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5. Zone Theory of Solids  
 

To study the elementary particle system (in particular to find its energy levels), it is 

necessary to solve the corresponding Schrödinger equation. That differential equation 

contains the number of variables equal to that of freedom degrees of the system under 

investigation.  

 

5.1. The Schrödinger Equation for a Crystal  
 

A crystal can be characterized by coordinates of electrons r1, r2, r3, … ri, and 

coordinates of atomic nuclei R1, R2, R3, … R.  

The stationary Schrödinger equation of entire system has the form:  

ψψˆ EH  ,                                                         (5.1) 

Ĥ – The energy operator (Hamiltonian) of the system, Е – the total energy,  -the wave 

function (the proper function of   Ĥ-operator).  

The operator Ĥ includes:  

The kinetic energy of electrons  
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m – the electron mass, ħ – the Plank constant,  2
i - the Laplas operator of a i-electron.  

The kinetic energy of nuclei  
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M – the nucleus mass.  

The energy of pair interaction between electrons  

 






iji i

ij
ji

e U
rr

e
U

,
2

1

0

2

2

1 ˆ

4

ˆ ,                                       (5.4) 

The energy of pair interaction between nuclei  
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 The energy of pair interaction between electrons and nuclei  
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The energy of particles in an external field  
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Thus: 
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In 1 см
3
 of crystal there are about 10

22
 atoms. Hence the number of degrees of freedom 

(hence, the number of equations) is huge (of the order of 10
22

 - 10
24

). That system of 

equations can not be solved exactly. Certain approximation should be made.   



 106 

We assume that there is no external field, i.e.:  

  0,,,;,,,ˆˆ
321321   RRRrrrVV                                        (5.9) 

 

5.2. Adiabatic Approximation  
 

The adiabatic approximation (Born, Oppenheimer) takes into account the different 

motion of the light electrons and heavy nuclei. In accordance with zero approximation, 

It is assume that the nuclei are at rest: 0
  RR . Thus, the kinetic energy of nuclei is 

zero. The interaction energy of nuclei ZÛ is small and can be neglected. Thus, the 

Hamilton operator of electrons eĤ :  

eZeee UUTH ˆˆˆˆ                                            (5.10) 

The wave function of electrons е follows the normalization condition:  
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The Schrödinger equation:  

eeee EH ψψˆ  ,                                             (5.12) 
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The energy of crystal Ее represents the energy of electrons moving in the field of nuclei 

at rest.  
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Let us designate the wave function of nuclei by  ,1RZ .  

The Hamilton operator of nuclei:  
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The Hamilton operator of entire crystal can be written as follows:   

eZe EHHH ˆˆˆˆ  ,                                            (5.16) 

The wave function is a product of wave functions of nuclei and electrons:    
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I.e. the total energy of crystal coincides with the energy of nuclei with great accuracy.  

In spite of essential simplification, the equation (5.13) can not be solved.  

The electrons of the inner atomic shells of solids do not affect a great number of 

electric, magnetic, and optic phenomena. Thus we can restrict our approximation only 

by valence electrons. We remind our readers that the valence electrons build up the 

bonds of a crystalline lattice, the inner electrons together with nuclei build up the lattice 

skeleton. That assumption is called the valence approximation.  
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5.2. A Single Electron Approximation  
                        

Let us try to reduce the many-electron equation (5.13) to a single electron problem. 

Introducing the self-congruent field can do it. That field is the field produced by all 

electrons and nuclei at a point where the given (with number i) electron is located. 

Designate the self-congruent field by i  = i(ri). The field not only acts on an electron, 

but itself is affected by the electron. It explains the definition. Thus, the energy of the 

pair interaction of electrons can be replaced by the sum of i(ri): 
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Assume that the field is found. Then the Hamilton operator Ĥе can be written as 

follows:  
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iĤ - the Hamilton operator of a single electron:  
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i(ri) is the potential energy of a single electron in the field of other electrons 

and Ui(ri) is the potential energy of a single electron in the field of nuclei. There are no 

the pair interaction energy in the Hamilton operator, so the wave function of entire 

system is the product of separate functions and the system energy is the sum of electron 

energies:  
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We remind:  

iiii EH ψψˆ  .                                                (5.24) 

Thus, introducing the self-congruent field we managed to reduce the many-particle task 

to the problem of a single electron. 

The procedure of finding functions i(ri) leads to the Hartry equation:  

 

     

     iiiiiii

ii
ji ij

i
jjii

EU

r

de

m

rrRRr

rrr





















 







,,,

42

21

0

2
2

2

12
2

 .                  (5.25) 

That equation does not take into account the Pauli exclusion principle. In accordance 

with that principle, the wave function should be anti-symmetric, relative the spin and 

space coordinates of a pair of particles. Equation (5.22) does not hold that principle. The 

Hartry-Fock equation follows the exclusion principle. The Sleter determinant expresses 

the electron wave functions:  
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N  - the number of electrons, qi – arguments xi, yi, zi и
izs  The wave function е fllows 

condition:  
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Introducing 
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We get: 
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The analytical expression of function V(r) is not known, but a great number of 

characteristics of the system can be understood without it. It is needed only to know the 

periodicity properties of the function V(r).  

 

5.3. The periodic Field of a Crystalline Lattice  
 

It is natural to assume that the crystalline field is periodic:  

    nrr VV                                                    (5.26) 

I.e. the potential energy is invariant relative the translation vector n.   

cban 111 nnn  ,                                                   (5.27) 

a, b, and с are the identity periods of a lattice along the directions determined by 

integers  n1, n2, and  n3 .  

F.Bloch assumed that the wave functions of equation (5.25) has the form:  

     rkrr  iUkk expψ ;                                         (5.28) 

The translation symmetry leads to conclusion that the wave functions of neighbor cells 

are proportional one another.  

   rnr ψψ C ,                                             (5.29) 

С is a constant. The normalization condition leads to:   

 1
2
C .                                                 (5.30) 

The condition (5.30) holds if  
knieC  .                                             (5.31) 

k – the wave vector with a module k = 2.   

Taking into account (5.31) we get:  

   rnr
knψψ ie ,                                             (5.32) 
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     nrr
nrk

k   ψieU                               (5.34) 

Thus, the potential energy is periodic (with the period of the lattice).  

Equation (5.28) represents the Bloch theorem: The wave function of an electron moving 

in a periodic field is a modulated plane wave. In other words it is a product of the 

exponent   rk
r

i
k eU  and periodic function  rkU .  The function (5.32) and  (5.33) are 

called sometime the Bloch functions*. 
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Often the vector k is called the quasi-wave vector. The dimension of its components is 

reversible to that one of the length. Usually the vector k is written as follows:  



p
k  ,                                                       (5.35) 

Vector р is called the quasi-momentum.  

The definition ‘quasi-wave vector” and “quasi-momentum” stresses the analogue 

between the situation described and the problem of a free electron.  

It is very easy to understand the likelihood and difference between the momentum and 

quasi-momentum. The first one characterizes the motion of a free electron when the 

system is isotropic. The second one characterizes the motion of an electron in the 

periodic force field when the system is invariant relative the translation by the period of 

a lattice.  

The quasi-momentum operator P̂  is commutative with the energy operator:  

0ˆˆˆˆ  PHHP ,                                                (5.36) 

Thus, we can postulate that the electron energy depends on quasi-momentum:  

 pEE  .                                                  (5.37) 

In accordance with the commutation condition, the quasi-momentum operator can not 

be taken in form of  i (it would be commutative with the Hamilton operator). It 

should contain an addend, which depend on the field potential:  

 rγ̂ˆ  iP ,                                                (5.38) 

 rγ̂  Provides the commutation between P̂ and Ĥ . 

In order to find operator P̂ , the wave function k should be represented as the Bloch 

wave. Then after rather simple transformations we get:  

 )(lnˆ rkUiiP   .                                                (5.39) 

When  rγ̂   0, the quasi-momentum transforms into conventional quantity.  

 

5.3. The Brillouin Zones  
 
Let us again discuss the translation condition for the electron wave function in a crystal.  

   rnr
knψψ ie .                                             (5.40) 

For a vector Gk  2 , (   cbaG lkh  - vector of the inverse lattice), the 

condition (5.40) is not violated. Indeed:  
    knnGknnGk iiii eeee   22 .                                      (5.41) 

 

We have taken into account that  

  1, 2  QieQnG .                                               (5.42) 

  числоцелое321  QlnknhnnG  

Hence, the vector k and Gk  2 (or p and Gp  2 ) are physically equivalent. Both of 

them determine the same transformation of a wave function. The energy of an electron 

in those states is identical. We remind our readers that the energy is a periodic function 

of momentum (or quasi-momentum 
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If t in p (or k ) space, we construct  the reciprocal lattice with basis 

  cba  2,2,2  (or   cba 2,2,2  ), then entire crystal would be divided into 

the equivalent regions called the Brillouin zones.  

A polyhedron of minimal volume built about the origin of coordinates of p (or k) space, 

which contains all non-equivalent states, is called the first Brillouin zone.  

In order to determine the type of the first Brillouin zone, it is necessary to build the 

reciprocal lattice and the Vigner-Zeitz cell. If to all selected points to add vectors 

G2 (or G2 ), we will get all points of p (or k) space.  

It follows that any point of p (or k) space can be transformed into the first Brillouin 

zone with the aid of a certain vector of reciprocal lattice.  

For example, for a cubic cell of parameter a, the reciprocal lattice is also cubic with 

parameter 
a

a 1*  . The Wigner-Zeitz cell (the first Brillouin zone) is a cube of the 

volume 
3

38

a

 . The points of a cube constructed upon three reciprocally perpendicular 

vectors 
a

2 are not equivalent. These points can not be reproduced with the aid of a 

certain vector G . All external points can be easily produced from the inner ones. In 

order to build the first Brillouin zone, it is necessary to transmit all points by the vector   

(-)a*. The center of the cube would transmit into the origin of the coordinate frame 

k = 0.  

Thus:  
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When the lattice is cubic:  

i
i
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(5.45) 

The Brillouin zones of a simple cubic lattice are 

shown in Fig.5.1. 

The real crystal is finite. Thus, the allowed 

magnitudes of an electron wave vector are 

discrete.  

For a cubic crystal with a lattice parameter a, we 

can write:  

aNLaNLaNL zzyyxx  ;; ,       (5.46) 

The quantities Nx, Ny, and Nz are the numer f 

atoms located along the edges Lx, Ly, и Lz. Assume 

that the wave function follows the Born-Karmann 

condition:  

 

   zyx LzLyLxzyx  ,,ψ,,ψ .    (5.47) 

Fig.5.1. The Brillouin zones of a 

simple cubic lattice.  
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Applying condition (5.47) on function (5.47) and taking into account the periodicity of 

the Bloch function, we get:  
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The length L is great, and we can assume that in the edges Lx, Ly, and Lz there are the 

integer numbers of the lattice periods. Thus, to satisfy condition (5.28), it is necessary:  
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Hence,   

321 2;2;2 nLknLknLk zzyyxx  ,                     (5.50) 

n1,  n2,  n3 – integers (0, 1, 2, …). The allowed components of a wave vector are:  
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Using (5.46) we can write:  
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Taking into account the equivalence of states k and Gk  2 , we make restriction on 

the possible number of ni.  

iii Nnak  *;2 .                                     (5.53) 

The entire quantity of the wave vectors in the Brillouin zone is:  
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Thus, the number of allowed wave vectors coincides with the number of elementary 

cells in a crystal. The greater the size of a crystal, the less is the influence of discrete 

structure of the wave vector. Indeed, if а
3
 = 6410

-25
 см

3
, then in a crystal of the volume 

1см
3
 , N  10

22
. Taking into account that the energy of the state k and k+ G2 is 

identical, we assume that the periodicity condition is true:  
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The set of all electron energy levels k,nE  (for fixed n) is called the energy zone.  

называют энергетической зоной. For every set, there is the upper and down limits. All 

levels are located inside the interval between those limits. When the width of the zone is 

about 1eV, the average distance between the levels is  10
-22

eV, i.e. much less than kT. 

So we can not take into account the energy discreteness inside the zone.   
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5.4. The Crowing-Penny  
 

The energy spectrum of electrons is to be found from the Schrödinger equation (5.56). 

The potential of a lattice V(r) is a periodic function of crystalline structure.   
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The proper functions  rk and energies  rkE  essentially depend on the form of a 

potential V(r). A number of approximations is used.  

     

1) Only atomic constants are used as parameters in self-congruent calculations (for 

example, the method of orthogonal plane waves). 

2) In order to coordinate the theory and experiment, the experimental data are used (the 

interpolation schemes, the method of pseudo-potential).  

3) The methods based on selection of a special type potential are used ( the Grin 

functions, added plane waves, the linear combination of atomic orbital).  

The main part of those calculations is made numerically.  

In one-dimensional model of Crowing and Penny, the simple rectangular barriers are 

used (Fif.5.2). The width of the barrier is b, 

the distance between barriers is b. Thus, the 

lattice period is с = а+ b.  

The potential energy can be written as 

follows:  
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.  (5.57) n is 

an integer (0, 1, 2, …). The one-dimensial 

Schrödinger equation:   
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 The Bloch function is chosen as the solution of that equation:  

    ikxexUx ψ                                   (5.59)   

U(х) – a periodic (period c) function:  

       cxUcxUxU 2                               (5.60) 

Introducing (5.59) into (5.58), we get for   x  a (and for each well):   
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We get for a  x  a + b (and for each potential barrier):  
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1 2


. Solution of equation (5.61) and (5.62) are:  

Fig.5.2. The electron potential energy 

as function of inter-atomic distance in 

Kroning-Penni model. 
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    ;0,1 axBeAeU xkixki                                        (5.63) 

    baxaDeCeU xikxik   ,2  .                               (5.64) 

We can exclude four unknown quantities А, В, С, and D using the continuity of the 

function (х) and is derivative: 
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 .                               (5.65) 

 

Thus, we get the system of four linear equations relative А, В, С, and D. To have a 

solution, its determinant should be zero. It leads to:  

          0αcosβchαsinβsh
αβ2

αβ
cos

22




 ababbak                (5.66) 

In order to solve equation (5.66) suppose that the barriers are high and thin. Let b  ,  

V0  , but the product bV0 is finite. It means that quantity 
2
b is finite, but b  . 

When b   chb  , shb  b. Thus, instead of equation (5.66), we get:  

    kaaab cosαcosαsinβ
αβ2

αβ 22
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         или               (5.67) 
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aab
cosαcos
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                                (5.68) 

 

Introduce a designation:  

P
ab

ob




 2

β2

lim                                           (5.69) 

The parameter Р characterizes the transparency of a barrier, in other words the degree of 

bonding of electron inside the potential well. Obviously:  

  kaa
a

a
P cosαcos

α

αsin
                                 (5.70) 

It should be noted that the function 

cosa is an even function: 

replacing k by  (-) k does not 

change equation (5.68). Hence, the 

electron energy is also an even 

function of the wave vector:  

   kEkE                                              

(5.71) 

The left part of function (5.70)  is 

shown in Fig.5.3. The right part of 

equation (5.70) is limited by the 

interval from (+)1 up to (- )1. The 

allowed quantities of a are 

dashed.  The width of the intervals 

depends on the parameter P. The less the parameter, the wider are the intervals. Besides, 

Fig.5.3. The left side function of the 

equation (5.72). 



 114 

their width depends on the quantity a. At any Р, the intervals widens when parameter 

a increases.  Thus, the electron energy can not be arbitrary. The allowed and forbidden 

zones alternate.  

When Р  0, V0  0 (the weak bond approximation). It follows from (5.70) that 

a = ka =ка, i.e. а = k. Taking into account that mE21


  we get:  

m

k

m
E

22

2222     .                                              (5.72) 

The relation (5.72) is known to describe the free electron.  

When Р  , V0   (the strong bond approximation). When Р  , it follows from 

equation (5.70) that    

jaет
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..,0

sin
,                                     (5.73) 

j = ±1, ±2, ...,  

2

2 2

22

jE
ma

   .                                              (5.74) 

Equation (5.74) is known as standart result for a particle in one-dimensional box with 

the width а. The dispersion law in the strong bond approximation for an electron in the 

perodic field of a lattice is found as follows:  
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  kaACEE j
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jj cos10                                           (5.76) 
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The first addend in (5.75) is the energy of an electron in the well of infinite depth. The 

second and the third addends describe the influence of the periodic field. In the periodic 

lattice field, the levels are low than those ones 

for the isolated electron by the quantity Сj. The 

third addend in (5.75) assosiated with zones. 

That addend oscillates. The function Е(k) is 

shown in Fig.5.4. The interval from 
a

  up to 

a

  is the first Brillouin zone. Two segments 

from 
a

 2 to
a

  and from
a

  to
a

2  represent 

the second Brillouinzone, and so on. All 

possible energies of any zone can be got by 

variating the vave number of the first zone. 

The function Е(k) is usually given only for the 

first zone. All other quantity of energy can be reduced in that zone (the method of 

reduced zone, Fig.5.4). The scheme shown in Fig.5.5 is called the periodic zone cheme. 

The metod of expanded zone cheme is also used (Fig.5.7). Accordingb to that method, 

the different energy zones are located in different Brillouin zones. In Fig.5.7, the 

parabolic dependence Е(k) for a free electron is also shown. The origin of both graphs is 

the same. 

Fig.5.4. Dependence of electron 

energy on wave number in one-

dimensional lattice.  
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It follows from Fig.5.5 that in odd zones 

(j = 1, 3, 5, ...) there is a minimum in the 

zone center and two equivalent 

maximums at the zone borders. In even 

zones there is a maximum in the zine 

center and two equivalent minimums at 

the zone borders. 

At the borders of the Brillouin zone 

when the wave vector equals 
a

n , the 

disrupters appear. The situation when the 

function E(k) disrupts is characterize by the condition: 

a

nk 



  2      или an 2λ                                       (5.77) 

The condition (5.77) is the Wolf-Bragg condition for a wave falling normally upon a 

crystalline lattice. When that condition holds, the Bloch function represents the standing 

wave. Thus the electron undergoes the Bragg reflection. The falling and reflected waves 

can superpose forming the symmetric or non-symmetric combination:  
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Formulas (5.78) and (5.79) are written for 
a

k  . The wave function 1 does not 

change when х is changed by  - х,2 changes the sign. The function 2 is imaginary.  

The different energy corresponds to function 1 and 2. The less energy (the upper 

Fif.5.6. The zone dependence of electron 

energy on the wave number  
 Fig.5.7. Disruption of 

electron energy  

Fig.5.5. The methoid of 

reduced zones. 
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border of the first zone, point A in Fig.5.7) corresponds to the function 1. The down 

border of the second zone (point А') corresponds to function 2 . When 
a

k   the 

electron energy is less than ЕА, when 
a

k   the electron energy is greater than ЕА’.  The 

interval from ЕА up to ЕА’ is forbidden.  

We remind our readers that when the wave vector reaches the border of Brillouin zone 

(
a

k  ), the elastic waves reflect and standing waves are produced.  

The zone structure of three-dimensional lattice is more complicated. The dependence 

Е(k) can be different for different orientations. The allowed zones can overlap. For 

example, the forbidden in certain direction zone can coincide with allowed one in other 

direction.  It should be noted that there is no overlapping in one-dimensional model.  

 

 5.5. Metals, Dielectrics, Semiconductors  
 

When a crystalline lattice is formed, the energy levels of an isolated atom split 

and the energy zone is produced. If the energy level was filled the energy zone is filled 

too. In any allowed zone there is a finite number of levels. In accordance with exclusion 

principle, only two electrons with the opposite spin can populate each level. The 

number of electrons in crystal is finite and only the lowest energy zones are filled. All 

the other zones are empty. The several types of filling the zones are possible. 

1.When the last (valence) zone is filled partly, the electrons from the levels close he 

border would transit at the higher levels of the same zone under action of an external 

field. The electric current would be produced. Thus, the crystals with partially filled 

valence zone are metals. For example, the electron configuration of Sodium is 

Na = [1s
2
2s

2
2p

6
]3s

1
. The inner zones (formed by 1s,

 
2s, and 2p levels) are completely 

filled. The valence zone is formed by Зs states. The number of states is 2N , but there is 

only N electrons (one valence electron per atom). Thus, only half of the valence zone of 

crystalline Sodium is filled.  

2. The valence zone is filled, but overlaps with the allowed neighbor empty zone. If the 

voltage is applied, the electric current is produced. Such crystal is a metal too, for 

instance Mg = 1s
2
2s

2
2p

6
3s

2
. In crystalline Magnum, the valence electrons fill 3s – zone.  

That zone overlaps with the following allowed zone formed by 3p-levels.  

3. The valence zone is filled. Between the valence zone and the following free zone 

there is a wide forbidden zone (the > 2 – 3 eV). In a crystal of such zone structure, the 

electric current can not be produced because the electrons of the filled zone can not 

change its energy. Thus, the substance is a dielectric, for instance ionic crystal NаСl. 

The configuration of positive Sodium ion: Na
+
 = 1s

2
2s

2
2p

6
 ,and configuration of a 

negative Chlorine ion: С1
-
 = 1s

2
2s

2
2p

6
3s

2
3p

6
. The zones that consist of entirely filled 

atomic levels are entirely filled too. The last filled zone is Зр С1
-
, the following zone 

3sNa
+
 is free. The energy slit between zones is about 9eV.  

If the width of forbidden zone is less than 2 – 3 eV, the crystal is called the 

semiconductor. In a semiconductor, the appreciate number of electrons are transmitted 

(due to heat energy) in the conduction zone. At very low temperature, any 

semiconductor becomes a good dielectric.   

Thus, metals and dielectrics differ principally, dielectrics and semiconductors differ 

only quantitatively.  

Fig.5.8 shows the zones of metals, semiconductors, and dielectrics. The widths of 

forbidden zones of certain dielectrics and semiconductors are tabulated in table 5.1.  
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The type of the filling of energy zone depends also on crystalline structure. For example 

the Carbon structured, as diamond is dielectric. The Carbon structured, as graphite is a 

metal.     

 

 

 

 

Table 5.1 The width of forbidden zone  

Материал Eg, эВ 

С (алмаз) 

BN 

Al2O3 

Si 

Ge 

GaAs 

InSb 

5,2 

4,6 

7,0 

1,08 

0,66 

1,43 

0,17 

 

5.6. Effective Mass. The Holes  
 

The uniform electric field acts upon an electron (the velocity v) with a force: 

vE  e
dt

dε
                                        (5.80) 
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Introducing (5.81) into (5.80) we get:  
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According to Eq.(5.82), the quantity ħk can be considered as the electron momentum. 

The acceleration of electron is:  
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Fig.5.8. The electron zone occupation.. Ev – the border of valence zone; Ec –the border 

of conduction zone; Eg – the width of forbidden zone. 
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Comparing equation (5.83) and (5.84) we arrive to the conclusion that the dimension of 

the quantity  
1
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m                                               (5.85) 

is mass. The quantity (5.85) represents the effective mass tensor. For certain solids of 

complex structure, the non-diagonal tensor components are great, and the direction of 

acceleration does coincide with that one of the applied field. If a solid is isotropic, all 

non-diagonal components are zero and three diagonal components are identical. The 

quantity (5.86) is called the effective scalar mass.  
1
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m                                               (5.86) 

The effective mass does not depend on energy if the energy is a square power function 

of the wave vector.  

If the electron energy is minimal at a point k = k1, the diagonal components mij are (as a 

rule) positive at the point k1.  And we can assume that for electrons located near the 

bottom of allowed zone:  

 21
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kk
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εε 


,                                        (5.87) 

m1 – the effective mass for given direction.  

In the regions of the Brillouin zone where the electron energy is maximal, all three 

components  22
jk  are negative. Thus:  

 22
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2
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kk
m

εε 
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.                                        (5.88) 

An electron belonging to such group of states responds to the field as if its mass 

is negative. Thus, the points of the geometric space near the zone ceiling behave as the 

positive particle, which is called the hole. The mass and electric charge of a hole is 

positive. When considering the zone filled almost up to the ceiling (for example, the 

valence zone of a semiconductor), it is more convenient to speak about the motion of 

holes but not electrons.  

Thus, the conductivity of almost entirely populated zone is due to a small 

number of non-occupied states – positive holes with positive mass and charge.  

 

 

5.6. Elementary Theory of Local States  
 

In real solids there is a number of defects. It affects its energy spectrum. The very 

typical defects are implanted atoms (impurities). It is assumed that a defect violates the 

periodic potential of a lattice. Designating the violation by  rW , which is located near 

the point r0 , we can write:  
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The solution of equation (5,88) is represented by the Vanier functions:  
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Ф(r – r0) – is a Vanier function.  The solution shows that when there is violation W, one 

energy level at the edge of allowed zone is split off. If W  < 0 that level goes down, if 

W  > 0 the level goes up. поднимается вверх. 

Thus, if there is violation, the energy level Еk(r) appears in the forbidden zone. When 

defects are generated (impurities, vacancies, dislocations, and others), the allowed states 

appear inside the forbidden zone (Fig.5.10).  

To solve the equation (5.88) for 

certain energy of violation  rW , a special 

method is used. The method is based on 

the fact that the free electron equation and  

equation for an electron in a crystal are 

identical if the last one is written as 

follows:  

   rr kk  E
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2
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(5.90) 

т*  - effective mass tensor. A plane wave 

is the solution of equation (5.90). That 

method is called the effective mass method.  

The method can be applied if potential 

 rW is changing more slowly than potential V(r). It signifies that the region of 

localization of the violation is greater than the lattice period.  

Acceptor and donor impurities affect the concentration of free charge carriers in a 

semiconductor. It is due to the fact that the activation (ionization) energy  of impurities 

is essentially less than the ionization energy of the substance:  

gvaagdcd EEEEEEEE  ; ,              (5.91). 

Еa and Еd  is the energy  of an acceptor and donor level.  

The donor levels are usually located at the bottom of conduction zone; the acceptor 

levels are located above the ceiling of valence zone. To describe those levels, the 

Hydrogen model is convenient.  

The interaction between the impurity and substance atom leads to decreasing of the 

bond energy of the impurity atom electron. Its orbit becomes greater than that one of the 

other impurity atom electrons. For example, when antimony atoms (five valence 

electrons) are introduced in Silicon, four valence electrons of antimony atoms can take a 

pert in covalent bond of silicon atoms. The bond of fifth electron (which does not take 

part in covalent bond) with the antimony ion is less. Obviously, the bong energy of the 

fifth electron with impurity ions is the ionization energy of the donor impurity Еd . 

The electron, which does not take pert in covalent bond, can be considered as the free 

particle. Using the effective mass method we can write its motion equation as follows:  

Fig.5.10. Generation of allowed states 

inside the forbidden zone under action 

of the local violation  
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The form of equation (5.92) is identical with that of the Hydrogen atom.  

Thus, we can write:  
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It is assumed that the energy corresponding the bottom of conduction zone iz zero. The 

ionization energy of the impurity atom (n=1) is:  
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For antimony in silicon, Еd = 0,04eV. In accordance with (5.95), the level of twice 

ionized donor impurity in forbidden zone is lower than the levels of once ionized or 

neutral impurity atom.   

For acceptor impurity, formula (5.93) and (5.94) hold. For example, the ionization 

energy of acceptor impurity:    
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
pm  - the hole effective mass.  

The proper defects of the lattice as well as impurities produce the local states in 

forbidden zone.  

 

 


