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8.1 Polarization of Dielectrics. 

 

While describing the polarization of dielectrics (without conduction) in an external 

field, the dependence of a polarization vector and the macroscopic field strength is 

under investigation. Besides the local electric field is being found. The dipole moment 

of an atom depends on that field strength.  

 

8.1.1 Polarization 
 

The dipole moment of a unit volume is called the polarization:  

iNpP  ,                                                           (8.1) 

N – the number of molecules per unit volume, pi – the dipole moment of a molecule.  

A constant voltage is applied through a capacitor 

(Fig.8.1). The quantity   is the surface-bound density 

of free charges. A dielectric installed inside the 

capacitor would be polarized. Upon the external 

surfaces of dielectric, the bond charges would be 

generated (the surface density ).   

The macroscopic field consists of two 

components: the external field Е0 and the polarization 

field Е1:  

10 EEE  .                                                  (8.2) 

A glance at Fig.8.1 shows that the polarization 

field is opposite to the external one.  

In an isotropy dielectric, the polarization is 

proportional to the effective field:  

 

EP 0 ,                                                           (8.3) 

The quantity   is called the dielectric susceptibility, 0 is called the electric constant.  

Because of polarization, the electric field inside the dielectric differs from the 

external field. The bound charge density  and normal component of polarization Pn 

are related by:  = Pn, i.e.  

E0'  ,                                                           (8.4) 

Е is the normal component.  

The electric field strength in dielectric:  

   
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



 ,                                                           (8.5) 

The Gauss theorem:  

 'ε0 qqd  sE ,                                                           (8.6) 

The quantities q and q’ – the free and bound charges. Having in mind that 'qd  sP   

  qd  sPE0ε .                                                           (8.7) 

The displacement vector:   

PED  0ε .                                                                 (8.8) 

Fig.8.1. A capacitor with a 

dielectric 
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The field acting upon a molecule can considerably differ from the macroscopic 

one (Fig.8.2). Lorenz has shown  that the local field strength is represented by:  

ЕЛ = Е0 + Е1 + Е2 + Е3                                        (8.9) 

 Е0 – the field produced by external charges, Е1  - polarization field produced by the 

bound charges. Е2 – the Lorenz field (in a cavity), Е3 –an atomic field inside the cavity.  

The sum of external and polarization field is an effective macroscopic field in 

dielectric: Е = Е0 + Е1. The field Е3 is the field produced by the molecules, which are 

located inside the sphere in its center. It was shown [2] that usually (because of the 

spherical symmetry) Е3 is zero. It takes place in gases, non-polar liquids and crystals of 

cubic structure.  

Let us imagine that there is a spherical cavity inside of a uniform dielectric. There 

is a molecule inside the sphere. The size of the molecule is much less then that of the 

sphere. Upon the sphere surface, a bound charge is 

induced. Its density:   

cosθσ PPns  .                               (8.10) 

The induced charge generates the field Е2 (Lorenz, 1878).  

 

8.1.2. The Lorenz Field  
 

In the spherical coordinate system, the elementary 

area:   

 ddRdS θθsin2 .                                                            (8.11) 

In accordance with the Coulomb law, taking into 

account (8.10), the electric field strength in the sphere 

center:  

0
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
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ddP
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dE s .                                    (8.12) 

 
 

     

Fig.8.2. The intrinsic electric field acting upon an atom  

Fig.8.3. A Lorenz field 
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Obviously:  
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dEdE .                                          (8.13) 

 

Integration of (8.13) leads to:  
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Thus:  

0
2

ε3

P
E                                                       (8.15) 

The local field strength (SI-units):  

                
0ε3

P
EE L                                                      (8.16) 

The ratio between the local and macroscopic field is as follows:  

                EE
3

2ε 
L                                                      (8.17) 

When    1,  ЕL  Е.  When  >> 1,  ЕL > Е.   

Thus the field acting upon a molecule differs from the macroscopic field. The 

local field strength consists of three components: the macroscopic field, Lorenz field, 

and molecular field.   

 

8.2 A Klausius – Mocotty Equation  
 

The equation connects the permittivity and polarizability of a dielectric. 

Polarization of dielectric is proportional the field strength:  

 

                Ln EP 0ε .                                                      (8.18) 

The quantity п is the concentration of molecules,  -polarizability.  

The quantity  is a sum of an electron (el ) and dipole (dip) polarizability. For 

non-polar dielectrics:  = el; for polar dielectrics:  = el + dip. 

Substituting (8.17) into (8,18) we get:  

                EP
3

2ε
ε0


 n .                                                     (8.19) 

Having in mind that: 

                 EP 1-εε0 .                                                      (8.20) 

We arrive at The Klausius – Mocotty equation:  

                
32ε

1ε 




 n
.                                                     (8.21) 

For a mixture of molecules:  
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32ε

1ε
.                                                (8.22) 
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8.3 Polarizability 

 

There are three components of polarizability: electron, ion, and dipole. The first 

one is due to the electron shell displacement, the second the displacement of ions. The 

third one is caused by the orientation of polar molecules in an electric field (see 

Fig.8.4).  

 

 

 

At high frequency, the electron polarizability is of importance (because of inertia of 

atoms and molecules). In the optic frequency region, the equation (8.22) transforms 

into:   

                
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
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el
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32
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2

.                                                (8.23) 

Experimental data confirm that formula.  

 

8.3.1 An Electron Polarizability 
 

The frequency of resonance absorption of electromagnetic waves by atoms:   

                  21
0 m ,                                                (8.24) 

The quantity  is called the force constant. The electron displacement produced by the 

field can be found from:  

                xmxeEloc
2
0 .                                               (8.25) 

For static electron polarizability:  

                
2
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Fig.8.4. The basic components of polarization  
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An atomic electron may be considered as a harmonic oscillator, which oscillates in 

a periodical electric field tEloc sin : 

                tExm
dt

xd
m loc  sin2

02

2

.                                    (8.27) 

The solution is chosen as: txx  sin0 . Thus:  

                                                loceExm  0
2
0

2 .                                    (8.28) 

The dipole amplitude:  

                
 22
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00

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m

Ee
exp loc ,                                    (8.29) 

Hence:  

                
22

0

2


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meel .                                              (8.30) 

In an optical frequency region, the dispersion is rather weak for a great number of 

transparent substances.   

 

8.3.2 An Orientation (Dipole) Polarizability 
 

We remind our readers that quantity p = ql is called the dipole. In an electric field, 

the dipole tends to orient along the field direction. The heat motion violates the 

orientation influence of the electric field.  

The torque:  

θsinpEM  ,                                                    (8.31) 

 is the angle between р and Е. An elementary work performed by the field while 

rotating the dipole through the angle d: 

θθsinθ dpEMddA  ,                                           (8.32) 

The dipole potential energy:  

θcosθ pEMdU   ,                                           (8.33) 

In accordance with the classical distribution, the probability of orientation inside the 

space angle d:   




daedaed kT

pE

kT

U θcos

 ,                                           (8.34) 

. 

The number of electrons with dipole moment oriented inside the angle d:  

 dnaedn kT

pE θcos

.                                          (8.35) 

 

Polarization of the substance:  

dnpdP θcos ,                                           (8.36) 





2

00

θcos

θsinθcosθcos ddpnaednpP kT

pE

.          (8.37) 

 

Designate by p the molecule dipole (along the field direction).                     (8.38) 
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Introduce the coordinates:  

kTpExy      θ,cos .                                           (8.39) 

Equation (8.38) takes the form:  
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The denominator integral is elementary. The standard procedure is used to calculate the 

numerator integral:   
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x

dye 
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Hence:  
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The function L(x) is called the Lanjeven function. When х < 1 (weak field, or high 

temperature) the function can be decompose in series:  


453

)(
3xx

xL .                                                (8.44) 

We can write:  
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In zero approximation:  

kT

Ep
p

3

2

 .                                                    (8.46)   

 

If Е = Еcr = 3kT/p, pp  , polarization saturates.  

Having in mind that  

Ep dipαε0 .                                                (8.47)   

and comparing (8.46) and (8.47) we get:  
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p
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2
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α  .                                                (8.48)   

.  

The Klausius-Mocotti equation:  
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Assuming  + 2  3:   
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At room temperature, dipole polarizability dip is of the same order as electron one 
el
. 

The dependence of the quantity ( - 1) on the inverse 1/Т is lineary (Fig.8.6).  At high 

temperature,  - 1  п
el
 (if Т  , dip  0). The inclination angle is defined by: 

k

np

0

2

ε3
tgβ  .  

Oxides, vapors of water and organic substances are polar gases.  

 

Polarizability of polar liquids 

 

The water, alcohol, cellulose are polar liquids. The dipole 

moments of water and alcohol are about 610
-

30
 Colm  2debye. The intrinsic electric field is about  

10
9
 V/m. That field handicaps the dipoles to orient in an 

external field.   

Let us assume that besides the local field El (8.16), the 

additional field Ea >> El acts upon a polar molecule. 

Orientation of Ea is arbitrary. Because Ea >> El we assume 

that    (Fig.8.5). The equilibrium condition:  

 sinψsin al EE ,                                              (8.51) 

 

that can be written (  ) as follows:   

 sinsin
a

l

E

E
,                                                (8.52) 

The electric field strength:  

 cos222
lalat EEEEE .                              (8.53) 

Having in mind that Ea >> El  and decomposing the radical:  
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The average projection p of the molecule dipole moment р upon the field direction Et 

can be described [see (8.43)] as follows:  
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Introducing 
kT

pE
x a  and decomposing the Lanjeven function in series by the powers 

of El /Ea we get (in the first approximation):   

Fig.8.5. An electric 

field of polar liquids 
Поле в полярных 

жидкостях. 
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The dipole moment projection tp  (onto the macroscopic field Е):  
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The projection onto the field Еl  

ψcostl pp  .                                            (8.59) 

Taking into account (8.52) and that the angle is small: 
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Finding the average quantities and having in mind that    xLxL  :   

0cos  ;                                                        (8.62) 
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In thefirst approximation:  
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Differentiating the Lanjeven function with respect to x:   
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 .                                          (8.66) 

ldipl Ep  0 .                                                   (8.67) 

It follows from (8.66) and (8.67):  
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The quantity    xLxR 21  is called the reduction factor. It is a ratio of 

polarizability of the liquid and gas. There is an intrinsic friction inside the liquid. Hence 

that quantity is less then unit. The reduction factor of water is 0.2.  
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 Thus the Klausius-Mocotti equation for polar liquids differs from (8.49) only by 

the reduction factor: 
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In order to find polarizability, the solution of polar dielectrics in non-polar solvent is 

used. At low concentration the distance between soluble molecules is great. The gas 

approximation is valid [see (8.49)]. Having in mind that dep
el 
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8.3.3 Polarization of Ion Dielectric Solids and Heterogeneous 
Compounds 

 

In any dielectric there are two types of polarization: electronic and ionic. The relaxation 

time of electron polarization is 10
-14

 с. The relaxation time of ion polarization is 10
-13

 с. 

The relaxation time depends on the free-running frequency of dipole oscillation. For a 

binary crystal, the effective mass must be used:   
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The frequency of free oscillation:  

Mk ,                                                     (8.72)   

The quantity k is the elasticity coefficient.  Hence: MkM 2 .  

Under action of the force qE, ions displace from an equilibrium position at a 

distance x = qE/k. A dipole moment is produced: p = q
2
E/k. Taking into account that 

p = 0iЕ:  
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Multiplying by the square of the Avogadro number:   
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1 and 2  is a molar mass. Introducing the ion concentration N we arrive at:  
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Taking into account the electron polarization:  
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The quantity 
elelel
21

 is the sum of electron polarizability of components. 

Having in mind that:  

 Ep 10 i ,                                             (8.77) 
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we arrive at last to:  
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That equation is known as the Born formula. The quantity  includes the electron 

and ion polarization. Sometime it is convenient to use the optic permittivity : 

elN
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

32

1
                                                      (8.79) 

 + 2  3  

el 1 .                                                       (8.80) 

We remind our readers that  n . For non-magnetic substance: 2n . Thus, 

we get:  
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It should be noted that the theoretical quantities are always less the experimental 

data. It is due to the fact that the macroscopic field was used instead the local one. For 

crystals with great permittivity, the formula (8.81) is not true.  

For a two-phase heterogeneous compound, a Lichteneker formula is valid.  

  mmm xx
2111 1                                             (8.81) 

 

The quantity x1 and (1- x1) is the volume concentration, 1 and 2 is permittivity, m 

depends of the system geometry. The formula is widely used when the permittivity of 

slide dielectric is under investigation.  

 

8.4 Polarization of Dielectrics in an Alternating Field and the 

Dielectric Losses 

 

In previous section, the polarization of dielectrics in a constant electric field has been 

discussed. In the following section, the transition processes are being investigated.  

 

8.4.1 Transition Process when a Field is Switched in and 

Switched off 

 

Assume that an external uniform electric field E is switched in instantaneously. The 

polarization Р retards from the field, and its maximal magnitude Рс is installed only 

after a certain time interval. That interval can be subdivided into two parts.  

In time interval of order of 10
-14

 - 10
-13

, the “non-inertial” polarization (Р) is installed. 

In the following period, the relaxation polarization is installed.   

For the non-inertial polarization:  

                 EP 1-εε0   ,                                                     (8. 82) 

The installed magnitude:  

                 EP cc 1-εε0 .                                                      (8. 83) 

The relaxation polarization:  
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                 EPPP ccрc   ε-εε- 0 .                                       (8. 84) 

The time dependence:  
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If in the dielectric there are no volume charges and its resistance is constant, the 

displacement current and relaxation polarization current density can be easily found.  

When an external field is switched in, the polarization instantaneously is 

diminished by Р. In the following time interval:   

                

t

рcр PP
-

e .                                              (8. 86) 

There is a relation between the relaxation time () and the lifetime of relaxators 

(lt).  
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N кis the molecule concentration.  

Thus the speed of polarization is dominated by the dipole component.  

Obviously:  
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Hence:  
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The formula (8.89) is a relation between the relaxation time and lifetime of a molecule. 

Because c > ,  > lf. Inequality  > ж is due to the fact that the local field acting 

upon a relaxator increases up to its stationary magnitude.  

For an arbitrary alternating field:  
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The entire polarization:  
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8.4.2  Polarization in an Alternating Field 

                  

Assume that the polarization field follows the law:  

                tEtE m  sin)( .                                               (8. 92) 
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In accordance with (8.91):  
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The integral:  
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Hence:  
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At low frequency and , when  << 1: 

 

            tEtEtEtP mcmcm   sin1sinsin1)( 000 .    (8. 94) 

 

The field and polarization are in phase.  

When the condition  << 1 is not valid, the formula (8.93) is true. Designate:  

                   tEtP 1)( 0                                       (8.95) 
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Then:  

                )()()( tPtPtP p  .                                    (8.97) 

An «active» and «reactive» polarization in a sine field 

 

Retarding of polarization from the polarizing field leads to the energy dissipation, 

i.e. to energy loss.  

The component of relaxation polarization associated with liberation of power is 

called the active component Pра. The component coinciding in phase with the external 

field is called the reactive component Pрr. 

In accordance with (8.96) the active component is shifted by the angle /2 relative 

to the field.  
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The reactive component [see (8.96)]:  
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The reactive component is in phase with the external field.  

We should remember that the non-inertial polarization Р coincides in phase 

with the external field. Thus the resulting polarization, which coincides in phase with 

the field is:   
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8.5 The Energy Loss in Relaxation Polarization and Through 

Conductivity Dielectrics 

 

In an alternating field, the energy loss in dielectric is greater then in a constant 

field. In alternating field there are the polarization and through currents, in constant 

field there is only the thorough current.  

The electric current in dielectric consists of displacement and conduction 

components.  

condis jjj   ,                                               (8.101) 
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The quantity  is the specific conductivity in a constant field, d is the thickness of 

dielectric, Vm = Emd is an external voltage. The dielectric losses of conduction do not 

depend on frequency and depend on the current strength and voltage.  

Having in mind (8.97), equation (8.103) can be written as follows:  
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The current density:  

tjtjj rmam  cossin  .                                   (8.105) 

The amplitude of active and reactive current density:  
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The current component that is in phase with the field is called the active one. The 

current component shifted at angle /2 with respect to the field is called the reactive 

current. The active component causes the energy loss.  At high frequencies, the active 

current amplitude reaches its maximum:  
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The dielectric loss:  
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Т  is the period, S – the cross-section. площадь сечения. Having in mind (8.105):  
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The second addend in (8.110) is zero because ttt  2sincossin
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The effective voltage:  

2mVV  ,                                               (8.112) 
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The fist addend is the energy loss of 

conductivity:  

R
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 SdR   is the electric resistance of dielectric at 

zero frequency..  

The second addend in (8.113) is the relaxation 

energy loss:  
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The relaxation loss is proportional to the 

active relaxation polarization amplitude and 

frequency. The energy loss frequncy dependence is 

shown in Fig.8.6.   

At low frequency (  1), the dielectric loss depends only on the through 

conductivity. When ~1, the function curvature decreases and the saturation is 

reached... 

 

8.5.1. The Dielectric Loss Angle  

 

The dielectric loss angle characterizes the process of the 

energy liberation in a dielectric (see Fig.8.7).  

The electric power liberated in a dielectric:  

tgδcos ra VIVIVIW  .            (8.114) 

The quantities V and I is an effective voltage and current: 

2mVV  , 2mII  . The ratio of the effective current 

Iа  to the reactive current Ir is the tangent of the energy loss 

angle: 

rmamrmamra jjIIII tgδ .     (8.115) 

Fig.8.6. The relaxation 

(a), and total (b) energy 

loss as function of 

frequency 

Fig.8.7. A vector 

current diagram of a 

capacitor 
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Introducing (8.106) and (8.107) into (8.115):  
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When  : 
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When the electric conductivity is small:  
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At high frequency (  ):  
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Let us find the maximum of (8.119):  
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The denominator is not a zero. Hence:  
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Having in mind that с  :  
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Thus:  
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The function tg = f() is shown in Fig.8.8a. When the conductivity is great the 

maximum of (tg)m is not expressed distinctly (Fig.8.8a). For comparing, the power W 

and  tg as function of frequency for relaxation polarization is shown (Fig.8.8b).  

For good dielectrics with electron polarization, tg already at the frequency 50Hz is 

small (of the order of 10
-4

). For dielectrics with relaxation polarization, at the same 

frequency tg  10
-2

. The magnitude of the relaxation maximum depends on the type of 

conductivity. For ferrits  at 50Hz, tg>>1.  

Fig.8.8. (a) tg as function of frequency 

and temperature at different ; (b) 

dependence of the energy loss W and  

tg on frequency for relaxation 

polarization 
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8.6. The Complex Dielectric Permittivity. The Cole-Cole Diagram 

 

The dielectric permittivity can be represented as a complex quantity:  

  i                                                   (8.124) 

Analogously, the current density:  

ra ijjj                                                    (8.125) 

From the other hand:  

dtQdj  ,                                                  (8.126) 

Q  - the density of the surface complex charge:  

ti
meVCVCQ  00  ;                                 (8.127) 

 

C0 = 0d — the capacitance of a plate vacuum capacitor of unit square. ti
meVV   is a 

complex voltage.  

The current density:  

VCVCj 
00 '"  .                                   (8.128) 

Comparing (8.128) and (8.125):  
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Thus:   

                  '"tgδ  rmam jj ,                                           (8.131) 

                  tgδ'"  .                                                        (8.132) 

We see that ” is defined by the energy losses. The quantity ’ is the dielectric 

permittivity . Hence, the real part of (8.124) is usual dielectric permittivity. Comparing 

(8.106) and (8.107) with (8.129) and (8.130) we arrive at the Debye formula:  
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When  is small and   :  
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Equation (8.134) coincides with (8.119). The position of maximum of the relaxation 

component ” is a little shifted from that one of tg. At low temperature:  
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Finding the extreme of ” we get:  

1m .                                                  (8.137) 
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That condition leads to a smaller resonance frequency then that one for tg. In 

accordance with  (8.135) and (8.133), the magnitude of ”and ’corresponding to 

maximum of dielectric permittivity:  
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2

εε
ε ' 

 c
m

.                                            (8.139) 

 

The limit quantity of ’ at low and high frequency (assuming    and   ) in 

accordance with (8.133):  

cεε'  и  εε' .                                            (8.140) 

 

It is convenient to represent the quantities ” and ’ by the Cole-Cole diagram.  

Excluding the quantity  from (8.133) and (8.135) let us find the analytic dependence 

” = f(’).  
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The function (8.141) is shown in Fig.8.9. It follows from (8.134) and (8.136) that at A 

glance on the figure shows that when   , 

’  c and ”  ; when   , ”    and  

”  .  

The dielectric dispersion is shown in 

Fig.8.10.  

The specific effective conductivity:  
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Hence:    

Eja a .                                                     (8.145) 

The quantity ’ varies from c up to . At   1 there is a curve bend. The maximum 

of the function )( ftg   is a little right from that one of the function ” = f(). The 

function ” = f() is upward of function  tg = f() because  ” = ’tg and ’ > 1. The 

specific effective electric conductivity а at low frequency and that one in a stationary 

field are identical. When   >> 1:  
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Thus, the quantity а reaches its maximum (Fig.8.10).  

Fig.8.9. A  Cole-Cole diagram 
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The relaxation time depends on 

temperature. For dipole relaxation 

polarization, the relaxation time:  

 

kT

E

e



 0ττ .                                 (8.147) 

 

The maximum of the function 

” = f() is displaced to the higher 

frequency with temperature.  

The behavior of the function 

tg = f() maximum is analogues but it 

is rather difficult to use the criterion 

(8.122) because the permittivity also 

depends on temperature. When the 

temperature increases the energy loss 

becomes greater because of the increasing of the through conductivity.  

If inside a dielectric there are cavities filled with a gas, the strike ionization can 

be observed in high electric fields. It is due to the fact that the electric stability of gases 

is considerably less then that one of liquids and solids.  It leads to increasing of tg and 

energy losses, which in that situation are called the ionization losses.  

Fig.8.10. The dependence of tg, ', ”, 

and а on the parameter T  


