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4. Electrons in Metals  
 

The metallic type of conductivity is known long ago and has been deeply studied but the 

role of electron dynamics was understood only recently. The models of free electrons 

explain many properties of metals.  In these models, the electrons are supposed to leave 

their atoms and form the gas of free electrons.  

The periodicity of the crystalline lattice is of importance. Indeed, the periodic 

electrostatic electric field essentially affects the relation between the energy of an 

electron and its momentum. Consideration of that field leads to a zone theory of solids. 

The theory made it possible to understand the properties of semiconductors and 

dielectrics.  

The theories of metals are founded on assumption that electrons are independent and 

follow the Fermi-Dirac statistics.  

 

4.1 Properties of Metals  
 

The theoretical models are founded on well-known experimental results.  

1. The Ohm law is true in metals at isothermal condition.  
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3. The heat conductivity of a metal () is great. A good heat conductor is a good electric 

conductor at the same time. In 1853 Wiedemann and Franz found that the ratio of heat 

conductivity () and electric conductivity () is the same for different metals (the 

Wiedemann-Franz law). At room temperature,  does not depend on temperature, but  

does depend on temperature as Т
-1

 (Fig.4.1, copper). The ratio  
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is called the Lorenz number (Table 4.1 [1]).  

 

Table 4.1. Specific electric conductivity and Lorenz number of metals  
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4. If a metal is cooled below certain temperature (which depends on D), the increasing 

of  and  is observed. For copper (Fig.4.1) and some one-valence metals at the 

steepest part of the curve, the electric conductivity is proportional to Т
-5

. 

5. At certain low temperature, the electric conductivity reaches the state of saturation. It 

is due to impurities and lattice defects.  

The specific electric resistance  (Оmm) 

of many metals follows the Matticene rule. 

In accordance with that rule, the resistance 

(caused by impurities and defects) is 

identical for all metals and does not 

depend on temperature.  

.)( defL T  ,                (4.3) 

)(TL  - the component of the specific 

resistance produced by heat oscillation of 

atomic lattice, .def - the component 

produced by the scattering of electrons on 

defects. The contribution of .def is 

observed at very low temperature because 

)(TL  tends to zero when Т  0 К. 

6. Magnetic phenomena in ferromagnetic 

metals and alloys affect the specific 

electric resistance.  

7. About half of metals become the super 

conductors at low temperature. 

8. The specific heat capacity of the free electron gas is small. It is proportional to 

temperature.  The magnetic sensitivity is also small and does not depend on 

temperature.  

9. When there is a combination of electric, magnetic, and temperature fields, a number 

of thermal, galvanic, and magnetic phenomena are produced (for example, the 

temperature gradient can generate the electric current or potential difference).  

10. In very pure mono-crystals, the strong magnetic fields produce the orientation 

effects with an oscillation dependence on the magnetic field strength.  

 

4.2. Classic Theory of Free Electrons  
 

The theory is based on the Maxwell-Bolzmann velocity distribution. The motion of 

electrons is subdivided into two components. The first component describes the chaotic 

(thermal) motion of electrons. The average thermal velocity is zero. The average heat 

speed is not a zero. The second component describes the drift motion, which is 

produced by an electric field or by the gradient of temperature.  

 

4.2.1 The Drude-Lorenz Model of Electric Conduction  
 

In electric field, besides the chaotic motion of electrons there is an oriented motion, 

which is called the drift. Thus, the drift produces the oriented translation of electric 

charges i.e. the electric current. The average drift velocity vd depends on the electric 

field strength Е and on the scattering of electrons by the crystalline lattice. The 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

Fig.4.1 The temperature dependence of 

electric conductivity  and electron 

conductivity  of the copper  
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influence of a lattice can be interpreted as the resistance force, which is proportional to 

the electron speed. The density of electric current is:   

 den vj ,                                                     (4.4) 

e – elementary charge, n – electron concentration. The field acts upon an electron with a 

force eE. The scattering of electrons by the lattice is considered as elastic. The mass of 

an electron is small in comparison with that one of an atom; the fraction of energy lost 

in a single collision is small too. Assume that the retarding force acting on electron is 

proportional to the mass and velocity of the particle. Thus, the motion equation can be 

written as follows:  

τ

v
E

v m
e

dt

d
m  ,                                                 (4.5) 

m – electron mass; v – electron speed; eE – the electric force acting upon an electron 

τ

vm
 - retarding force; dimension of  is time. 

Equation (4.5) is non-uniform equation of the first order. The solution of the uniform 

equation  

0
τ


vv

dt

d
.                                                     (4.6) 

Can be chosen as  
τ)( tet  Cv .                                                     (4.7) 

С – a vector constant found from the initial condition. The partial solution of equation 

(4.5) is found easily: 
m
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1 . Thus, the general solution:  
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The initial condition is 0)0( v . Thus, the electric field is switched in at the zero time 

moment:   
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It follows from (4.10) that at t >> , the velocity tends to its limit еЕ/т. We can write:  

m
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E
vv
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 τd )(                                                (4.10а)  

To evaluate the relaxation time (), Ohm’s law is of use: 
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m
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The numerical calculation shows that the relaxation time is about 10
-13 

s. 

We remind our readers that the relaxation time is the time interval when the stationary 

state of electron motion is produced.  



 88 

If the electric field is switched off at zero moment, the equation (4.5) under condition  










00

0
)(

tпри

tпри
t

E
E                                                     (4.12)  

Can be transformed as follows:  
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Taking into account the initial condition: 
m
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It means that after the electric field Е is switched in, the average speed of electrons 

(hence, the electric current density j) is changing in accordance with: τ

0)( tet  jj . 

The relaxation time is an important characteristic of a conducting substance. According 

to the Drude theory, the relaxation time and the time of free path are identical.  

In order to describe the electric conduction, it is very convenient to introduce a quantity 

(4.15), which is called the drift mobility: 

m
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Sometime the electric conductivity is expressed in terms of the average free path 

  vт. That quantity is defined as the distance covered by an electron with a heat speed 

vт in the time interval of free path. Thus, in the Drude model, the electric conductivity  

is:  
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We have taken into account that the average kinetic energy of an electron is TkB
2

3
, and 

the mean square velocity is 21)/3( mTkv B : 

In analogue way, the heat capacity:  

.                                                        (4.17) 

Се  is the volume specific heat of the electron gas (3/2)kBn. Hence:  

                                                (4.18) 

Combining the equation (4.18) and (4.16) we get the Lorenz number:  

                                 (4.19) 

That quantity is in a good agreement with the experimental data for metals (Table 4.1).  

We can see that the ratio of heat conductivity to electric conductivity at the temperature 

below 100K does not follow the Wiedemann-Franz law. For many metals at law 

temperature, the quantity becomes constant again (see the data for copper). The ratio 
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Te σκ becomes constant at such low temperature that it can be explained by scattering 

on impurities and defects. The Drude model can not explain that.  

 

 

 

4.2.2. The Lorenz Model  
 

Lorenz (1905) assumed that electrons in metal follow the Maxwell distribution:   
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n – electron concentration. The distribution is spherically symmetric in the velocity 

space.  

 You can find the detailed discussion of Lorenz ideas in [6,7,8]. We will try to explain 

his ideas not using complicated mathematics calculations.   

Thus, the equilibrium distribution (4.20) describes the electrons in metals when there 

are no external force fields. The metal is isotropic and f0 does not depend on the space 

coordinates. The electric field applied to metal produces the drift of electrons. The 

velocity distribution f differs from the equilibrium distribution f0. Assume that the field 

Е is uniform and the space derivative of (f -  f0) is zero. Hence, we can write:  
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The first addend describes the action of field; the second addend describes the action of 

collisions. Taking into account that the momentum of electron is mv and acting force 

eE, we can represent the first addend as:  
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Assume that collisions reconstruct the distribution f0 along the free path and the quantity 

(df/dt)coll. is proportional to (f0 - f ):  
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r – relaxation time. Combining equation (4.22) and  (4.23), we can represent equation  

(4.21) in the form of the continuity equation:   
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That is a relation between the equilibrium state distribution function f0 and the 

distribution function f, which is produced by the external electric field.  

The concurrency between the action of an applied field and the process of scattering 

affects the new distribution (its position and forms). For not very great fields, the shift 

of the quantity f produced by the field should be small in comparison with vср.кв. Thus, 

the distortion of the distribution is less noticeable than the entire shift.    

If the acting time t >> r the stationary state is produced and the first addend in (4.24) is 

zero. Then, according to equation (4.2):   
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Integration of that distribution shows that the drift velocity (hence, the electric 

conductivity) is not a zero.  

If the field (see Fig.4.2) is oriented along x-axis, the current density:  

zyxxx dvdvfdvvej                                          (4.26) 

Taking into account that the integral including f0 is zero, we get:  

     zyxxrxxx dvdvdvfvmeEEj vτσ 2
              (4.27) 

In order to calculate that integral, assume that r depends only on the electron velocity. 

It is supposed usually that: 
j

r Avτ                                                       (4.28) 

The power index depends on the scattering mechanism. Assume that in a metal with the 

atomic residue concentration N and scattering radius R, the free path does not depend on 

electron speed and is of order  

  12π~λ


NR                                                    (4.29) 

The average time of free path is:  

v

λ
τ                                                           (4.30) 

vλτ  v is a thermal velocity of electron, with which it moves from one scattering 

center to another. It means that the wavelength  is equal А [see equation (4.26)] and 

j = -1, i.e. the mean time of free path as it follows from equation (4.30). When the field 

mainly acts on the slow electrons, that scattering mechanism is the strongest. 

Introducing (4.30) into (4.27) we get:  

     zyxxx dvdvdvvfmve2λ                           (4.31) 

That integral can be transformed into a integral relative the speed v. Taking into account 

that the mean quantity of and the volume of the spherical layer (radius v and thickness 

dv) in the velocity space is равен 4 v
2
 dv, we transform the integral (4.31) as follows:  
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Fig.4.2. The velocity distribution of classic electron gas (left) The velocity distribution of the 

same gas in the external electric field (right) 
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It should be noted that the main contribution in the integral gives the velocity interval in 

which the module of the derivative of the distribution function relative to speed is 

maximal. Calculation of the integral (4.32) leads to:  

  21

2

π23
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Tmk

ne

B

                                            (4.33) 

That expression is of the same form as that one of Drude model (see 4.33). The 

expression (4.16) and (4.33) differ only by the factor (3
1/2

 = 1.09.  

From the Lorenz solution of the Boltzmann kinetic equation in the external field some 

important results follow. In a conductor with a temperature gradient, the electromotive 

force is produced (Thomson effect).  

The other phenomena are produced when the electric, magnetic and temperature fields 

act simultaneously. The force acting upon an electron in an electromagnetic field (the 

Lorenz force):  

 )( BvEF  e                                            (4.34) 

The factor describing the influence or the field in equation (4.21) is:  

    vBvE  fmetf
field

)()(                      (4.35) 

The first order stationary solution of the Bolzmann kinetic equation:   

BJJBJJE  ]σ[])π2(2λπ[σ
21

0 HRTmke .              (4.36) 

 – electric conductivity [see equation (4.33)].  The quantity RH is called the Hall 

constant, which characterizes the magnitude of a transversal electric field produced by 

the magnetic field (the Hall effect, 1879). The comparison of the equation (4.33) and 

(4.36) shows that     

 neRH 83 .                                             (4.37) 

The first addend in the right part of equation (4.36) shows that the magnetic field 

perpendicular to electric current should not decrease the electric conductivity along the 

sample. But, experiments show that the electric conductivity of a metal in a magnetic 

field decreases (effect of magnetic resistance, 1856). If to solve the Bolzmann equation 

by decomposition and to take into account higher powers of magnetic field strength, we 

get that the electric conductivity increases proportional to the square of the magnetic 

field strength. That fact coincides with experiments.  
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Thus, the magnetic resistance is maximal when the magnetic field is normal to a 

current, and in the model of free electrons it should be zero when the current is parallel 

to the magnetic field. For certain metals, the Hall constant is positive, and it can not be 

explained by equation (4.37) for the free electrons. It should be noted that the results of 

Lorenz were great progress in physics.  

Thus, we discussed the classical models of Drude and Lorenz in order to be 

ready to discuss the modern quantum models. The more serious deficiency of classical 

models is that the specific heat conductivity and magnetic susceptibility is smaller than 

it should be when the charges are free. In reality, the mean free path is much greater 

than the inter-atomic distance and decreases with temperature. It does not follow from 

equation (4.29). Many attempts were made to overcome those difficulties of the 

classical theory of free electrons. All of them were futile. The quantum mechanics 

solved these problems. 

 


