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4.2 Quantum Theory of Free Electrons in Metals  
 

In accordance with the model of free electrons, the valence electrons of a metal can 

move freely inside it. They cause the electric conduction and are called the conduction 

electrons. Assume that the form of a sample is a cube with the edge L. Taking into 

account that the potential energy is zero (electrons are free), the Schrödinger equation:   
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The solution can be chosen as follows:  
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k = p/ħ is a wave vector related to energy by the expression (1.4). The normalization 

condition:  
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Integration is made through entire volume of a sample. Thus, 2
3

1 LC   and:  
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The wave function follows the border condition:  

),,ψ(),,ψ( zyxzyLx                                           (4.43) 

It leads to:  
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nx,  ny и nz –  positive or negative integers. Components of k are the quantum numbers. 

Introducing quantity (4.44) into equation (4.42) leads to:  
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Thus, the wave vector is quantified. Hence, the energy of the conduction electrons is 

quantified too. Introducing equation (4.44) into formula (1.4) we get allowed energies 

of the proper states with the wave vector k. 
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The wave vector k and the spin number 
2

1s  characterize the state of a conduction 

electron. Hence, the state is characterized by four quantum numbers: nx, ny, nz, and s. 

The sum of squares of the quantum numbers пi determines the electron energy. A 

number of combination of quantum numbers (except when nx = ny = nz = 0) may 

correspond to the same energy. That number is called the degeneration degree and the 

energy levels are called the degenerated levels. The degeneration degree increases with 

energy.  Analogously to the wave vector space introduce the space of quantum numbers, 

which axes correspond to the numbers nx, ny, nz. In that space every point correspond to 

a pair of states (differing by spin). The surface of equal energy is a sphere of the radius 
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.222
zyx nnnn   The number of states (vE ) with the energy less than Е [equation 

(4.46)] is twice greater then the number of points inside the sphere of the radius n*. The 

point density is a unit. Thus:  
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Combining equation (4.46) and (4.47) we get:  
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It follows from equation (4.48):  
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dvE  is a quantity  of states inside the energy interval from Е up to  Е +dЕ.  

Hence, the density of states   dEdvEg  , i.e. the number of states per the unique 

energy interval:   
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Let п be the number of free electrons per unit volume, then пV is the total number of 

electrons. According to exclusive principle at zero temperature, all the lowest levels 

with energy  0FE  would be filled, the levels with Е >>  0FE  would be vacant. The 

quantity  0FE  is called the Fermi energy at zero temperature. The Fermi level (ЕF) is 

a parameter in electron distribution. It weakly depends on temperature. Parameter Fermi 

is an energy at which the probability for an electron to be in the given state is one half.  

A quantity  0FE  is the magnitude of ЕF at Т = 0K. 

The state of conduction electron is characterized by the wave number k and spin 

quantum number 
2

1s . Hence, the state is characterized by four quantum numbers: 

nx, ny, nz, and s. The energy f an electron depends on the sum of the squares of quantum 

numbers пi. A number of combinations of quantum numbers correspond the single sum 

of their squares. Hence, the levels are degenerated. The degree of degeneration 

increases with energy.  

The surface of the same energy EF in k-space (or p-space) is called the Fermi surface. 

For free electrons, that surface is described by equation:  

m

k
EF

2

22
                                                (4.51) 

Thus, the Fermi surface (4.51) is a sphere. At zero temperature, the Fermi surface is a 

border between the occupied and vacant levels.  

The quantity  0FE  can be evaluated. Introduce vE = nV in formula (4.48):  
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Hence:  

    .3
2

0
322

2

n
m

EF 


                                      (4.53) 



95 

 

The conduction electron concentration is 10
22

-10
23

 сm
-3

, thus   .50 eVEF   

Let us find the mean energy of electrons at the temperature of absolute zero. The energy 

of electrons, which fill the states in the energy interval from Е up to Е+dЕ is:  

  .dEEEgEdvE                                            (4.54) 

The total energy of all conduction electrons can be estimated as follows:  
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Dividing that quantity by the entire number of electrons   dEEg , we get the mean 

energy of an electron: 
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Taking into account the expression g(E)  (4.12):  
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When the quantity  0FE  is about 5eV, the average energy of conduction electrons at 

the temperature of absolute zero is about 3eV. It is rather a great magnitude. The 

temperature of a classical electron gas with such energy should be about 25 thousands 

of degrees.  

It is clear why the heat capacity of an electron gas at room temperatures is small. The 

mean energy of an electron at the room temperature is 0.025eV. The quantum of that 

energy can excite only electrons of the highest levels close to Fermi level. The main 

part of electrons of the deep levels remains in initial states and would absorb energy 

while heating. Thus, only small 

part of conduction electrons 

participates in heat process, and 

that is the reason why the heat 

capacity of electrons in metal is 

small.  

In Fig.4.3 the function (4.50) is 

shown. The dashed area 

corresponds to the number of states 

filled at the absolute zero. The 

heating is accompanied by 

transition of electrons from the 

levels close to Fermi level on the 

higher levels [higher than  0FE ]. 

As a result, the edge of the dashed 

figure is not sharp. The dashed 

curve represents the distribution curve. The area down that curve is identical with the 

Fig.4.3. The electron state density as 

function of energy in model of free 

electrons. The dashed curve corresponds 

to T > 0 K. 
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initial one at the absolute zero (the area is пV). The width of that region is about kT. 

Thus, a fraction of electrons of order of T/TF takes part  in a heat process.  
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That quantity is called the Fermi temperature. As a result, the electron heat capacity is:  

F
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At room temperature, that quantum quantity is about 100 times smaller than the 

classical one (T  300К, ТF   25 000К). 

 

4.4 Feremi-Dirac Statistics  
At absolute zero in each state with  0FE  

there is an electron.  There are no electrons 

in the states with  0FEE  . Hence, at an 

absolute zero, the energy distribution is of 

the form shown in Fig. 4.4a. Let us find the 

distribution function a temperature, which is 

not zero. In order to do it, discuss the non-

elastic collisions of electrons with the 

impurity atom introduced inside a crystalline 

metallic lattice. The two possible energy 

states designate by the indices 0 and . 
Assume that an electron transmits from the 

state k with energy E into  

the state k’ with energy Е + . The impurity 

atom transits from the state  to the zero level. The probability Рkk’ of the transition 

k(E)  k’(E + ) is proportional: 1) probability  Ef  that the electron occupies  the 

state k(E), 2) probability    Ef1  that the state k’(E + )is free 3) probability р() 

that the atom is in the state . Thus:  

       pEfEfPkk 1~'                                    (4.60) 

The probability Рk’k of the inverse process is proportional to:   

      01~' pEfEfP kk                                  (4.61) 

р(0) is the probability that the impurity atom is in zero state.  

In accordance with the principle of detailed balancing, the proportionality coefficient in 

equation (4.60) and (4.61) is identical. In an equilibrium state, the probability of 

transitions k  k’ and k’  k is the same:  
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Hence:  
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We assumed that that the probabilities for an impurity atom to be on the level 0 and  

follows the Bolzmann distribution.  

The functional equation (4.63) holds at any temperature if  

Fig.4.4. Fermi distribution.  
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The parameter  does not depend on Е. Hence:  
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The product of these two equations at any temperature equals .
TkBe

  

The solution of (4.68) lads to:  
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That function is called the FermiDirac distribution. Parameter  is called the chemical 

potential. The quantity  iEf  represents the average number of electrons ni in the 

state with energy Еi. Equation (4.66) can be written as follows:  
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The distribution (4.67) is the basic one of Fermi-Dirac statistics. The particles, which 

follow that statistics, are called fermions.  Their spin is half integer. They obey the 

exclusion principle.  

Parameter   and EF are identical, and are called the Fermi level or the Fermi energy. 

We can write:  
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From formula (4.68) it follows that at absolute zero:  
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Thus, at 0 К the Fermi level EF is the upper occupied level EF(0) (see Fig.4.4a).   

When Е = EF function  Ef  =  ½, i.e. the probability of occupation of Fermi level is 

50%.  

In a unit crystalline volume the electron density can be given as follows:  
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Apparently it is a normalization condition for a function  Ef . Introducing (4.50) and 

(4.68) into (4.60) we get:  
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Thus, EF as function of T and n can be found. If all states below the Fermi level  0FE , 

can be considered to be occupied then we write:   
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Numerically:  

   ,м01055.4 3-2327
FEn                                  (4.72) 

The energy expressed in electron volts. In a metal there are about 10
28

 free electrons per 

1 м
3
, thus the Fermi energy in accordance with (4.5) is several electron volts.  

The integral (4.70) is of the type of Fermi-Dirac integrals.  
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Those integrals can not be expressed in terms of elementary functions for an arbitrary 

y0, but there are their asymptotic representations for great negative and great positive y0. 

Besides, those integrals are tabulated.  

The Fermi energies at arbitrary and zero temperature are related by:  
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Inspection of equation (4,74) shows that at low temperature, the Fermi levels practically 

do not depend on temperature. Thus in many applications we can assume that 

 .0FF EE   It should be noted that for thermoelectric phenomena, the dependence EF 

on Т  is principal.  

The function (4.30) is shown in Fig.4.4b. A glance at equation (4.30) shows that when 

Е = EF,  EfF  =  ½, i.e. the occupation probability is 50%.  If Е > EF then  EfF  < ½, 

and if Е < EF, then  EfF  > ½.  

When the temperature is increasing the ‘step’ of function  EfF  becomes more sloping 

Fif.4.4b). Le us make a comparison between the quantum distribution  EfF  and the 

classic distribution: 
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Assume that TkEE BF  . Not taking into account the unit in the denominator of 

the equation (4.69) we get:  

  Tk

EE

TkEE
B

F

BF
econstEf





 .                            (4.76) 

Comparison of formula (4.79) and (4.80) leads to the conclusion that if 

TkEE BF  the classic distribution function can be used.  

The behavior of an electron gas depends on the ratio between the temperature of a 

crystal and the Fermi temperature BF kE . Two situations are distinguished.  

1. TkE BF  . A gas is called the degenerated gas. 2. TkE BF  . The gas is called 

non-degenerated.   

The Fermi temperature is about several scores of thousands degrees. Hence even at 

melting temperature ( 10
3
 К), the electron gas should be considered as degenerated. In 

semiconductors, the free electron density is appreciably less than in metals. Hence, the 
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quantity FE  is small ( FE  is approximately proportional 3
2

n ). Thus, at room 

temperature, the electron gas in semiconductors is not degenerated and follows the 

classical statistics.  

 

4.5 Sommerfeld Model  
 

Sommerfeld applied the quantum equations for the density states (4.50) and distribution 

function (4.68). Only electrons with the energy close to the Fermi level were supposed 

to produce conductivity.  The Bolzmann kinetic equation was the basis of the theory. 

The main result was as follows [compare with (4.32)].   
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The distribution function is normalized in the way analogue equation (4.20). 
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f(Е) – the occupation probability (4.68). Introducing (4.78) into (4.77), we can write the 

electric conductivity as follows:  
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That equation is got using equation (4.77) and expression for the electron velocity when 

the energy of the last is the Fermi energy: 2
1

)2()( mEEv FF  . 

The quantity df/dE for small and great energy is zero. Thus, the integrand is not a zero 

only in the interval of several quantities kBT near the Fermi level ЕF. The function f(Е) 

and its derivative are shown in Fig.4.5.  The maximal magnitude of the derivative is (-

1/4kBT) when Е = ЕF. Taking into account that the function (df/dЕ) can be considered as 

delta-function, we can assume that for an arbitrary not too fast function (Е): 
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Hence, the equation  
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is the mean path of an electron with the 

Fermi energy. Introducing equation (4.81) 

into (4.79), we get:  
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It is convenient to use the time of free path 

between two subsequent collisions. For 

electrons moving with the speed 

corresponding the Fermi energy:   

 

)()λ( FF EvE                                                     (4.83) 

 

The electric conductivity:  

m

ne 


2-
σ ,                                                    (4.84) 

 

The expression (4.84) coincides with that one gotten by Drude.  

At the assumption that there are no collisions, the external electric field displaces 

uniformly all points of the Fermi sphere in k-space. The electrons can collide with 

impurities, defects, and phonons but the Fermi sphere holds its displaced position in the 

external field (Fig.4.6).  

The external electric field diminishes the population of the thin curved region of the k-

space and populates the mirror symmetric zone on the opposite side of the occupied part 

of the Fermi sphere.  

All states with the changing population correspond to the energies close to the Fermi 

energy. Thus according to Sommerfeld, not all-free electrons produce the electric 

conductivity. The number of conducting electrons with the energy close to the Fermi 

level  is essentially less. The Sommerfeld approximation leads to electron heat 

conductivity and the Lorenz number )3π( 222 ekB , which are in good agreement with 

experimental data. In analogue way, Sommerfeld got the solution of the Bolzmann 

equation for magnetic resistance, galvanic magnetic and thermal electric phenomena in 

strongly degenerated electron gas. These solutions are available for simple and complex 

metallic crystals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.4.5 The energy dependence of the 

Fermi-Dirac distribution  
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Fig.4.6. An electric field displaces the occupied region in the wave vector space. When 

there is no field, the occupied region is a sphere. Its center is located at the origin of 

coordinate frame. That sphere is called the Fermi sphere. The electric field transmits the 

Fermi sphere as a whole at a distance, which depends on (ЕF). There can be other forms 

of the Fermi surface.  

 

 
 


