8.137)
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That condition leads to a smaller resonance frequency then that one for tgd. In
accordance with (8.135) and (8.133), the magnitude of €”and &’corresponding to
maximum of dielectric permittivity:

g =S¢ fo (8.138)
m 2
- +2‘°’°° (8.139)

The limit quantity of ¢ at low and high frequency (assuming ot << 1 and ot >> 1) in
accordance with (8.133):
g=¢g; U €'=¢g,. (8.140)

It is convenient to represent the quantities ¢” and &’ by the Cole-Cole diagram.
Excluding the quantity ot from (8.133) and (8.135) let us find the analytic dependence
e’ =1(e).

(8'—8;4)2 + (8")2 =R, (8.141)
R= m, (8.142)
2
e =g + = 8.143
et . (8.143)

The function (8.141) is shown in Fig.8.9. It follows from (8.134) and (8.136) that at A
glance on the figure shows that when wt =0,
e =¢g; and €”=0; when ot=0o, £”=¢, and
e’ =0.

The dielectric dispersion is shown in
Fig.8.10.

The specific effective conductivity:

£on 8 £. &

Fig.8.9. A Cole-Cole diagram 021
G,y =¢'ggw =0+ so(sc - 800)

1+(mt

2 (8.144)

Hence:

ja =04E. (8.145)
The quantity €’ varies from &; up to &... At ot =1 there is a curve bend. The maximum
of the function tgo = f (w) is a little right from that one of the function &” = f(®). The
function ¢” = f(w) is upward of function tgé = f(w) because €” =¢’tgd and ¢’ > 1. The
specific effective electric conductivity o, at low frequency and that one in a stationary
field are identical. When ot >> 1:

o, =0 +gp(ee —800)%, (8.146)

Thus, the quantity o, reaches its maximum (Fig.8.10).
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Fig.8.10. The dependence of tgo, €', €”,

and o, on the parameter T

The relaxation time depends on
temperature. For dipole relaxation
polarization, the relaxation time:

AE
T=10e kT . (8.147)

The maximum of the function
e’ =f(w) is displaced to the higher
frequency with temperature.

The behavior of the function
tgd = f(w) maximum is analogues but it
is rather difficult to use the criterion
(8.122) because the permittivity also
depends on temperature. When the
temperature increases the energy loss

becomes greater because of the increasing of the through conductivity.

If inside a dielectric there are cavities filled with a gas, the strike ionization can
be observed in high electric fields. It is due to the fact that the electric stability of gases
is considerably less then that one of liquids and solids. It leads to increasing of tgé and
energy losses, which in that situation are called the ionization losses.
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