5. Zone Theory of Solids

To study the elementary particle system (in particular to find its energy levels), it is
necessary to solve the corresponding Schrodinger equation. That differential equation
contains the number of variables equal to that of freedom degrees of the system under
investigation.

5.1. The Schrodinger Equation for a Crystal

A crystal can be characterized by coordinates of electrons ry, I, 13, ... i, and
coordinates of atomic nuclei Ry, Ry, Rs, ... Rq.
The stationary Schrédinger equation of entire system has the form:

Hy = Ey, (5.1)
H — The energy operator (Hamiltonian) of the system, E — the total energy, v -the wave
function (the proper function of F-operator).
The operator H includes:
The kinetic energy of electrons

2
Te =T, =Z(—E—V?J, (5.2)

m — the electron mass, 7 — the Plank constant, Viz - the Laplas operator of a i-electron.
The Kinetic energy of nuclei

. R K2
7 =>T, =Z[ Vﬁ}. (5.3)

= 2Mm,

M, — the nucleus mass.
The energy of pair interaction between electrons

2
G =1 e—=%ZUij, (5.4)
i, j#i 4ﬂ80‘ri _rj‘ i
The energy of pair interaction between nuclei
2
. Z,Zge .
U, -1 a=f %ZUaB' (5.5)

2OL¢B4T[80‘R(1 _RB‘ o=p
The energy of pair interaction between electrons and nuclei

U Z—Z“ez U (5.6)
eZ =~ - o 1 '
i,a4n80|ri - ROL' i,a ’
The energy of particles in an external field
\7=\7(r1,r2,r3,...;R1,R2,R3,...) (57)

Thus:
I:I =Ta+T7 +Ug+Uz +Uyz +V (5.8)
Hy = Ey
In 1 cm® of crystal there are about 10%% atoms. Hence the number of degrees of freedom
(hence, the number of equations) is huge (of the order of 10% - 10?%). That system of
equations can not be solved exactly. Certain approximation should be made.

105



We assume that there is no external field, i.e.:
\7=\7(r1,r2,r3,...;R1,RZ,R3,...)=O (59)

5.2. Adiabatic Approximation

The adiabatic approximation (Born, Oppenheimer) takes into account the different
motion of the light electrons and heavy nuclei. In accordance with zero approximation,

It is assume that the nuclei are at rest: R, = Rg. Thus, the kinetic energy of nuclei is
zero. The interaction energy of nuclei Uy is small and can be neglected. Thus, the
Hamilton operator of electrons Hy:

He =Te +U, +Ugy (5.10)
The wave function of electrons . follows the normalization condition:
j\pz(rl,...; R‘f,...}ye(rl,...;R‘f,...)dre =1 (5.11)
The Schrodinger equation:
|:|e‘lfe = EeVe, (5.12)

or
2

2 2
fi 1 e 1 Z.,e
Z( viZJ"' Z Z < 0‘ Ve = Egye, (5.13)

i 2m 8me i, i ‘ri —rj‘ 4me i,a‘ri ~RY

The energy of crystal E, represents the energy of electrons moving in the field of nuclei
at rest.

Ee = [weHewedte = Ee(R‘f,Rg ) (5.14)
Let us designate the wave function of nuclei by ® (Ry,...).
The Hamilton operator of nuclei:

2
Hy =>| - h V2 |+U7 +Ey(...Ry....) (5.15)
< 2M
The Hamilton operator of entire crystal can be written as follows:
H=H,+Hy; —Eg, (5.16)
The wave function is a product of wave functions of nuclei and electrons:
y(.rig Ry ) =weloriy Ry P2 (R ). (5.17)
Obviously:
Hewe =E
Ae‘lfe eVe ' (5.18)

I.e. the total energy of crystal coincides with the energy of nuclei with great accuracy.

In spite of essential simplification, the equation (5.13) can not be solved.

The electrons of the inner atomic shells of solids do not affect a great number of
electric, magnetic, and optic phenomena. Thus we can restrict our approximation only
by valence electrons. We remind our readers that the valence electrons build up the
bonds of a crystalline lattice, the inner electrons together with nuclei build up the lattice
skeleton. That assumption is called the valence approximation.
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5.2. A Single Electron Approximation

Let us try to reduce the many-electron equation (5.13) to a single electron problem.
Introducing the self-congruent field can do it. That field is the field produced by all
electrons and nuclei at a point where the given (with number i) electron is located.
Designate the self-congruent field by Q; = Qj(ri). The field not only acts on an electron,
but itself is affected by the electron. It explains the definition. Thus, the energy of the
pair interaction of electrons can be replaced by the sum of Q;(r;):

2
iy ——— —>ZQ (ri). (5.19)
i, J¢,4neo‘r, —rJ‘

Assume that the field is found. Then the Hamilton operator H, can be written as
follows:

2
h .
SI-=VE |+ 20i(0)-3| SUig |= X Hi (5.20)
i 2m i i U i
Hi - the Hamilton operator of a single electron:
2
|:|i :—Z—Viz +Qi(ri)+Ui(ri). (5.21)
m

Qi(ri) is the potential energy of a single electron in the field of other electrons
and Ui(r;) is the potential energy of a single electron in the field of nuclei. There are no
the pair interaction energy in the Hamilton operator, so the wave function of entire
system is the product of separate functions and the system energy is the sum of electron

energies:
ve(r,ra ) =TTwi(r); (5.22)
i
Ee = Z Ei, (5.23)
i
We remind:
Hivi = Ejvy;i. (5.24)

Thus, introducing the self-congruent field we managed to reduce the many-particle task
to the problem of a single electron.
The procedure of finding functions Qi(r;) leads to the Hartry equation:

h? 2 ezdr,
- v2yi(r) [ E,”wl( ) p— ]\v.( )+ (5.25)
+U;(ri, Ry, Ry, i (1) = Ejwi(ri)

That equation does not take into account the Pauli exclusion principle. In accordance
with that principle, the wave function should be anti-symmetric, relative the spin and
space coordinates of a pair of particles. Equation (5.22) does not hold that principle. The
Hartry-Fock equation follows the exclusion principle. The Sleter determinant expresses
the electron wave functions:

1 \lfl((h) \Ill(OI2)
‘I’e(%QZ---):sz(%) va(az) -, (5.26)
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N - the number of electrons, gi; — arguments X;, Vi, Zi uS;, The wave function ¥, fllows

condition:
‘I’e(q, ...k ):‘Pe(qk ... 0 )
. : (5.27)
[WeWedge =1
introducing
V(r)=Q(r)+U(r), (5.28)
We get:
2
H_va +V(r)}|/(r): E(r) . (5.25)

The analytical expression of function V(r) is not known, but a great number of
characteristics of the system can be understood without it. It is needed only to know the
periodicity properties of the function V(r).

5.3. The periodic Field of a Crystalline Lattice

It is natural to assume that the crystalline field is periodic:

V(r)=V(r+n) (5.26)
I.e. the potential energy is invariant relative the translation vector n.
n=ma+mb+mc, (5.27)

a, b, and care the identity periods of a lattice along the directions determined by
integers ng, Ny, and ns.
F.Bloch assumed that the wave functions of equation (5.25) has the form:

i (r)=Ux (rexp(ik -r); (5.28)
The translation symmetry leads to conclusion that the wave functions of neighbor cells
are proportional one another.

y(r+n)=Cyl(r), (5.29)
C is a constant. The normalization condition leads to:
cf? =1. (5.30)
The condition (5.30) holds if
Cc=ekn, (5.31)

k — the wave vector with a module k = 27t/A.
Taking into account (5.31) we get:

w(r+n)=e""y(r), (5.32)
w(r)=e M My(r+n)=Uy (re™", (5.33)
Uk(r):e_ik(””)\u(rJrn) (5.34)

Thus, the potential energy is periodic (with the period of the lattice).
Equation (5.28) represents the Bloch theorem: The wave function of an electron moving
in a periodic field is a modulated plane wave. In other words it is a product of the

exponent U, (r)e'®" and periodic function U (r). The function (5.32) and (5.33) are
called sometime the Bloch functions*.
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Often the vector Kk is called the quasi-wave vector. The dimension of its components is
reversible to that one of the length. Usually the vector k is written as follows:

P
k==, 5.35
P (5.35)

Vector p is called the quasi-momentum.

The definition ‘quasi-wave vector” and “quasi-momentum” stresses the analogue
between the situation described and the problem of a free electron.

It is very easy to understand the likelihood and difference between the momentum and
quasi-momentum. The first one characterizes the motion of a free electron when the
system is isotropic. The second one characterizes the motion of an electron in the
periodic force field when the system is invariant relative the translation by the period of
a lattice.

The quasi-momentum operator P is commutative with the energy operator:

PH-HP =0, (5.36)
Thus, we can postulate that the electron energy depends on quasi-momentum:
E=E(p). (5.37)

In accordance with the commutation condition, the quasi-momentum operator can not
be taken in form of —iAV (it would be commutative with the Hamilton operator). It
should contain an addend, which depend on the field potential:

P =-inv +4(r), (5.38)
%(r) Provides the commutation between P and H .

In order to find operator P, the wave function vy should be represented as the Bloch
wave. Then after rather simple transformations we get:

P = —inV +in(VInU, (r)). (5.39)
When i/(r) — 0, the quasi-momentum transforms into conventional quantity.

5.3. The Brillouin Zones

Let us again discuss the translation condition for the electron wave function in a crystal.
w(r+n)=e""y(r). (5.40)

For a vector k+2nG, (G=ha"+kb™ +Ic* - vector of the inverse lattice), the
condition (5.40) is not violated. Indeed:

ei(k+2nG)n _ jikn,i2n(nG) _ jikn (5.41)

We have taken into account that

(nG)=Q, e'*™M =1, (5.42)
(NG) = n;h+ nyk + ngl = Q — nenoe uwcro
Hence, the vector k and k + 27G (or p and p + 2nG ) are physically equivalent. Both of

them determine the same transformation of a wave function. The energy of an electron
in those states is identical. We remind our readers that the energy is a periodic function
of momentum (or quasi-momentum

E(k +2nG) = E(k)

E(p +2n#G)=E(p) (5:43)
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If t in p (or k ) space, we construct the reciprocal lattice with basis

2mha”, 2mhb™, 2rnhc™ (or2na”, 2nb™, 2nc™ ), then entire crystal would be divided into
the equivalent regions called the Brillouin zones.

A polyhedron of minimal volume built about the origin of coordinates of p (or k) space,
which contains all non-equivalent states, is called the first Brillouin zone.

In order to determine the type of the first Brillouin zone, it is necessary to build the
reciprocal lattice and the Vigner-Zeitz cell. If to all selected points to add vectors
2nthG (or 2nG ), we will get all points of p (or k) space.

It follows that any point of p (or k) space can be transformed into the first Brillouin
zone with the aid of a certain vector of reciprocal lattice.

For example, for a cubic cell of parameter a, the reciprocal lattice is also cubic with

parameter a*=%. The Wigner-Zeitz cell (the first Brillouin zone) is a cube of the

3
volume 8%. The points of a cube constructed upon three reciprocally perpendicular
a

2n
a
certain vector G. All external points can be easily produced from the inner ones. In
order to build the first Brillouin zone, it is necessary to transmit all points by the vector
(-)ma*. The center of the cube would transmit into the origin of the coordinate frame
k=0.

vectors <*are not equivalent. These points can not be reproduced with the aid of a

Thus:
T T
~Z<ky <=
a " a
~Tsky <t (5.44)
a a
STk, <t
a a
When the lattice is cubic:
NP
key a; ai
(5.45)

The Brillouin zones of a simple cubic lattice are

shown in Fig.5.1.
The real crystal is finite. Thus, the allowed
1 magnitudes of an electron wave vector are
2 2 i discrete.
* For a cubic crystal with a lattice parameter a, we
can write:
2 Lx =Nya; Ly=Nya; L,=N,a, (546)

The quantities Ny, Ny, and N, are the numer f
atoms located along the edges Ly, Ly, u L,. Assume

Fig.5.1. The Brillouin zones ofa  that the wave function follows the Born-Karmann
simple cubic lattice. condition:

y(x,y,2)= \|/(X+ L,y +Ly,z+L, ) (5.47)
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Applying condition (5.47) on function (5.47) and taking into account the periodicity of
the Bloch function, we get:
\Vk(X+ Ly, y+Ly, 2+ LZ)=

+ei[kx(x+LX)+ky(y+ Ly)+kz(Z+Lz )] xUk(X+ Ly, y+Ly,z+L, ), (5.48)

_ Uk (X, y’ Z)el[kXLX +kyLy +kz LZ ]eikr _— (X, y' Z)
The length L is great, and we can assume that in the edges Ly, Ly, and L, there are the
integer numbers of the lattice periods. Thus, to satisfy condition (5.28), it is necessary:

ei[kXLX +kyLy +k, L, |

=1 wm
eikXLx :elkyLy :eikzLZ :1, (549)
Hence,
kXLX = 2nn1; kyLy = 27‘Cn2; kZ LZ = 2T|:n3, (550)
N1, Nz, N3 —integers (0, £1, £2, ...). The allowed components of a wave vector are:
21 21 21
ky =—n; ky=—ny; k, =—ng3, 5.51
X L, 1 y Ly 2 z L, 3 ( )
Using (5.46) we can write:
n; n;
ki = 2n i _ 2ma* - (5.52)
a Ni Ni

Taking into account the equivalence of states k and k +2nG, we make restriction on
the possible number of n;

ki = 2na*; ny = Ni . (5.53)
The entire quantity of the wave vectors in the Brillouin zone is:
LyLyL,
N =NyNyN; =—— (5.54)
a

Thus, the number of allowed wave vectors coincides with the number of elementary
cells in a crystal. The greater the size of a crystal, the less is the influence of discrete
structure of the wave vector. Indeed, if a* = 64-10°° cm®, then in a crystal of the volume
lem® , N~ 10% Taking into account that the energy of the state k and k+2rGis
identical, we assume that the periodicity condition is true:

Vn,k+27G (I’) =VWn,k (r)’

(5.55)
En,k+2nG = En,k

The set of all electron energy levels E,  (for fixed n) is called the energy zone.

Ha3bIBAIOT DHEPreTHYECKO# 30H0M. FOr every set, there is the upper and down limits. All
levels are located inside the interval between those limits. When the width of the zone is
about 1eV, the average distance between the levels is ~ 10?2V, i.e. much less than kT.
So we can not take into account the energy discreteness inside the zone.
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5.4. The Crowing-Penny

The energy spectrum of electrons is to be found from the Schrédinger equation (5.56).
The potential of a lattice V(r) is a periodic function of crystalline structure.
2
h” o2
9V ) i) 59

The proper functions ) (r)and energies E, (r) essentially depend on the form of a
potential V(r). A number of approximations is used.

1) Only atomic constants are used as parameters in self-congruent calculations (for
example, the method of orthogonal plane waves).

2) Inorder to coordinate the theory and experiment, the experimental data are used (the
interpolation schemes, the method of pseudo-potential).

3) The methods based on selection of a special type potential are used ( the Grin

functions, added plane waves, the linear combination of atomic orbital).

The main part of those calculations is made numerically.

In one-dimensional model of Crowing and Penny, the simple rectangular barriers are

used (Fif.5.2). The width of the barrier is b,

v the distance between barriers is b. Thus, the
v lattice period is ¢ = a+ b.
The potential energy can be written as
follows:
V(x)=0; nc<z<nc+a; _
_ . (657)nis
S Eram— = V(X)=Vo; nc+a<z<(n+lk

Fig.5.2. The electron potential energy ~ an integer (0, £1, £2, ...). The one-dimensial
as function of inter-atomic distance in Schrodinger equation:
Kroning-Penni model.

—ﬁd—+V(X)\y E (5.58)
2m dX v .
The Bloch function is chosen as the solution of that equation:

w(x)=U (x)e" (5.59)
U(x) — a periodic (period c) function:
U(x)=U(x+c)=U(x+2c)=. (5.60)
Introducing (5.59) into (5.58), we get for 0 < x <a (and for each well):
2
d l2J 2|k—+( -k )J 0. (5.61)
dx
We get for a <x <a + b (and for each potential barrier):

Y k——(B k2l =0 (5.62)
dx?

o= %\/ZmE B = %,/ZmiVO —E). Solution of equation (5.61) and (5.62) are:
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Uy = Aelle—k)x | ge-ilatkx g oy < (5.63)

U, = ceB-ikIx , pe=(B-ik)x 3 <y <aib. (5.64)
We can exclude four unknown quantities 4, B, C, and D using the continuity of the
function y(x) and is derivative:

U, =U,
du, _du, . _ na+b) . (5.65)
dx  dx ~ la+n(a+b)

Thus, we get the system of four linear equations relative 4, B, C, and D. To have a
solution, its determinant should be zero. It leads to:

2 2
cosk(a+b)— P 2_; sh(Bb)sin(aa)— ch(Bb)cos(aa)=0 (5.66)
(0}

In order to solve equation (5.66) suppose that the barriers are high and thin. Let b — 0,
Vo — oo, but the product bV, is finite. It means that quantity b is finite, but pb — 0.
When b — 0 chpb — 1, shBb — Bb. Thus, instead of equation (5.66), we get:

2 2
p” —a Bbsin(oa)+ cos(aa) = coska wTH (5.67)
2 .
pZab sinaa cos(aa) = coska (5.68)
2 aa
Introduce a designation:
2
im BTab _ (5.69)
bso 2
Bsoo

The parameter P characterizes the transparency of a barrier, in other words the degree of
bonding of electron inside the potential well. Obviously:

P sza +cos(aa) = coska (5.70)
(04
It should be noted that the function
p.-f_f!'_ﬂ + cosaa cosaa is an even function:
aa replacing k by (-) k does not
change equation (5.68). Hence, the
. * /\ electron energy is also an even
Z 7 function of the wave vector:
21 T8 |0 2% E(-k)=E(k)
y ad (5.71)
Z The left part of function (5.70) is
-1 shown in Fig.5.3. The right part of

equation (5.70) is limited by the

Fig.5.3. The left side function of the interval from (+.).1 up 0 (-)1. The
equation (5.72). allowed quantities of oa are
dashed. The width of the intervals

depends on the parameter P. The less the parameter, the wider are the intervals. Besides,
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their width depends on the quantity a.a. At any P, the intervals widens when parameter

oa increases. Thus, the electron energy can not be arbitrary. The allowed and forbidden
zones alternate.

When P — 0, Vo— 0 (the weak bond approximation). It follows from (5.70) that
0a = ka =xa, i.e. a = k. Taking into account that o = %\/ZmE we get:

_nla?  h2k?2
E=bat Ak (5.72)

The relation (5.72) is known to describe the free electron.
When P — oo, Vo — oo (the strong bond approximation). When P — oo, it follows from
equation (5.70) that

SNOB _ o e aa=mj, (5.73)
oa
j=+1, 42, ..,
h2n? .2

Equation (5.74) is known as standart result for a particle in one-dimensional box with
the width a. The dispersion law in the strong bond approximation for an electron in the
perodic field of a lattice is found as follows:

2_2:2 .
E=2r) {1—3+(—1)J ZCOSka} i (5.75)
2ma? P P
E =Epj —Cj +(-1)! Aj coska (5.76)
h2n2j2 hZTCZjZ
Egi = ™" ¢ ot
0J 2ma? J ma?pP

The first addend in (5.75) is the energy of an electron in the well of infinite depth. The
second and the third addends describe the influence of the periodic field. In the periodic

lattice field, the levels are low than those ones
E for the isolated electron by the quantity Cj. The

/\/\/\/ third addend in (5.75) assosiated with zones.

That addend oscillates. The function E(k) is
NN

shown in Fig.5.4. The interval from —g up to

T

/N~

Z is the first Brillouin zone. Two segments

B 2oz 9 Z z 3k from —%‘to—g and fromg tozfa’t represent
Fig.5.4. Dependence of electron the second Brillouinzone, and so on. All
energy on wave number in one- possible energies of any zone can be got by
dimensional lattice. variating the vave number of the first zone.

The function E(k) is usually given only for the
first zone. All other quantity of energy can be reduced in that zone (the method of
reduced zone, Fig.5.4). The scheme shown in Fig.5.5 is called the periodic zone cheme.
The metod of expanded zone cheme is also used (Fig.5.7). Accordingb to that method,
the different energy zones are located in different Brillouin zones. In Fig.5.7, the
parabolic dependence E(K) for a free electron is also shown. The origin of both graphs is
the same.
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It follows from Fig.5.5 that in odd zones

(=1, 3,5, ...) there is a minimum in the

zone center and two equivalent

} maximums at the zone borders. In even

zones there is a maximum in the zine

Pupemennwie  CENter and two equivalent minimums at
Jonet the zone borders.

At the borders of the Brillouin zone

3anpewennvie
30HbL

Y when the wave vector equals %‘, the
Fig.5.5. The methoid of disrupters appear. The situation when the
reduced zones.
function E(Kk) disrupts is characterize by the condition:
k = % =" wm nk=2a (5.77)

The condition (5.77) is the Wolf-Bragg condition for a wave falling normally upon a
crystalline lattice. When that condition holds, the Bloch function represents the standing
wave. Thus the electron undergoes the Bragg reflection. The falling and reflected waves
can superpose forming the symmetric or non-symmetric combination:

v (x)=U(x eigx+e_igx :2U(x)cos(§xj (5.78)
yo(x)=U(x eigx—e_igx =2U(x)sin[§xj (5.79)

Formulas (5.78) and (5.79) are written for k =i§. The wave function y; does not

change when x is changed by - x,y», changes the sign. The function - is imaginary.
The different energy corresponds to function y; and . The less energy (the upper

£ £
'.:.4. ‘
0’\.-.:‘ !
oo’y £y b2
505 . A’
.0’0.\ .’.0-
RN AKX !
"..‘.( .’.’. A |
deged IR b ===
/’y: !
&7 S =
Ja 2o Tha O Mo 27 37 K 0 T K
Fif.5.6. The zone dependence of electron Fig.5.7. Disruption of
energy on the wave number elec.tr&)r; energy
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border of the first zone, point A in Fig.5.7) corresponds to the function ;. The down
border of the second zone (point 4" corresponds to function y,. When k <§ the

electron energy is less than £4, when k >§ the electron energy is greater than £,.. The

interval from £, up to £, is forbidden.
We remind our readers that when the wave vector reaches the border of Brillouin zone

(k= J_rg ), the elastic waves reflect and standing waves are produced.

The zone structure of three-dimensional lattice is more complicated. The dependence
E(Kk) can be different for different orientations. The allowed zones can overlap. For
example, the forbidden in certain direction zone can coincide with allowed one in other
direction. It should be noted that there is no overlapping in one-dimensional model.

5.5. Metals, Dielectrics, Semiconductors

When a crystalline lattice is formed, the energy levels of an isolated atom split
and the energy zone is produced. If the energy level was filled the energy zone is filled
too. In any allowed zone there is a finite number of levels. In accordance with exclusion
principle, only two electrons with the opposite spin can populate each level. The
number of electrons in crystal is finite and only the lowest energy zones are filled. All
the other zones are empty. The several types of filling the zones are possible.
1.When the last (valence) zone is filled partly, the electrons from the levels close he
border would transit at the higher levels of the same zone under action of an external
field. The electric current would be produced. Thus, the crystals with partially filled
valence zone are metals. For example, the electron configuration of Sodium is
Na = [15?25?2p®]3s™. The inner zones (formed by 1s, 2s, and 2p levels) are completely
filled. The valence zone is formed by 3s states. The number of states is 2N , but there is
only N electrons (one valence electron per atom). Thus, only half of the valence zone of
crystalline Sodium is filled.

2. The valence zone is filled, but overlaps with the allowed neighbor empty zone. If the
voltage is applied, the electric current is produced. Such crystal is a metal too, for
instance Mg = 15°2s°2p®3s®. In crystalline Magnum, the valence electrons fill 3s — zone.
That zone overlaps with the following allowed zone formed by 3p-levels.

3. The valence zone is filled. Between the valence zone and the following free zone
there is a wide forbidden zone (the > 2 — 3 eV). In a crystal of such zone structure, the
electric current can not be produced because the electrons of the filled zone can not
change its energy. Thus, the substance is a dielectric, for instance ionic crystal NacCl.
The configuration of positive Sodium ion: Na* = 1s?2s?2p® ,and configuration of a
negative Chlorine ion: C1™ = 1s?2s*2p°®3s?3p°. The zones that consist of entirely filled
atomic levels are entirely filled too. The last filled zone is 3p C1, the following zone
3sNa’ is free. The energy slit between zones is about 9eV.

If the width of forbidden zone is less than 2 -3eV, the crystal is called the
semiconductor. In a semiconductor, the appreciate number of electrons are transmitted
(due to heat energy) in the conduction zone. At very low temperature, any
semiconductor becomes a good dielectric.

Thus, metals and dielectrics differ principally, dielectrics and semiconductors differ
only quantitatively.

Fig.5.8 shows the zones of metals, semiconductors, and dielectrics. The widths of
forbidden zones of certain dielectrics and semiconductors are tabulated in table 5.1.
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The type of the filling of energy zone depends also on crystalline structure. For example
the Carbon structured, as diamond is dielectric. The Carbon structured, as graphite is a

metal.

E E £ cé E
0bodHas
CBobodnas 30na CBobodnas
3o0na 30Ha
3anpewennas  Ec
%a’ﬁa Janpewennasn
Eg> 2-3 38 Jona
Yacmuymo § Eg=< 2-J 38
L . r7r £y b
999 %
Memann mMemann Ausnexmpux NonynpoBodnux

Fig.5.8. The electron zone occupation.. E,— the border of valence zone; E.; —the border
of conduction zone; Eg — the width of forbidden zone.

Table 5.1 The width of forbidden zone

Marepuan Eg, 5B

C (anmaz) 5,2

BN 4,6

Al;O3 7,0
Si 1,08
Ge 0,66
GaAs 1,43
InSb 0,17

5.6. Effective Mass. The Holes

The uniform electric field acts upon an electron (the velocity v) with a force:

% =—eE-v (5.80)
v =3—;°=;—k[%kj=%vkg (5.81)
Introducing (5.81) into (5.80) we get:
h(%j = —eE (5.82)
dt

According to Eq.(5.82), the quantity 7k can be considered as the electron momentum.
The acceleration of electron is:

d 7 dt) =
. (5.83)
(~€E)

=%VK[TVK‘{| =_?1Vkvk8(—eE)
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2
3 :_—12 e (eE) (5.84)

h i ki oK j
Comparing equation (5.83) and (5.84) we arrive to the conclusion that the dimension of
the quantity
0% )
mij th g& (5-85)
okiokK j

iIs mass. The quantity (5.85) represents the effective mass tensor. For certain solids of
complex structure, the non-diagonal tensor components are great, and the direction of
acceleration does coincide with that one of the applied field. If a solid is isotropic, all
non-diagonal components are zero and three diagonal components are identical. The
quantity (5.86) is called the effective scalar mass.

02 )"
m*=n2| 2 (5.86)
ok 2

The effective mass does not depend on energy if the energy is a square power function
of the wave vector.
If the electron energy is minimal at a point k = ky, the diagonal components mj; are (as a
rule) positive at the point k;. And we can assume that for electrons located near the
bottom of allowed zone:
72 2
e=¢g +——(k—kq )", 5.87
1 oy () (5.87)

m; — the effective mass for given direction.
In the regions of the Brillouin zone where the electron energy is maximal, all three

components (828/ ak,?) are negative. Thus:

e=¢ —i(k—k )2 (5.88)
2 2m, 2) - -

An electron belonging to such group of states responds to the field as if its mass
is negative. Thus, the points of the geometric space near the zone ceiling behave as the
positive particle, which is called the hole. The mass and electric charge of a hole is
positive. When considering the zone filled almost up to the ceiling (for example, the
valence zone of a semiconductor), it is more convenient to speak about the motion of
holes but not electrons.

Thus, the conductivity of almost entirely populated zone is due to a small
number of non-occupied states — positive holes with positive mass and charge.

5.6. Elementary Theory of Local States
In real solids there is a number of defects. It affects its energy spectrum. The very
typical defects are implanted atoms (impurities). It is assumed that a defect violates the

periodic potential of a lattice. Designating the violation by W(r), which is located near
the point ro , we can write:
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{—%VZ +V(r)+W(r)}\uk(r): Eyk(r) . (5.88)

The solution of equation (5,88) is represented by the Vanier functions:
1 -
\uk(r):—NZe'krO D(r-rp) (5.89)
k

@(r — ro) —is a Vanier function. The solution shows that when there is violation W, one
energy level at the edge of allowed zone is split off. If W < O that level goes down, if
W >0 the level goes up. mogHumaercst BBEpX.
Thus, if there is violation, the energy level Ei(r) appears in the forbidden zone. When
defects are generated (impurities, vacancies, dislocations, and others), the allowed states
appear inside the forbidden zone (Fig.5.10).
E To solve the equation (5.88) for
| certain energy of violation W(r), a special

% method is used. The method is based on

/—f——l-= E;  the fact that the free electron equation and

! equation for an electron in a crystal are
I B £, identical if the last one is written as
|

77t follows:

2
ho2
. Vi (r)= By (r)
2m

o Yo Vro (5.90)
Fig.5.10. Generation of allowed states m* - effective mass tensor. A plane wave
inside the forbidden zone under action js the solution of equation (5.90). That
of the local violation method is called the effective mass method.
The method can be applied if potential

W(r)is changing more slowly than potential V(r). It signifies that the region of

localization of the violation is greater than the lattice period.
Acceptor and donor impurities affect the concentration of free charge carriers in a
semiconductor. It is due to the fact that the activation (ionization) energy of impurities
is essentially less than the ionization energy of the substance:

AEy =E; —Eg <<Eg; AE; =E,; -E, <<Ey, (5.91).

Eq and Ey4 is the energy of an acceptor and donor level.

The donor levels are usually located at the bottom of conduction zone; the acceptor
levels are located above the ceiling of valence zone. To describe those levels, the
Hydrogen model is convenient.

The interaction between the impurity and substance atom leads to decreasing of the
bond energy of the impurity atom electron. Its orbit becomes greater than that one of the
other impurity atom electrons. For example, when antimony atoms (five valence
electrons) are introduced in Silicon, four valence electrons of antimony atoms can take a
pert in covalent bond of silicon atoms. The bond of fifth electron (which does not take
part in covalent bond) with the antimony ion is less. Obviously, the bong energy of the
fifth electron with impurity ions is the ionization energy of the donor impurity AEj .
The electron, which does not take pert in covalent bond, can be considered as the free
particle. Using the effective mass method we can write its motion equation as follows:

el
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g € vk (r)=Ey(r) (5.92)
2m* & olr] K kA '

The form of equation (5.92) is identical with that of the Hydrogen atom.
Thus, we can write:

2
r= & oft 5 n?, (5.93)
m*Ze
2.4 4 2.4 *
e, g lZ%mr1 o az%'mimn1 o oo
2 5223 n? 2p%e2e\ m Jn?

It is assumed that the energy corresponding the bottom of conduction zone iz zero. The
ionization energy of the impurity atom (n=1) is:

. 2 *
AEq = %(mﬁj (3B). (5.95)

€
For antimony in silicon, AE4 = 0,04eV. In accordance with (5.95), the level of twice
ionized donor impurity in forbidden zone is lower than the levels of once ionized or
neutral impurity atom.

For acceptor impurity, formula (5.93) and (5.94) hold. For example, the ionization

energy of acceptor impurity:
.72 mj,
AE, = 13%2°2 { p](aB), (5.96)

g2 m

m}; - the hole effective mass.

The proper defects of the lattice as well as impurities produce the local states in
forbidden zone.
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