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6.5. The State Density of Electrons and Holes 
 

In order to determine the electron concentration  

    .

0




 dEEfEgn                                              (6.18) 

 

Besides the electron distribution function, it is necessary to know the density of states 

g(Е).  

  .
dE

dN
Eg                                                         (6.19) 

 

The quantity dN is the number of states in the interval from E up E+dE.  

Let dVk be the volume the surfaces corresponding the Е and Е + dE.  

 

  ,
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kg


                                                       (6.20) 

 

The quantity g (k) is the state density (in unit volume) in   k–space. 
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 
dE

dVkg

dE

dN
Eg k                                           (6.21) 

dk – an elementary volume of k-space equal to  dkxdkydkz. 

It is known that the quantization condition can be written as follows:  
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V is the crystal volume. The number of states per unit volume of crystal per unit volume 

of k–space : 
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That quantity must be multiplied by the factor of two in order take into consideration 

two projections of spin (+1/2 and –1/2).  

The dispersion law in small vicinity of  Ес 
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
nm   - the electron effective mass (scalar quantity). That dispersion law holds in 

conduction zone of certain compounds of A
III

B
V
 and A

II
B

VI
 type. The energy surface in 

k – space is a sphere of the radius  cn EEma  21


. Its volume: 
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The increment dVk in interval dE: 
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The number of states dN in the volume dVk : 

    ;
2

2
8

1 21

23

23
dEEE

m
dVkgdN c

n
k 






















                                      (6.28) 

    ,
2

2
21

23

2 c
n EE

h

m

dE

dN
Eg 


















                                      (6.29) 

 

h=2ħ. 

For a simple spherical valence zone with extreme Еv at the point k = 0, the dispersion 

law in the small vicinity of that point can be written as follows:   
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For simple zone, analogue speculations lead to:  
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6.6 The Electron Concentration in the Conduction Zone and the 

Concentration of Holes in the Valence Zone 
 

The concentration of electrons in the conduction zone  

    .
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
c

c

E

E

dEEfEgn                                              (6.32) 

When the energy is greater than that of Fermi, the function f(E) tends rapidly to zero. 

Introducing g(E) (6.29) in (6.32) and taking into account the spin factor 2 we get: 
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Introduce new quantities:  
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The quantities  and  are expressed in terms of   kBT. The electron energy in the 

condution zone and the Fermi energy are measured from the bottom of the conduction 

zone Ес. Thus:  
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The function  21F  is called the Fermi integral (of order of 1/2): 
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Generally the Fermi integral is a function:  
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Г (i +1)  is the Eiler gamma-function.  

 

The Fermi integrals can not be calculated analytically. The numerical calculations are 

tabulated. The asymptotic evaluation for integrals (of the order 1/2):    
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Taking into account the limits in formula (6.38) and condition (6.33a) we can 

stay that formula (6.38a) is valid for not degenerated semiconductors and formula 

(6.38c) is valid for strongly degenerated semiconductors and metals. Formula (6.38b) is 

called Erenberg-Blackmore approximation and is used for treatment of not degenerated 
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semiconductors. That formula is more accurate than formula (6.38a) and can be of use 

when the degeneration is weak. In accordance with formula (6.34) and (6.36a) the 

electron concentration in the conduction zone for not degenerated semiconductor:  
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Equation (6.35) can be written as follows:  
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At room temperature Nc  2,51019 см-3. The number of states depends on the effective 

mass and temperature. In semiconductors of small effective mass (for example, in 

certain narrow zone compounds of AIIIBV и AIIBVI), the number of states is not great.   

The filling of the conduction zone increases strongly with temperature and the 

semiconductor may become degenerated. When the degeneration is great (6.38c), the 

electron concentration in the conduction zone is: 
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When the degeneration is strong the 

concentration does not depend on 

temperature. 

The electron concentration is shown in 

the Fig..6.6. When the semiconductor is not 

degenerated, the Fermi level is lower than the 

bottom of the conduction zone (at least by 

kBT). While degenerating the Fermi level is 

higher at least of several kBT. The dashed area 

of the conduction zone is proportional to the 

electron concentration. It is seen that the 

semiconductor is not degenerated when the 

concentration of electrons in the conduction 

zone is not great.  

 

The concentration of holes in valence zone can be expressed analogously formula 

(6,18).   
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Introducing    EfEf np 1  and g(E) for the valence zone, changing the low limit of 

the integral by  - , and taking into account the rapid decrease of the distribution 

function fp(E) we get:  

Fig.6.6 The electron concentration: 

 a) non-degenerated semiconductor of n-

type;  b) degenerated semiconductor of p-

type 
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Using the designations (6.33) and designating  
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we arrive at  
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 is a number of states in the valence zone. The energy is measured in terms of kBT 
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Equation (6.45) for the concentration of holes is analogue (6.34) for the concentration of 

electrons in the conduction zone.  

The asymptotic forms of Fermi integral   








 


Tk

EE
FF

B

Fv
2121  are 

analogue the forms of the integral  21F , [see (6.38)].  

 

 

 

   



























)(5for
3

4

)(5
127.0

)(-1

23

21

c

bfor
e

e

afore

F















           (6.47)  

 

Thus, for non-degenerated semiconductor, the formula (6.47a) is true. The concentratin 

of the holes is:  
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For strongly degenerated semiconductoirs:  
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Analizing that equation we arive to the conclusion that by strong degeneration, 

the concentration of holes (Fig.6.6) becomes great and does not depend on temperature 

analogeu to the electron concentration (6.41) in conduction zone.  

       

6.7 The Concentration of Electrons and Holes in an Intrinsic  
Semiconductor 

 

For an intrinsic semiconductor, n = p = ni. Taking into account equation (6.39) and 

(6.48) we get:  
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The intrinsic  concentration (ni ) in a non-degenerated semiconductor:   
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The concentration of electrons and holes in proper semiconductor dos not depend 

on the Fermi levels position and increases with energy in accordance with an 

exponential law. The factor 2 in the denominator of the exponent factor is due to the 

fact that the activation energy is needed to generate the pair of electric carriers (electron 

and hole).  

The semiconductor as a whole is electrically neutral:  

pn                                                           (6.52) 

For a non-degenerated semiconductor:  
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After simple transformation we get:  
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When the Fermi energy is measured from the ceiling of the valence zone:  
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Introducing the quantity  Nc and Nv in (6.55) , we get:  
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A glance at equation (6.55) and (6.56) shows that at Т = 0, the Fermi level in a 

intrinsic semiconductor is located at the middle of the forbidden zone. When the 

temperature increases the Fermi level moves to the zone where the number of states 

(hence the effective mass) is smaller.  

The temperature dependence of the Fermi level in intrinsic non-degenerated 

semiconductor is shown in Fig.6.7.  

In semiconductors with the narrow zones, when the temperature increases the 

Fermi level can approach the bottom of the conduction zone (for compounds A
III

B
V
 and 

A
II
B

IV
 

  dpdn mm ) and the equation (6.55) and (6.56) will not be valid. 

Degeneration in intrinsic semiconductor InSb when the temperature is increasing 

is shown in Fig.6.8. The energy is measured from the bottom of the conduction zone. 

When temperature increases the width of the forbidden zone follows the law 

 eV107,226,0 4TEg

 . The Fermi level EF approaches the bottom of the 

conduction zone (calculations are made for 
  dndp mm 10 ). At the temperature  ~ 400К, 

the distance between the level and bottom is less then kBT.  

Analysis shows that for InSb at temperature Т  440К, the Fermi level is inside of 

the conduction zone. The fast temperature degeneration in the region of the intrinsic 

conduction is due to the small width of the forbidden zone and the great difference 

between the effective masses of electrons and holes, which leads to increasing of Fermi 

level with temperature. 

It should be noted that for the imaginary semiconductor with identical effective 

masses of electron and holes, there would not be the temperature dependence of Fermi 

level and it would be located at the middle of the forbidden zone.  

 

 
 
 
 

Fig.6.7. The Fermi level in an intrinsic 

semiconductor 

Fig.6.8. The temperature dependence 

of Fermi level and the width of 

forbidden zone in an intrinsic 

semiconductor 
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6.8 The Width of the Forbidden Zone in a Intrinsic 
Semiconductor 

 

In an intrinsic non-degenerated semiconductor the concentration of elections and 

holes is given by the equation (6.51) 
Tk
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eNNnpn
2



 . If the concentration 

of electrons (or holes) in the region of intrinsic conduction is known (for example by 

measuring with the Hall effect), the width of the forbidden zone of a semiconductor can 

be found. Indeed;: 
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The function ln(ni) = f(1/T) is a straight line, which cuts a segment of the ordinate 

axis equal to cv NNln  . The inclination tangent of the line is 
B

g

k

E

2
 (fig.6.9). The 

width of the forbidden zone is given by:  

 tg2 Bg kE                                                           (6.58) 

 

In equation (6.57) we neglected the concentration temperature dependence.Let us 

take into consideration that dependence in the intrinsic semiconductor. 

The quantities NandNc  depend on temperature as  Т
3/2

, the width of the 

forbidden zone depends on temperature too, Eg = f(Т). The last dependence is due to 

many static and dynamic factors and is very difficult for theoretical estimation. That 

dependence is found experimentally. For a great number of semiconductors, the width 

of the forbidden zone decreases with temperature. In a certain temperature interval that 

dependence is linear.    

Fig.6.10. The temperature dependence of 

Eg in germanium and its linear 

extrapolation (dashed line) 

Fig.6.9. The charge carrier concentration 

in an intrinsic semiconductor as function 

of inverse temperature 
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  ,0 TETEg                                                ( 6.59) 

0E  is linear extrapolated width of the forbidden zone at zero temperature,  is a 

temperature coefficient (mostly negative).  

The temperature dependence of germanium (optical measurements) and its 

linearization is shown in Fig.6.10. That dependence can be described as follows:  

   TTEg 0004,0785,0                                  ( 6.60) 

 эВ 0,785 0E и  = -410
-4

 eVdegree
-1

. It follows from the figure that the quantity 

 эВ 0,785 0E is not the width of the forbidden zone of germanium at any 

temperature but just the segment of the ordinate axis cut at the zero temperature.  

Let us make an assumption that the linear law (6.59) is true. Taking into account 

that  
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Taking the logarithms of (6.61) divided by T
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 we get: 
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The segment cut by the line ln(n) = f(1/T) is: 
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The inclination tangent:  

BkE 2tg 0                                                     (6.64) 

 

Thus,  tg-20 BkE . The width of the forbidden zone Еg(Т) for a temperature (not 

less than 200K) can be estimated. You are to use (6.63) at given quantities 

dnm  and 


dpm  to find the linear coefficient and put it in (6.59).   

 

6.9 Statistics of Impurity States in Semiconductors 
 

The donor and acceptor impurities change the charge carriers concentration and 

the Fermi level position. When analyzing the electric neutrality of impurity 

semiconductors we should take into account not only the positive and negative charge 

bound with the charge carriers in zones as it was done for a intrinsic semiconductor. 

The positive and negative charges due to ionized donor and acceptor atoms are to be 

taken into consideration.   
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The electric neutrality equation in a impurity semiconductor with donor and acceptor 

concentration Nd  and  Nа can be written as follows:  

, 
da NpNn                                                      (6.65) 


aN  and 

d
N  are concentrations of ionized acceptors and donors.   

When ionized the acceptors atoms attaches electrons:  

,aa nN                                                               (6.66) 

an is the concentration of electrons, which occupy the acceptor states in the forbidden 

zone. Analogues for the ionized donors:   

,dd
pN                                                                (6.67) 

dp  is the concentration of holes, which occupy the donor states. We remind our readers 

that the transition of electrons from donor levels into a conduction zone by ionization of 

donor atoms is equivalent the transition of holes from the conduction zone into the  

donor level. The equation (6.65) takes the form:   

.da ppnn                                                           (6.68) 

Concentration of impurity atoms (not ionized):  
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,0
aa pN                                                                    (6.70) 

0
d

N  and  0
aN is concentration of non-ionized donor and acceptor atoms; dn  and ap  is 

concentration of electrons at donor levels and concentration of holes at acceptor levels. 

Obviously  
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.0
aaa NNN                                                               (6.72) 

Then: 

;ddd Npn                                                              (6.73) 

.aaa Npn                                                               (6.74) 

 

The electric neutrality condition can be written as follows:  

 

.adad NNppnn                                                     (6.75) 

 

Thus, to solve the electric neutrality equation we must know the concentration of 

electrons and holes in impurity states. It should be noted that the statistics of impurity 

states differs from that one of allowed energy zones. Indeed, in accordance with 

exclusion principle at a energy level there can be two electrons (or holes) with the 

opposite spin. One electron (or hole) can occupy the one fold ionized impurity level.  

The impurity sate system of electrons and holes is the system with alternating number 

of particles.  In accordance with quantum statistics [11], the distribution function of 

electrons in impurity states is:  
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,

1

1

1 




Tk

EE

g

n

B

Ft

e

f                                                     (6.76) 

Et  is the impurity level, g –degeneration factor.  

Taking into account he spin we can state that an energy level is twice degenerated. Thus 

factor g for electron donor states or acceptor hole states is 2. Factor g for holes of donor 

states or electrons of acceptor states can be evaluated if we remind that any energy state 

can be occupied either by electron or by a hole: 1 pn ff .  

;1 d
p

d
n ff                                                         (6.77)  

                                          1 a
p

a
n ff                                                           (6.78)  

Thus g-factor for holes on donor levels and electrons on acceptor levels is 1/2. 

If the other mechanisms of degeneration are taken into consideration g-factor can 

be greater than 2. For example if the impurity state splits from an allowed zone of 

complex structure, the degeneration in extreme points of the allowed zone is transmitted 

to the impurity states. The degeneration factor of the acceptor states produced in 

semiconductors of the fourth group by introducing the impurity atoms of the third group 

is 4 (the extreme of the valence zone at k=0 is twice degenerated).   

To find the quantities nd, ра, рd, and na besides the energy distribution function,  

the impurity state density function is needed. The number of states with energy Еd per a 

unit volume of a crystal is equal to the donor atom concentration Nd. The number of 

states with energy Еа per a unit volume of a crystal is equal to the acceptor 

concentration Na . Thus, we can write:  

;

1
2
1 




Tk

EE

dd
ndd

B

Fd

e

N
fNn                                               (6.79) 

;

1
2
1 




Tk

EE

aa
paa

B

aF

e

N
fNp                                                (6.80) 

;

12 




Tk

EE

d
ddd

B

dF

e

N
nNp                                               (6.81) 

.

12 




Tk

EE

a
aaa

B

Fa

e

N
pNn                                              (6.82) 

 

 

Introducing in equation (6.75) the quantities n, p, nd, pa, we get the general 

equation for finding the Fermi level in a impurity semiconductor:  
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              (6.83) 

For a non-degenerated semiconductor, we can use the asymptotic interpretation of the 

Fermi integral:  

;21
Tk

EE

B

Fc B

Fc

e
Tk

EE
F













 
                                          (6.84) 

.21
Tk

EE

B

vF B

vF

e
Tk

EE
F













 
                                         (6.85) 

The mathematics analysis of equation (6.83) is rather simplified because the 

Fermi integrals are substituted by exponents [see (6.38a) and (6.47a)], but remains all 

the same complicated, which is due to two types of impurity. So let us investigate the 

electric neutrality equation for non-degenerated semiconductor with a single type of 

impurity.   

 

6.10 Concentration of Electrons in Semiconductor with a Single 
Type of Impurity 

 

The electric neutrality equation (6.75) takes a form:  

.dd Npnn                                                       (6.86) 

Let us rewrite equation (6.86) in the form:  

.dppn                                                            (6.87) 

The meaning of the last equation is obvious. In conduction zone the free electrons 

are generated by intrinsic ionization (simultaneously in valence zone, equivalent 

number of holes is generated) and impurity ionization (simultaneously at donor levels, 

the same number of bound holes is left). When the temperature is increasing at first the 

impurity atoms are ionized, at higher temperature the intrinsic ionization will begin. 

Because Ed << E, we can not to take into consideration the intrinsic ionization at low 

temperature. Thus we can write: 

.dpn                                                                (6.88) 

For non-degenerated semiconductor:  

 

.

1







Tk

EE

dTk

EE

c

B

aF

B

Fc

ge

N
eNn                                    (6.89) 

Introducing d
B

dc

Tk

EE



, we get:  
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.
1


dge

N
n d                                                     (6.90) 

Substituting e

 by n/Nc in accordance with equations (6.38a) and (3.39), we get the 

square equati0n relative n: 

.1 d

c

Ne
N

n
gn d 










                                         (6.91) 

Its solution:  

  .141
2

1 2111   dd eNgNeNgn cdc


                         (6.92) 

Taking into account (6.90) we can write equation (6.92) as follows:  

.
4

11

2

de
N

gN

N
n

c

d

d




                                                  (6.93) 

If the following condition holds:  

,1
4

de
N

gN

c

d   

 

.
2 Tk

E

dc B

d

e
g

NN
n




                                               (6.94) 

 

The condition (6.94) signifies that at low temperature in the conduction zone, the 

number of electrons is small in comparison with Nс. A glance at equation (6.94) shows 

that in the region of impurity ionization, the energy of heat activation of ionization 

process is Ed/2. Hence at low temperature, the Fermi level is in the middle between Еc 

and Ed. Indeed introducing (6.94) in (6.37), we get: 

;
2 Tk

EE

dcTk

EE

c
B

dc

B

Fc

e
g

NN
eN







                                     (6.95) 

;
2 Tk

EE

c

dTk

E

B

dc

B

F

e
gN

N
e



                                                 (6.96) 

;ln
22 c

dBdc
F

gN

NTkEE
E 


                                       (6.97) 

 

.ln
22 c

dBd
cF

gN

NTkE
EE 


                                  (6.98) 

The Fermi level at zero temperature coincides with the middle of the interval between 

Еc and Еd. When the temperature increases the Fermi level  approaches  Еc (while Nс < 

Nd/g), passes through maximum and removes from  Еc (when  Nс > Nd/g). 

At higher temperature [see (6.93)] if   

,1
4


de

N

gN

c

d                                                       (6.99) 
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Then:   

.dNn                                                         (6.100) 

 

In that temperature interval, the electron concentration does not depend on 

temperature. It corresponds to the region of exhausting. Introducing (6.100) in (6.37) we 

get:  

;lnln
c

d
B

c
BcF

N

N
Tk

N

n
TkEE                                 (6.101) 

;ln
c

d
BcF

N

N
TkEE                                         (6.102) 

 

   

The criteria (6.99) leads to producing a donor impurity in the exhausting region. 

The electron concentration becomes constant. At high impurity Nd or great ionization 

energy Ed that criteria holds only rather high temperature when the process of the 

intrinsic ionization is strong. The exhausting donor impurity region is no more seen and 

the temperature interval with constant electron concentration is absent.    

Discussing the electric neutrality equation (6.87) at low temperature we assumed 

that the concentration of holes in valence zone is small in comparison with рd. At higher 

temperature, the intrinsic ionization is greater then the impurity one: р >> рd..The 

equation (6.87) transforms into equation (6.52) from which the temperature dependence 

(6.51) and (6.54) follows.  

 

                                        ;
22

lnln
Tk

ENN
n

B

ddc 
                                    (6.103) 

 

.2 1 tgkE Bd                                               (6.104) 

 

That definition of Ed can lead to a certain mistake if Ed > 2kB/T. The hidden 

temperature dependence of Nc.should be taken into account.  

The experimental dependence should be built in coordinates  TfTn 1ln 43  . 

The tangent of the inclination angle more accurately defines Ed [see (6.104)] the 

analysis in the coordinates  Tfn 1ln  . The temperature interval of the exhausted 

region becomes narrower and is not seen at great concentration.  

The impurity ionization region continuously transforms into region of the intrinsic 

ionization. The inclination of the segment I of the dependence  Tfn 1ln   does not 

change with impurity concentration.  
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The temperature dependence of Fermi level for the semiconductors with the 

donor impurity of a single type is shown in Fig.6.12. When the donor concentration 

increases, the Fermi level approaches the conduction zone which is due to to the 

increasing of electron concentration and growing population of the conduction zone. A 

glance at Fig.6.11 shows that when the impurity concentration increases the exhausted 

region appears at higher temperature. 

 Аt very great impurity concentration, the quantity Ed decreases for a number of 

semiconductors. All speculations concerning the temperature dependence of 

concentration and the Fermi level of a donor semiconductor can be applied to an 

acceptor semiconductor with impurity of one type.   

The function  Tfp 1ln   is analogues that one in Fig.6.11 (substituting Ed by 

Ea and Nd by Na. The temperature dependence of the Fermi level of an acceptor 

semiconductor with a single acceptor is not symmetric relative the level Еi. The 

temperature dependence ЕF(Т) for concentration 
21 aa NN   is shown in Fig.6.12b. 

 

6.11 The Temperature Dependence of the Charge Carrier 
Concentration of Real Semiconductors 

 

In real semiconductors there are simultaneously donor and acceptor impurities. 

With the special rectification methods we can diminish the concentration of unwonted 

impurity, but it is impossible to exclude it totally.  

The phenomenon of impurity compensation is observed in a semiconductor if 

there are in it at the same time two kinds of impurities. The behavior of the 

semiconductor in the region of impurity electric conduction in comparison with that one 

of a semiconductor of one type of impurity changes.  

The phenomenon of reciprocal compensation of donors and acceptors is as 

follows. If the acceptor energy states Еa in the forbidden zone are lower than the donor 

Fig.6.11. The electron concentration as 
function of inverse temperature for two 

concentration of the donor impurity: I-the 

region where the impurity conduction 

increases; II-the region of exhausting; III-

the region of the intrinsic conduction 

Fig.6.12. The temperature dependence 

of Fermi level of a semiconductor with a 

single type of the donor impurity (a) and 

a single type of the acceptor impurity 

(b) for two different concentration 

Dashed line - the Fermi level of a non-

alloyed semiconductor 
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energy states Еd (such situation as a rule is for alloying impurities) then it is unnecessary 

to transmit the energy Ed = Ec - Ed. to ionize the donor atoms. The empty electron 

level of neutral acceptors Еa   is lower then populated electron level of neutral donors Еd 

Thus at zero temperature, the electrons transmit from the donor levels to the lower 

acceptor levels. 

Obviously if Nd > Na , all acceptors will be ionized; a certain number of donors 

will not be ionized. The concentration of non-ionized donors add NNN '  would act 

as effective donor concentration. In the process of the heat impurity ionization only 

those 'dN  donors can give off electrons in the conduction zone.  

Acceptors being totally ionized can not give holes in the valence zone. It is 

convenient to say about total compensation of acceptors and partial compensation of 

donors. Such semiconductor is called the partially compensated donor 

semiconductor. When Na > Nd the donors are totally compensated. The acceptors 

would be compensated partially. Such semiconductor is called the partially 

compensated acceptor semiconductor.  

When Nd = Na all the donors and acceptors are compensated. Such semiconductor 

is called the totally compensated semiconductor. The thermal ionization of impurities 

in a totally compensated semiconductor when the impurity atoms get energy Ed  or 

Eа   is impossible.  

The concentration of the free charges carriers i.e. the electrons in the conduction 

zone and the holes in the valence zone may increase. That increasing is due to to 

intrinsic ionization or thermal transitions of electrons from the filled acceptor levels into 

the conduction zone or from the valence zone into the free donor levels.  

For alloyed impurities Eа,d << Eg. The last two processes are like the process of 

intrinsic ionization (the energy magnitude). Thus, the concentration of the free electric 

carriers of the totally compensated and intrinsic semiconductors is very close at those 

temperatures. But the mobility of charge carriers in the totally compensated 

semiconductor is considerably less then that one of the intrinsic semiconductor. The 

additional scattering of the carriers from charged ions of donors and acceptors causes it. 

Hence, the higher specific resistance of a semiconductor is not the evidence of its higher 

cleaning from impurities.  

Let us discus the impurity compensation phenomenon using the simplest model of 

a semiconductor of a single type donors of concentration Nd , the energy levels in 

forbidden zone Еd, a single type of acceptors with concentration Na, and energy position 

of levels Еa.  

Assume that Nd > Na (partly compensated donor semiconductor). In equation 

(6.75), the quantity ра = 0, because the acceptors are totally compensated and there are 

no neutral acceptor atoms. Chose the temperature interval where the intrinsic ionization 

is small i.e. the impurity conduction region. We can not to take into account the 

concentration of holes and assume that р < п, пd, Nd ,  Na. Equation (6,74) can be written 

as follows:  

add NNnn                                      (6.105) 

or having in mind that ddd pnN            

da pNn                                           (6.106) 

Le us analyze that equation for a non-degenerated semiconductor when the formula 

(6.39) for the electron concentration is true. Taking the quantity pd from (6.81), and 

substituting the factor two by more general degeneration factor g. we get:  
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Introducing non-dimensional quantity 
Tk

EE

B

Fcη  we get:  
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 (6.108) 

That expression is very complex. We will discus it in certain temperature diapasons. 

The quantity  can be found from  =ln n/Nс using  (6.39). In accordance with equation 

(6.107):   
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 (6.109) 

When the concentrations of compensate centers Na tends to zero formula (6.109) 

transforms into (6.93), which describes the electron concentration in a pure donor 

semiconductor. Let us compare the expression (6.93) and (6.109). At high temperature 

when all impurities are ionized according (6.93) п = Nd (exhausting of donor impurity), 

according (6.109) 'dad NNNn   (exhausting of effective ionization of donors). 

While lowering the temperature the factor    deNNcNg ad


4 and   decNagN


 

in equation (6.109) at first are of the unit order and then become greater then the  unit. If 

the degree of compensation is very small (Na<< Nd ) there is such temperature interval 

where Na << n << Nd .  Thus:  

     .41 dd eNNNgecNagN cad


                    (6.110) 

The electron concentration temperature dependence in that temperature interval is 

described by:   
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  (6.111) 

Returning to dimensional quantities:  

 
da NnNfor
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e
g
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N

d
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c
N
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



        

2
        (6.112) 

That expression is analogues to (6.94) for the electron concentration in intrinsic donor 

semiconductor when the quantity Nd is substituted by  Nd - Na. 

At further lowering of temperature, the electron concentration becomes close to 

Na and even less. In denominator of (6.109) the both factors of the type 
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  decNagN


dominant and at low temperature:  

 

  deaNaNdNcNgn






  1                    (6.113)  

On common terms:  
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a

adc NNn
TBk

dE

e
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NNN
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



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2
                   (6.114) 

Comparing equation (6.114) and (6.112) we see that at low temperature for a  

compensated semiconductor, the logarithms of the 

electron density as a function of the inverse 

temperature changes two times faster. Indeed in 

the region described by (6.114) the tangent of 

inclination angle of the linear segment of the 

logarithms function is -Ed/kB , but according to                

(6.112) it is -Ed/2kB . 

In the transitional region [from (6.114) to 

(6.112)] п  Na. At higher compensation degree i.e. 

at higher quantities of Na, the temperature region 

described by (6.112) disappears.  

Now let us discuss the region of the donor 

impurity concentration region where п = Nd - Na 

does not depend on temperature. The temperature 

dependence of electron concentration for different 

donor impurity compensation at the same donor 

concentration add NNN '  is shown in 

Fig.6.13.  

The temperature dependence of the Fermi 

level for the region of the impurity electric 

conduction at concentrations, which correspond to 

those ones of Fig.6.13, is shown in Fig.6.14. The 

curves 1 of Fig. 6.13 and 6.14 correspond to intrinsic donor semiconductor. The 

inclination in the region of the impurity ionization [see Fig.6.13] is described by 

equation (6.104).  

The curve 2 and 3 describe the partly compensated semiconductor. The 

compensation degree of a sample described by the curve 2 is not great. The region of 

impurity ionization (Fig.6.13) can be subdivided in two parts with different slopes: (low 

temperature) Bd kE2tg and Bd kE 2tg 1  (higher temperature).  

At sufficiently high compensation degree (curve 3) the region with the slope 

Fig.6.13. The temperature dependence of the 

electron concentration of a donor semiconductor  

Nd – Na = 10
16

см
-3

, Ed = 0.01eV; mmc 25.0
; 

y = 2; 1-Na  = 0; 2- Na = 10
14

см
-3 

; 3 -  Na =10
16

см
-3

 

Fig.6.14. The temperature 

dependence of Fermi level of a 

donor semiconductor with 

different degree of donor 

compensation 
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Bd kE 2 disappears. The curves 2 and 3 (Fig.6.14) at low temperature are described 

by:  

,ln
ad

a
d

NN

gN
EcEFE


                                  (6.115) 

Introducing (6.114) in (6.37) we have got equation (6.115).  

A glance at formula (6.115) shows that when ,
1 g

N
N d

a


 the Fermi level is lowering 

from Еd (the curve 3). When  ,
1 g

N
N d

a


 the Fermi level is higher then Еd (the curve 

2).  

Even very small addition of the compensate impurity makes the Fermi level at 

zero temperature to transmit from Еc - Ed/2 to Еc - Ed.. Obviously, the behavior of 

carriers of pertly compensated semiconductor in the intrinsic conduction region is 

analogue to that one of the intrinsic donor semiconductor with a single type of donors.  

The analysis for partly compensated donor semiconductor is analogues. You are 

only to substitute the quantities Ed and Nd by Еа and Na; and the qantities (Nd  - Na) and 

Nd by  (Nа- Nd) and Na . Of course it must be taken into account that the g-factor is 

different.  

Discussing the energy diagram of the impurity semiconductor we assumed that 

donors occupied only one level in the forbidden zone Еd, аnd acceptors - Еа. Besides the 

basic states Еd and (Еа), there are the excited states. For example for shallow hydrogen 

impurity states there are excited states with the energy ratio of 1/n
2
 (п – the principal 

quantum number).  

At higher temperature the electrons populate the excited impurity states and 

change the concentration of free charge carriers in the conduction zone. It is due to the 

fact that the activation energy and g-factor is different at higher temperature.  

The transitions from the impurity excited states into conduction zone can change 

the concentration temperature dependence in the region described by (6.114), when the 

temperature is greater and the great number 

of donor electrons populate the excited 

states.  

The imput of excited states in the 

temperature dependence of the charge 

carriers concenration in the region of 

impurity conduction leads to decreasing of 

the free carriers concentration. If it is not 

taken into account, the systematic error 

would be done when finding Ed and g –

factor using the function п(Т).  

Ionization of the donor levels, which 

are close to Еd., can lead to violating of п(Т) 

given by (6.112) and (6.114) in the region 

of impurity electric conduction 

If the donor levels are sufficiently 

separated in the forbidden zone, there 

would be horizontal segments of the 

temperature dependence n(T) in the region 

Fig.6.15. the temperature dependence of 

electron concentration (a) and the Fermi 

level (b) of a donor semiconductor with 

two types of partly compensated donor 

impurity  
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of the impurity electric conduction (Fig.6.15). When the transitions from the level 

1dE in the conduction zone stop, the transitions from the 
2dE begin. The imput of the 

transitions can be easily evaluated. If the levels are too close that is impossible.  

 

6.12 Degenerated Impurity Semiconductors 
 

Till now we used the equations of non-degenerated semiconductor. We have 

established that the Fermi level when the donor concentration of a intrinsic 

semiconductor Nd or the effective donor concentration Nd - Na in compensated 

semiconductor is increasing approaches the bottom of the conduction zone. 

At certain impurity concentration the criteria of a non-degenerated semiconductor 

Еc - EF >> kBT can be violated and the semiconductor becomes degenerated. Then while 

solving the electric neutrality equation, the expression (6.34) and (6.45) should be used. 

The analysis show that the Fermi level when the concentration increases can approach 

the bottom of the conduction zone closer then kBT (even enter  the  conduction zone).  

According to (6.97) the quantity EF (Т) reaches a maximum EF(Тmax) = EFmax at 

certain temperature Тmax. Differentiating equation (6.97) with respect to temperature we 

find the extreme condition:  
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Hence:  
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Taking into account that  
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We get: 
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Having in mind formula (6.40) we arrive to:  
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The temperature Тmax increases with impurity concentration.  

 

Introducing (6.120) in (6.97) (the Fermi level temperature dependence) we get:  

 

 

.
10

103.5
24

3

2
ln

22

32

18

4
max

max

max
max






































 d

dn

dc
B

dc

c

dBdc
F

N

m

mEE
Tk

EE

TgN

NTkEE
E

                   (6.121) 



 153 

 

The energy is expressed in electron volts. It is clear that EFmax depends on 

impurity concentration and effective mass for state density analogues Тmax.  The 

quantities EFmax and  Тmax increases with impurity concentration Nd and decreasing of 

the effective electron mass 
dnm  in the conduction zone  

A impurity concentration when the Fermi level coincides with the conduction 

zone bottom Ес is called the critical concentration of degeneration ..crdN . Let us 

evaluate the error when calculating the critical concentration of degeneration by (6.121). 

We remind our readers that formula (6.121) is deduced for a non-degenerated 

semiconductor. Calculation shows that the error is about 20%.  

According (6.121):  
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Hence with accuracy of 20%:  
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It follows from (6.123) that critical degeneration concentration depends on 

effective mass and ionization energy of an impurity. For mmdn 3  and Ed = 0,03eV  

 
-319

крит cm102 dN . When the quantity 
dnm  decreases to 0,001m and Ed  to  

0,0001eV, the critical concentration is about 10
12

сm
-3

. 

The dependence of the degeneration 

concentration on the effective mass of charge 

carriers can be explained. Indeed, the 

concentration of the free carriers increases with 

temperature. If the effective mass for the state 

density is small, the density of states in the 

conduction zone is small too. The zone with small 

density of states is filling rapidly by the free 

electrons and the degeneration becomes at a rather 

small impurity concentration.   

The prominent Russian physicists 

V.L.Bonch-Bruevitch solved the three-

dimensional problem of impurity chaotic 

distribution for extreme concentrations using the 

Green functions. It was shown that at high 

impurity concentration, the state density is not a 

zero in entire forbidden zone. Near the Fermi 

level the distribution is like that one of the ideal 

Fermi-gas. In the vicinity of extreme points of 

the allowed zones, that function it is rapidly 

decreasing with the depth of the forbidden zone. 

The formation of the ‘tail’ of the function  

gd(Е) at strong alloying is shown in Fig.6.16. The 

Fig.6.16. The state distribution 

function of the intrinsic 

semiconductor g(E) and the strongly 

alloyed one  gd(E) . 
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distribution function g(Е)  of non-alloyed semiconductor is shown by the dashed line.  

In the depth of the forbidden zone, the function gd(Е) strongly depends on the 

chosen potential of interaction of the electrons and impurity ions. The voltage-current 

characteristic of a tunnel diode allows to find the form of the ‘tail’ of the distribution 

function.  

 

 

 

 

 


