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6.13 The Kinetic Phenomena in Semiconductors 
 

The elementary theory of semiconductor electric conduction and scattering of charge 

carriers was discussed previously. We are going to discus more correct conceptions, 

which take into account that the directed motion of the carriers is not equilibrium and 

hence a certain non-equilibrium function has to be used. As a fundamental equation of 

the transport phenomena, the Bolzmann kinetic equation will be used.  

 

6.13.1 The Bolzmann Kinetic Equation in a Weak Electric Field  
 

When temperature and crystalline structure is uniform and the electric field   in x-

direction is applied to the crystal, the distribution function follows the equation:  

 

                       








 dt

dp

dp

df

dt

df

dt

df x

x

                                   (6.124)  

Obviously:  
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Hence:  
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The external field  is usually much less then the intrinsic field, and the change of the 

equilibrium distribution function is small. We can write:  

                                10 fff                                                 (6.127) 

Here  Фff 0  or fМ-Б (for degenerated or non-degenerated gas), f1 is a small addend, 

which describes the transport phenomenon.  

If the external field is switched off the equilibrium distribution is reinstalled (because of 

collisions between electrons and scattering centers). We assume that the disturbance is 

not great and the quantity  сdtdf  due to collisions is proportional to deviation:   
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 is the relaxation time. 

Having in mind that f0 does not depend on time:  
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And we get:  

                                       .e)f(f t  011                                              (6.130) 

 

Here  (f1)0 is the function  f1  at the zero moment (the time when the field is switched 

off).   

In general case =(k), the function form depends on scattering. Hence, in a 

semiconductor under action of an electric field, there are two processes. The first 

process is changing the distribution function with the speed  dtdf . The second 

process is a relaxation one, which tends to return the system to the equilibrium state 

with the speed  
с

dtdf . 

The condition of the stationary state is:  

 

   стdtdfdtdf                                           (6.131)  

In accordance with (6.125) and (6.128):  
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For the stationary state:      
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Hence according to (6.132) and (6.133):  
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 Having in mind that the difference between f and f0 is small, we write (6.134) as 

follows:   
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Equation (6.135) can be considered as the possible form of the Bolzmann kinetic 

equation for an electron gas.  

Differentiating function f0 relative energy we get:  
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Le us investigate the transport phenomenon (electric conduction) using the Bolzmann 

equation.  

 
6.13.2 The Electric Conductivity of Electron Semiconductors  
 

The electron concentration in the energy interval dЕ of the spherical surface in k-space:  
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Here  тn — the electron effective scalar mass, mn=m
*
=mn. Assume that Ес = 0. 

The charge carried by drifting electrons in x-direction per unit square and time is:  
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The current density:  
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Having substituted (6.136) in (6.139) we get the sum of two integrals. The first one is 

zero because it expressed the electric current under equilibrium condition. The second 

integral:  
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Hence the electric current is due to the addend f1.  

Assume that:                              
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In accordance with (6.139):  
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For non-degenerated gas f0 = fМ-B.  Hence:  
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Multiplying and dividing (6.143) by 
 
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, and having in mind (6.144) we 

get:  
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The quantity  <> is the average relaxation time:  
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Equation (6.145) is the Ohm law for non-degenerated electron gas. Hence the specific 

electric conductivity:  
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The electron mobility:  
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The electric conductivity of degenerated electron gas depends only on the electrons, 

which are located near the Fermi level.  

The relaxation time of those electrons may be considered a constant quality F, 

which corresponds to electrons occupying the Fermi level. The situation becomes 

simplified, and you are just to introduce F in formula (6.148) and (6.148a).  

 

6.13.3 The Electron Scattering from Heat Oscillations 
  
When an electron (or hole) interacts with the lattice oscillation (phonon) the 

transmission of energy and the birth of a new phonon or the inverse process can be 

observed. The energy and quasi-momentum conservation law is true.  

In the process of photon generation:  

 

;)(E)(E q 11 kk                                             (6.149) 

 

qkk  1 ,                                                    (6.150) 

 

Е (k) is the electron energy before collision; k is the wave number; Е1 (k1) is the 

electron energy after the birth of a new photon with the wave vector q and energy q . 

When an electron absorbs a phonon:   
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qkk 1 ,                                                    (6.152) 

 

Е1 (k1) –the  electron energy after phonon absorption; k1 – the electron vector.  

The quantity of phonons depends on temperature. Thus the scattering of electrons 

from the heat oscillations of a lattice depends on temperature too. The multi phonon 

scattering is less probable.  

The relaxation time of the electron scattering from longitudinal acoustic phonons 

in atomic semiconductors:  
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The quantity 0 characterizes the crystal; m* is the effective electron mass; Е is the 

electron energy.  

The electron mobility:  
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The temperature dependence of the (6.154) type is often observed in a rather wide 

temperature interval.  

 
6.13.4 Thermoelectric Phenomena 

 

The effects of Zeebek, Peltier, and Thompson are known as the thermoelectric 

effects.  

The generation of thermal E.M.F. in a circuit of two solids of different properties 

when the temperature of the soldered joints is different is called the Zeebek 

phenomenon. 

 The temperature change at the soldered joint of two metals when the electric 

current is flowing is called the Peltier effect. The phenomenon does not depend on the 

Joule-Lenz heat. 

The liberation or absorption of the heat additional to the Joule-Lenz heat when the 

current runs through a uniform conductor with the temperature gradient is called the 

Thompson effect.  

The Peltier and Zeebek phenomena are observed usually in metals. In 

semiconductors those phenomena are stronger. The effects are greater then in metals by 

the factor of orders and are of very much practical importance. In particular, the 

semiconductor pairs of great E.M.F. are used as the electric power sources; the Peltier 

phenomenon is used in refrigerators  

The Thompson effect is mainly of theoretical interest. The temperature difference 

through a semiconductor produces the concentration gradient and hence the diffuse 

current. The volume electric charges are generated. If the volume charge field is against 

an external field, the last one make a work against the intrinsic field and the additional 

is liberated. When the direction of both fields coincides the intrinsic field make a work 

to initiate the charge carriers drift. The heat energy of the semiconductor becomes less 

and it cools.  
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The Zeebek Phenomenon in Non-degenerated Semiconductors 

 

A differential thermoelectric E.M.F is defined as 

follows: ,
dT

d
                                       (6.155) 

dT  - the temperature difference of soldered 

joints; d  - E.M.F. It follows that:  
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 The semiconductor quantity  is often measured 

relative a metal. In Fig.6.17, a semiconductor is closed from both sides by a metal plate. 

The temperature of contacts is Т1 and Т2. An electric current runs through the circuit. 

The main addend of the thermal electromotive force is the voltage produced inside the 

semiconductor; the contact potential difference is small.   

The equilibrium charge carriers concentrations of a non-degenerated impurity 

semiconductor are the exponential functions of temperature. At the ends of the 

semiconductor, the concentrations are:  
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The temperature difference between the semiconductor ends is small and we can assume 

that the quantity Еф is constant. . 

If Т2 > Т1, n02 >> n01 and p02 >> p01. Hence, when the 

temperature difference (Т2 - Т1) is established the charge 

carriers diffusion from the hot end to the cool one begins. 

It changes the equilibrium concentration of carriers and 

generates volume charges. Those charges produce the 

opposite electric field and the dinamical equilibrium is 

established.  

The drift current produced by the intrinsic field (the 

field of the volume charges) will equilibrate the diffuse 

current of the charge carriers. As a result there will be no 

current at all.  

In the n-type semiconductor (the equilibrium 

electron concentration is much greater then that one of the 

holes), the diffusion of electrons is only of importance. In 

p-semiconductors, the situation is opposite.  

In an electron semiconductor, the diffusion produces 

Fig.6.17. The metal-

semiconductor contact 

Fig.6.18. The volume 

charge in 

semiconductors: n-type  

(a), and p-type (b) 
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a negative electric volume charge at the cold joint and a positive volume charge at the 

hot joint. The quantity  is negative (Fig.18.a).  

In a hole semiconductor, the diffusion produces a positive electric volume charge 

at the cold joint and a negative volume charge at the hot joint. The quantity  is 

positive (Fig.6.18b).  

Thus in hole semiconductors, the cold joint is 

positive; in electron semiconductors, the cold joint is 

negative.  

The method of measuring with a thermal probe 

is shown in Fig.6.19. One of the contact-probe is 

heated, the temperature of the other contact-probe is 

the same as that one of the semiconductor. The 

direction of current is controlled. If the heated 

contact-probe is positive the semiconductor is of п-

type, if the heated contact-probe is negative the 

semiconductor is if p-type.  

Dependence of  on the charge carriers 

concentration was established by N.L,Pisarenco in forties years of the last century.  

To get that depedence let us use the thermodynamic ideas. The Peltier heat Qп is defined 

as follows: 

ПItQП  ,         (6.161) 
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The quantity I is a direct (constant) current, 

which runs through the semiconductor in a 

time interval t; П – the Peltier coefficient. 

The heat liberated in joint is due to the 

transition of the charge carrier energy to the 

lattice when the carriers transit through the 

interface.  When the current is of opposite 

direction, the lattice energy is transmitted to 

the charge carriers and the semiconductor is 

cooled.    

The zone diagram of the metal-semiconductor interface is shown in Fig.6.20. На 

When equilibrium, the Fermi levels are identical. When the electric field  is applied, 

the electrons of the semiconductor conduction zone transit into metal. Assuming that the 

field is weak and the zones are horizontal, and neglecting the rectification effect at the 

interface, the reducing of the electron energy is Eк.  

Thus:   

TeПeQE Пк  .                                  (6.163) 

 

If the current is of opposite direction, the electrons are moving from the Fermi 

level to levels of the conduction zone. The electrons will be heated by the quantity Ек. 

That heating can be done by the energy transition from the lattice and leads to cooling 

of the joint.  

 

Fig.6.19. Thermal probe 

Fig.6.20. The zone diagram of the 

metal-semiconductor interface 
аграмма контакта металл –

 полупроводник. 
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We can write:  

TFcк EEEE  )( ,                                     (6.164) 

 Ет  is the mean heat energy of a non-degenerated electron gas. It is convenient to 

measure Ет from Ес  

 kTrET 2 .                                           (6.165) 

The quantity r is defined by:  
rCEl  ,                                            (6.166) 

 

The quantity l is the mean free path; Е – the total energy of charge carrier. The 

parameter r depends on the scattering mechanism:  

20  r .                                                   (6.167) 

 

When scattering from acoustic oscillations, r = 0; from optic oscillations of an ion 

lattice, r = 1; from impurity ions, r = 2.  

In accordance with  (6.163)-(6.165):  
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The quantity  (Еc—Еф) is defined by   
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Taking into account (6.168) we get: 
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For an electron semiconductor, < 0, and the sing of (6.171) must be changed. 

Thus for an electron semiconductor, the Pisarenco formula can be written as follows:   
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For a hole semiconductor:  
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Equation (6.172) and (6.173) coincides with the experimental data.  The quantity 

 is of order of mV/degree; for metallic pairs is of order of mkV/degree. In accordance 

with those formulas, the parameter  of a semiconductor does not depend on the type of 

metal in contact. 
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While deducing formula (6.162) we use only one semiconductor-metal contact. It 

is possible because of (6,173). While discussing the Peltier effect, there is no need to 

take into consideration the second contact. While establishing relation between the 

Peltier coefficient and that one of E.M.F., we assumed that 






 


2

21 TT
T  and 

12 TTdT   is small (the joint temperature ca be considered equal Т).  

Thus n и p are functions of charge carrier concentration and temperature. The 

quantity p and n decreases with temperature. For intrinsic and mixed electric 

conduction:   
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According to (6.172) and  (6.173), n < 0 and p>0; and because the numerator of  

(6.174) is a difference of corresponding quantities it can be very small. The sign of  

depends on absolute magnitudes of addends in the numerator.  

While approaching the intrinsic conductivity region of an acceptor semiconductor 

the sign of p changes (if n>p). In a donor semiconductor, the absolute magnitude of 

n decreases with temperature.  

At high temperature the quantity i does not depend on donors or acceptors and its 

absolute magnitude is small (when n>p the sign is negative).  

 

Deducing of formula for t.e.m.f. coefficient with the aid of the Bolzmann equation  

 

The Bolzmann equation can be written as follows:  
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nv - the electron velocity; F- the force; r  and k  - the Hamilton operators:  
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kji ,,  - The unit orts.  

We can write:  

 
z

f

y

f

x

f
f nznynxrn














v ;

 
z

z

y

y

x

x
kk

k

f

t

k

k

f

t

k

k

f

t

k
f

dt

dk
f






































F



1
. 

 



 167 

When the decrement f1= f- f0 is small in the left side of (6.176), f can be substituted by 

f0:  
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The quantity   is the electric field strength of the volume charges; - the electrostatic 

potential. The distribution function of the non-degenerated electron gas is: а 
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The electron energy:  
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Assume that m
*
 is a scalar (the spherical energy surface). The electron velocity:  
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We are to have in mind that Т =Т (х, у, z) and ЕF = ЕF (х, у, z). 

Thus  
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Introducing those quantities in (6.179) we get:  
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When the charge carriers are scattered by the acoustic oscillations and the free 

path lengs does not depend on energy (r = 0):  
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The electron component of current density:  
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The differential t.e.m.f.:  
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Using equation (6.154):  
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Using the known formulas we get at last:  
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A glance at (6.190) shows that it is the formula (6.174) at r = 0. 

For the intrinsic semiconductor having in mind that Nc= N:  
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Thus the quantity  of an intrinsic semiconductor depends on the ratio of electron 

and hole mobility, the width of the forbidden zone E0, and temperature. It should be 

noted than while deducing (6.190) and (6.191) we did not take into consideration the 

capture of the carriers by phonons.  

When there is the temperature gradient in a semiconductor, phonons are moving 

from the hot regions to cool ones. While colliding the phonons transmit their 

momentum to electrons.  

Those collisions produce the additional drift of electrons and hence the additional 

t.e.m.f. The effect is observed at low temperature. At high temperature, the phonon-

phonon scattering is reconstructed and the rapture effect diminishes.  

 

6.13.5 The Galvanic Effects. The Hall Effect 
 

When an electric E and magnetic field B  acts simultaneously, the electric and 

heat conduction can be changed in Е-direction, and the transversal temperature 

difference can be produced. Those phenomena are called the galvanic phenomena. The 

Hall effect (the transversal voltage generation), the magnetic resistance effect, the 

Ettingshausen effect (the transversal temperature gradient generation), the Nernst effect 

(the longitudinal temperature gradient generation).  
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The expression  ‘transversal’ and ‘longitudinal’ are used relative to the 

temperature gradient direction.  

An effect is called ‘uneven’ if the effect sign is not changed when the magnetic 

field is reversed. When the magnetic field is reversed but the sign of an effect is the 

same, the effect is called ‘even’. The Hall and Ettinghausen effects are uneven. The 

Nernst effect and the magnetic resistance effect are even.  

 The Lorenz force is given by:  

 Bυ,EF ee  .                                                         (6.192) 

When (E  B) the trajectory is a cycloid. In general case, two motions form the 

trajectory. The first one is rotation in the plane perpendicular to the magnetic field:  
2

0 BE e/mr *                                                           (6.193) 

The second one is a drift along the electric field with velocity:  

Ed .                                                               (6.194) 

The criterion of a magnetic field magnitude is the ratio between the radius of curvature 

r0 (6.193) and the free path length . If  

0r ,                                                              (6.195) 

The electron motion is slightly disturbed and the field is called the weak field.  

If  

0r ,                                                              (6.196) 

 

The field is called the strong field.  

The condition (6.195) - (6.196) can be substituted by others if we compare the 

relaxation time  with a cyclic period (the time of one turn by the circle in the magnetic 

field) Tc: 

The field is weak if  

 

  
с

T                                                                          (6.197) 

 

 The field is strong if  

сT .                                                                        (6.198)  

The quantity Tc is defined by:  
*//2 meTсс B  .                                               (6.199)  

The cyclic frequency с  is called the cyclotron frequency.  

Thus according to (6.197) and (6.198) in the weak field  

                   

1B ;                                                        (6.200)  

In the strong field:  

 

1B .                                                        (6.201)  

 

It is clear that the magnetic field criterion does not depend on the external 

magnetic field strength but on the charge carrier mobility. The same magnetic field can 

be considered in one crystal weak and in the other strong. 
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 For example, in germanium at high temperature, n  3000 сm
2
/Vs. The 

magnetic field strength of 10000 Gauss satisfies to criterion (6.200) of the weak field. 

The same field at low temperature (10 К) and electron mobility of 10
4 

- 10
5
 сm

2
/Vs is 

strong (satisfies the condition (6.201)).   

Le us discuss the magneto-galvanic phenomena in weak fields. It should be noted 

that generation the Hall electric field (perpendicular to Е and В) is caused by the 

component of the Lorenz force  B,υde . The Hall electric field ЕX will increase till the 

Lorenz force compensates it. The transversal force becomes zero and electrons again 

move along the strait line.  

The current density j is oriented along the x-axis, but the summarized electric field 

(taking into account the Hall electric field) will be turned relative the current density 

vector at certain angle , which is called the Hall angle [see Fig.6.21].   

 
  BE/EB/EjB/EEX  RRtg .                                      (6.202)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While describing the Hall effect we did not take into account the scattering 

processes. An analysis shows that the Hall coefficient depends on it:  

    

en/AR  ,                                                   (6.203)  

 

A is constant, which depends on scattering mechanism; п is the charge carrier 

concentration. 

Introducing  = en, we can write:  

A/Rd  ,                                                            (6.204)  

 

. 

Fig.6.21. Curving of the charge carrier trajectory and formation of an angle between j 

and E in Hall effect 
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The quantity dA  is called the Hall mobility.   

 

dX A .                                                              (6.205) 

 

In covalent crystals when scattering from acoustic phonons, the electron free 

path does not depend on energy (r = 0): 

 

83 /A  ; 
en
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1

171183  .                           (6.206) 

 

For ionic semiconductors at the temperature below the Debye temperature while 

scattering from optic phonons, r = 1/2: 

990.A  ; 
en

.R
1

990 .                                         (6.207) 

When the temperature is higher then that of Debye, r = 1: 

111.A  ; 
en

.R
1

111 .                                          (6.208) 

While scattering from impurity ions, r = 2:  

931512315 ./A  ; 
en

.R
1

931 .                              (6.209) 

When the electrons scatter from holes:  

512315 /A  ; 
en

.R
1

931 .                                 (6.210) 

When the charge carriers scatter from neutral impurity atoms:  

1A ; 
en

R
1

 ;                                             (6.211) 

The quantity A is evaluated using the Bolzmann kinetic equation.  

In metals and degenerated semiconductors, only electrons at the highest levels 

create the electric conduction. Thus the energy distribution may not be taken into 

consideration, and we assume that the relaxation time is constant (А = 1): 

  dX  .                                                              (6.212) 

The situation is rather complicated in a semiconductor with mixed conduction. 

The electrons and holes deflect in the same direction. Because their mobility is 

different, there is no complete charge compensation. The transversal electric field is 

produced. It accelerates the charges of one sign and breaks the others. The Hall field 

would increase till the flows of electrons and holes become equal. The theoretical 

consideration leads to:  
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It follows from that equation that in intrinsic (п = р), the electron and hole mobility is 

identical the Hall field is zero. The measurement of electric conductivity and the Hall 

constant is not sufficient to find the mobility and concentration of charge carriers. 
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A magnetic field affects the electric resistance. The effect is characterized by the 

ratio between the specific resistance increment = (В) - (0) and the resistance when 

there is no magnetic field:  
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

B
H ,                                                    (6.214) 

 

The quantity Н is called the kinetic magnetic resistance coefficient.   

The phenomenon is due to the fact that there are the velocity distribution, 

relaxation time and effective mass anisotropy, when the energy surfaces are not 

spherical. Indeed if all charge carriers move with the same speed, were of the same 

isotropy mass, and their free pass were the same, they would move linearly as a result of 

compensation of the Lorenz force  B,υde  by the Hall force. 

In reality in a magnetic field, the electron trajectory is not linear because the 

compensation takes place only for charges, which move with the average speed. The 

carriers with the speed less then the mean one are affected strongly by the Holl electric 

field. The carriers with the speed greater then the average one are affected strongly by 

the magnetic component of Lorenz force  B,υde , which deflects the carriers in the 

opposite direction.  

In both cases, there is an increment of the charge carrier speed from the average one. It 

leads to decreasing of the free path. Indeed if when there was not a magnetic field, was 

moving along an  l-segment  (see Fig.6.21). When the field is switched in the trajectory 

changes:  

   2121 222 /Bl/lcosllx  .                                 (6.215) 

 

The mobility is proportional to the free path in E-direction and the electric 

conductivity is proportional to mobility. The decreasing of the path leads to the less 

electric conductivity. The resistance in the magnetic field becomes greater 

The speed dispersion of carriers handicaps the influence of slow and fast carriers 

on conductivity. According the statistic theory, the kinetic magnetic resistance 

coefficient of impurity semiconductors:    
2BCH p,n ,                                                        (6.216) 

 

The quantity С depends on the scattering mechanism. When scattering from acoustic 

phonons (р = -1/2), С = /10. When scattering from ionic impurity (р = 3/2), С = 1. 

In Ettingshausen effect, the temperature gradient is produced in direction 

perpendicular to the magnetic field and the current density.  

 jBEAT  .                                                       (6.217)  

xxEz AT jB .                                                   (6.218)  

 

The Ettingshausen coefficient of a non-degenerated electron semiconductor:  
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The effect is due to the different action of The Hall and magnetic force upon slow and 

fast charges.  
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The carries with the speed greater the average one would be deflected by the 

magnetic field stronger then by transversal electric Hall field. They would be collected 

on one of the sides of the sample (z-direction). The charge carriers with a speed less the 

average one would be deflected in opposite direction (the Hall field acts stronger then 

magnetic field). The more is the number of carriers, the higher is the temperature of the 

side. The opposite side would be cooled, because the electrons take the lattice energy 

while transmitting to a thermodynamic equilibrium. Thus besides the transversal Hall 

effect, the transversal temperature gradient is produced.  

The Nernst effect is also due to the different action of the Hall and Lorenz force 

on the charge carriers with different speed. The slower is the carrier, the stronger its 

trajectory is screwed. The fast carriers would accumulate at the sample side and heat it.. 

The slow carriers would cool the opposite side. As a result, the longitudinal temperature 

gradient (along E-direction) is produced:   

xyNx AT jB ,                                                        (6.220)  

The quantity АN is called the Nernst kinetic coefficient.  

It should be noted that the gradient sign does not depend on the magnetic field 

direction but on current direction.  

The more serious consideration of the galvanic-magnetic phenomena is based on 

the Bolzmann kinetic equation.  

 

 

 


