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3. Dynamics of a crystalline Lattice 

 

3.1 Elastic properties of solids 

 
Responses of solids to mechanical actions (lengthening, contraction, 

bending, torsion, and others) are called the mechanical properties. The 

mechanical properties depend on atomic structure and defects of solids. 

The dislocations are of great importance. 

If external forces act upon a solid, the mechanical strains are produced. 

The forces of the neighbor regions of the solid undergo an elementary 

volume of a solid. The total force is proportional to the surface of the 

volume under investigation. Their ratio is called the mechanical strain. 

When the body is at rest, the external force F (Fig.3.1) is equal to the 

intrinsic force:  

 dSF                                                      (3.1) 

Fig.3.1.  

When the strain is uniform: 

SF /                                                      (3.2)  

 

In the process of deformation, the size of the body changes. Two kinds of strain are 

distinguished. The ratio of the force to the actual surface of a sample is called the actual 

strain. The ratio of the force to the initial surface is called the conditional strain.  

To describe the strained state of a body, let us take under consideration an elementary 

cube (Fig.3.2). The strain acting upon the sides of the elementary cube can be 

represented as the sum of two tangents and a normal component. Let ij be the strain 

component acting in i-direction upon the cube side, which is perpendicular to j-axis. 

The strains 11, 22 и 33  are normal (lengtening or contraction); the strains 12, 13, 

23, 21, 31, 32  are tangent (breaking off, shearing).   Thus, the strained state is 

characterized by nine-quantity ij, which are the 

components of a mechanical strain tensor of the 

second rang:  
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T                     (3.3) 

The tensor is symmetrical: 12 = 21, 13 = 31, 

23 = 32. Thus, only six components are 

independent: ij = ji.   The deformation and 

destruction of a body depends on the strained 

state produced in a body. The plastic 

deformation is due to the tangent component of 

strain. The normal components break the 

atomic bonds and cause the fragile destruction 

of the solid.  

 The change of volume or form of a body (the mass is constant) under action of the 

external force is called the deformation. Lengthening contraction, shearing, torsion, 

bending are the basic kinds of deformations. When a longitudinal force is applied, the 

. Fig.2.1 
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length of a cylinder increases and its diameter decreases (Fig.3.3). Deformation is 

expressed in relative units:  

  00ε lllk  .                                 (3.4) 

l0 is an initial length, lk  is the final length.    

We should distinguish between the conditional () and true 

(e) deformations. While calculating the true deformations, it 

is necessary to take into account continuous changing of the 

length of a sample:  
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  .                             (3.5) 

Conditional and true deformations are related. Indeed 

    1ε 000  lllll kk , ε10 llk , thus  

   ε1lnln 0  lle k .                             (3.6) 

 

 

When  is small,   
3

ε

2

ε
-εε1ln

32

 We get in the first approximation: e   . 

The true deformations are additive, the 

conditional deformations are not additive.  

The tangential strains produce shearing, which 

is characterized by the shearing angle . 

 tan  is called the relative shearing.  The 

changing of the body form under action of 

tangent forces is shown in Fig.3.3. It follows 

that tgαγ  hl . When deformations are 

small, γtgα  α . We will discus the uniform 

small deformations.  

The string with fixed left end is shown in 

Fig.3.6. PQ = x. After deformation, P 

Fig.3.4 Lengthening. 

Fig3.5 Shearing under action of                             Fig.3.6 Lengthening of a string ;  

a tangent strain.                                                      a) before lengthening; 

                                                                                  b) after lengthening. 

Fig.3.7. 
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transforms in P’, Q in Q’; u – displacement; P’Q’ = x + u. Deformation of the 

segment PQ is: 
x

u

PQ

PQQP






''
, deformation at the point P:   

dx

du
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u
e
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 0

lim ,                              (3.7) 

Thus, deformation at any point is a derivative of displacement relative the coordinate. It 

follows from Eq.(3.7) that displacement is a linear function of coordinate: и = ех.  

 

 

 

 

Fig.3.7 shows the volume deformation of a solid. After deformation, the position of the 

point O does not change; the positions of other points are changed.  

The initial position of point А (х,у,z) is determined by the radius vector r. After 

deformation, the point А(х,у,z) transforms in the point А'(х',у',z'), which is characterized 

by the radius vector r’. The quantity u = r‘ – r is a displacement vector with 

components u, v, and и w. Thus, х’= х + u, у’= у + v,  z’ = z + w.  

The components of a displacement vector are the linear functions of coordinates. Thus:  
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                      (3.8) 

Nine quantities eij are components of a tensor of the second rank, which is called the 

deformation tensor.  

If y = z = 0,  
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Thus, xue 11 is the increment of the segment x, which is projected upon x-axis.  

In analogues way:  

 zweyve  3322 ;                                           (3.10) 

The components xve 21 и xwe 31  determine the rotation of the linear 

element that is parallel to the x-axis: in the first case, it rotates about z-axis clockwise; 

in the second case, its rotation about y-axis is in an opposite direction. In accordance 

with equation (3.9)   xexxvv  21 . Taking into account that the lengthening 

of the segment x is u, we get that    tguxve21 ;   is the angle of rotation 

of the linear element.  

The quantities и and v are small in comparison with х. Thus, u and v are small in 

comparison with x, аnd   v/x = e21. The component e12 is a rotation of the linear 

element that is parallel to y-axis about y-axis clockwise. The component e13 is the 

rotation of the linear element about y-axis in the opposite direction. The components 

 e23 and e32 determine the rotation of x-axis about the y-axis clockwise and respectably 

the rotation of x-axis about the y-axis in the opposite direction. Let us find the total 
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shearing in the plane ху (Fig.3.8). A square OABC 

under action of the tangent strains is transformed 

into the rhomb OA’B’C’. The side ОА is turned 

clockwise through the angle 122

1 e , the side С is 

turned in the opposite direction through angle 21
2

1
e .  

That shearing is called pure. A glance at Fig.3.8 and 

3.5 shows the difference between the pure and 

simple shearing. Let u be the displacement in x-

direction of a point located in the side ОА, v is the 

displacement in y-direction of point located in the 

side ОС. The displacement v is proportional to x-

coordinate. Thus, xve 212

1  and yue 122

1 . The resultant shearing in the xy-

plane can be written as follows:  
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Analogously,  
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The deformation tensor determines the strained state of a solid. It is convenient to 

subdivide the tensor into symmetrical and anti-symmetrical components. Anti-

symmetrical component  21122

1 ee   describes the rotation of the body. Symmetrical 

component  21122

1 ee   describes the deformation of the body. The deformation tensor 

is the symmetrical tensor or the second rang, six components (from nine) are 

independent. The components symmetrical relative the main diagonal are identical.  
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The diagonal components ii characterize the lengthening or contraction, the other 

components ij characterize the shearing. The shearing angle in a certain plane is equal 

to the corresponding element ij.  

 
 
3.2 The Hooke Law.  
 

The dependence of deformation on 

mechanic strain is called the deformation 

diagram. The diagram describes the 

mechanical properties of a solid. The 

deformation diagram for lengthening of a 

cylinder is shown in Fig.3.9. When the 

deformations are small the function 

Fig.3.8 The shearing 

deformation  

Рис.3.9. Deformation as function of strain  
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 = f() is linear. When the strain is taken off rather quickly and the initial form of a 

body restores, the deformation is reversible. Such region is called the region of elastic 

deformation ( << 1%), and the strain corresponding to the point А is called the elastic 

limit.  The region B-B’ is called the region of plastic deformation, and the strain 

corresponding to the point В is called the flow limit.   The flow limit is the minimal 

strain when deformation slightly depends on the strain. The point 3 of the function 

 = f() corresponds to the tolerance limit.  

The Hooke law (1678) is the linear dependence of the deformation on the strain for 

isotropic bodies. For the lengthening:  

σε S                                                             (3.14) 

l
lε  is a longitudinal deformation, l is the initial length, l is the length decrement,  

S is the elasticity.  The Hooke law can be written in the form:  

εσ E .                                                            (3.15) 

Е = 1/S – the constant of rigidity or Yong modulus.  

For shearing under action of tangent strains , the Hooke low takes the form:    

 tgGhlGSF ,                                    (3.16) 

G – shearing modulus, - shearing angle, S – cross-

section, F – applied force.  

For volume contraction,  

  
V
VP ,                                (3.17) 

P – hydrostatic pressure, - the volume contraction 

coefficient,  -volume deformation.  

Transversal deformation accompanying the 

contraction is characterized by the Poisson 

coefficient , which represents the ratio of 

transversal increment to longitudinal increment of 

the linear size of body.  It follows (see Fig.3.10).  
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(3.16) 

 

 

The Hooke law in a generalized form is the relation 

between the strain tensor (11, 22, 33, 12, 23, 31) 

and deformation tensor (11, 22,  33,  12,  23,  31). For an isotropic body, we get:   
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              (3.17) 

For the searing deformation:  

Fig.3.10  A single axis 

lengthening of a cylinder 

sample. The longitudinal size 

of the body increases.  
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The elastic constants E,G and   are related by: 

 

   12EG                                                     (3.19) 

klijklij S                                                      (3.20) 

klijklij C  ,                                                    (3.21) 

Sijkl and Cijkl are the elastic constants and the rigidity constants.  There are 81 

components Sijkl and 81 components Cijkl. 

If two tensors of the second rank are related by equations of the type (3.20) and (3.21), 

the quantities Sijkl and Cijkl  form the tensor of the fourth rank. The tensor Cijkl is called 

the elasticity tensor. The tensor formed by Sijkl is called the tensor of elastic 

susceptibility. The deformation and strain tensors are symmetric tensors of the second 

rank (ij = ji; ij = ji). Thus, the number of independent components Sijkl and Cijkl is 36.  
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;
,                                        (3.22) 

The components Sijkl and Cijkl  are symmetrical relative the transposition of the index 

pairs:    

kljiijklkljiijkl CCSS  ; ,                                        (3.23) 

Thus, the number 21 restricts  the quantity of independent components of elastic module 

tensor. That is the number of tensor components , which is not symmetrical in any way. 

The matrix symbols are widely used to designate the elastic modules and deformations. 

It leads to the less number of indexes. The method of transformation of components Sijkl 

and Cijkl is discussed in [6]. 

 In matrix notation, the Hooke law is: 
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The coefficients of elastic rigidity Cij and of elastic susceptibility Sij are listed as 

follows:  
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C ijij         

The number of elastic constants depends on crystalline symmetry. For a three-cornered 

symmetry, this number is 21. For a cubic symmetry, the number is 3. In cubic crystals, 

the directions x, y, and z are equivalent. Thus,  

665544312312332211 ;; CCCCCCCCC  .              (3.25) 

The other components are zero. In a cubic crystal, there are three independent 

components C11, C12, and C44:  
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Under condition that the forces between particles are central, the particles are spherical 

and located at the symmetry centers; in initial state there is no strain. The elasticity 

coefficients:  

.,,

,,,

364566125531

256414564423

CCCCCC

CCCCCC




                          (3.27) 

Those relations are known as the Koshi condition. For cubic symmetry, we get 

4412 CC  . In many ionic crystals, those conditions hold very well, particularly when 

the fraction of covalent or metallic bond is small. For metals and substances of covalent 

bonds, the Koshi condition holds badly.  

 

3.3. Plastic Properties of Substances  
 

The Hooke law (Fig./3.9) is true only for a narrow region ( << 0,1-%).  

When the strain is more then the elastic limit (point A), the Hooke law does not hold, 

i.e. if the strain is removed the initial form of a sample would be changed. As a result, 

the permanent deformation is produced This deformation does not depend on the time 

interval of the strain application. The deformation is called the plastic deformation. The 

strain when the plastic deformation appears is called the elastic limit.  

Not all crystals can be plastically deformed. For example, quartz, antimony, arsenic, 

corund, and certain metals are known to break off at a small plastic deformation (or 

even without it). This phenomenon is called the fragile rupture (breking off). Certain 

crystals and especially pure metals are very plastic and can be strongly deformed 

without breaking off.  

The tangent (shearing) strains are needed 

to produce the plastic deformation. There 

are two processes leading to plastic 

deformation: sliding and twinning.    

Twinning is a shift of a crystalline region 

to a position, which corresponds to the 

mirror reflection of the initial regions. 

Such symmetrical shift is produced relative 

a crystallographic plane favorably oriented 

to the applied strain . The plane is called 

the twinning plane (Fig.3.11). The 

twinning is mainly observed in crystals 

with hexagonal or volume-centered cubic 

cell.  

The plastic sliding is shown in 

Fig.3.11. A part of a crystal moves 

relatively the other in a direction (direction 
Fig.3.12 Sliding while lengthening  
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of sliding) of certain crystallographic plane (plane of sliding).  

While sliding, atoms are transmitted by the integer number of translations. As a result, 

the continuity of the crystalline lattice (and the atomic structure) is not violated.  

Sliding is an anisotropy process. It means, that the shift of atomic layers is produced not 

in the direction of a force but in the direction, which depends on the crystalline 

structure. The planes of sliding are as a rule more tightly packed. Those planes are 

known to be the planes of small crystallographic Miller indices (hk1). The sliding along 

the tightly packed planes is due to the fact that for certain lattices (especially metals), 

the distance between two neighbor tightly packed atomic planes is greater than that one 

between the other planes.  

The directions of the more tightly packed atoms are as a rule the directions of sliding. 

The atoms are located in tightly packed plane of sliding. The elementary shifts in those 

or perpendicular directions are the smallest.  

When there are several possible frames of sliding, the plastic deformation would be 

initiated in a system, which are more favorably oriented relative active strains than the 

other systems.  

If the orientation of a crystal relative active strains is known the tangent strain, which 

initiates the plastic deformation in a given direction, can be found for all sliding frames.  

A cylindrical sample of cross-section S undergoes the lengthening strain F (Fig.3.12). 

The shift  is produced in the plane S’(the surface  sinS ) in the direction ОВ.  is the 

angle between the plane of sliding and the cylinder axis. Fп and Ft are the normal and 

tangent components. The direction of tangent component coincides with the direction of 

a possible sliding ОВ. The breaking-off strain associated with the direction of sliding  

  βcosαsinσβcosαsinτ  SF ,                               (3.28) 

 - the strain of lengthening. The inspection of equation (3.28) shows that the break-off 

strain is maximal at angles  =  = 45. At this condition,max =  0,5. 

It was proved that the normal strain almost does not affect the plastic flow of crystals. 

The tangent strains produce the plastic deformation. The flow limit strongly depends on 

the orientation of crystal, but the associated shearing strain  is constant for a given 

metal. The typical magnitudes are (10
-5

 – 10
-4

)G. The law of the constancy of critical 

breaking-off strain was established by E.Shmidt and B.Baas. In accordance with the 

law, if the sample undergoes permanently growing strain, the sliding is small till the 

breaking-off strains do not overtake certain limit quantity. At room temperature, for Cu 

(the sliding plane {111}, the direction of sliding <110>), this quantity is 0,4910
6 
Pa.  

In the deformation process, the sliding layers change its orientation. When the 

deformation is going on the other favorable frames begin to act.  

The critical breaking-off strain needed for initiation of plastic sliding deformation is 

usually less then the critical strain of twinning. Thus, the twinning is a rather rare 

process. For example, the critical strain of sliding is 0.1810
6 
Pа, and that of twinning is 

2910
6 
Pа. Certain substances can be deformed in both ways. It is due to the fact that the 

twinning generates the new orientations, which promote the sliding.  

For sliding plastic deformation if even the energy needed to translate an atom is small, 

the presence in the sliding plane about 10
20

 atom/м
2
 requires essential strain.  

The break-off strain to shift a region of crystal relative the other region evaluated under 

assumption that the shearing force depends on displacement in sine way is:   




2

G

a

b
теор ,                                                 (3.28) 
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B – period if he shift force, a – distance between the rows of atoms, G – shear modulus. 

More accurate calculations lead to:   

30Gтеор  ,                                                 (3.29) 

The experimental magnitudes of break-off strains is essentially less then the theoretical 

ones and are of the order of (10
-5

 – 10
-4

) G. Thus, for copper, the experimental value is 

0.4910
6 
Pа, the theoretical magnitude is G/30=75,210

9
/30 = 2,5.10

9
 Pа. 

That discrepancy is due to dislocations in real crystals. The dislocations move easily. 

Their motion produces sliding at very small-applied strains. When there is a dislocation, 

the shift begins moving not in the entire plane but only in part of it. Then under the 

action of tangent strains, the shift propagates upon the entire sliding plane. The 

dislocation moves in the direction of the Burgers vector (b). Fig.3.13 shows the 

development of a unit shift (per unit inter atomic distance) of the upper part of a crystal 

relative to the down one when there is an edge dislocation.  

According Fig.3.13 to transmit the dislocation, rather small force is needed because for 

translation of dislocation through an inter-atomic distance (from the point A to the point 

А') a small displacement of atoms is needed (from positions designated by the dark 

circle to ones designated by the bright circles). In an ideal crystal, in a process of slide 

deformation, all the atoms are displaced simultaneously. When there is a dislocation, the 

deformation is produced by the great number of successive translations of atoms. Thus, 

its motion easily justifies the small critical break-off strains in the initial stage of a 

plastic deformation (even when the number of dislocations is small and when there is a 

strain).  

In the process of plastic deformation, the new dislocations are born. Their motion leads 

to the macroscopic shift along the plane of sliding.   

In order to deform crystal further in the region of plasticity, the strain should be 

permanently increased (Fig.3.9). It is due to the fact that during the irreversible 

deformation, the sample becomes more stable (riveting). The process continues up to 

destruction. The observed strengthening is associated with decreasing of dislocation 

mobility. The elastic interaction between dislocations affects strongly the process of 

strengthening: the strengthening grows when the dislocation density is increased. Thus, 

the dislocation density increases from 10
10 

- 10
12 

м
-2

 in non-deformed substances up to 

10
15 

—10
16 

 m
-2

 in strongly strengthened by deformation materials. The bending of slide 

planes near the clusters of edge dislocations, intersecting of dislocations that produces 

Fig.3.13 The motion of the edge dislocation leads to formation of the unit-shearing 

step: a) the initial state; b) the dislocation has transmitted by one inter-atomic 

distance; 3) the dislocation has reached the crystal interface and performed the unit 

shearing.  
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the steps, the interaction between dislocations and impurities decrease the mobility of 

dislocations.   

When the great strains are applied the reaction of a solid essentially depends on its 

defects; destruction begins at the more weak places. Ideal crystals are many times 

strengthener than the real ones (Table 3.1).   
 

Table 3.1. Mechanical parameters of ideal and real crystals  

 

Crystal  Strengthening 

limit Па 

Elastic 

deformation, % 

Plastic 

deformation, % 

Ideal crystal  (1,5— 2). 10
10

 1—5 0 

Real crystal 

(metals)  

(0,1—1).10
7
 10

-2 
From scores to 

hundreds  

String crystals  (0,5—1,4). 10
10

 0,5—2 1—1.5 

 

All methods of strengthening (riveting while rolling, alloying, thermal treatment and 

some others) are associated with increasing of dislocation density. The strengthening 

can be increased up 10
-3

G.  

When there are no defects, the crystal is the most stable. For example, the string crystals 

(‘moustaches’)  (without dislocations) are produced from many substances (iron, 

germanium, gold, tin, cadmium, nickel, copper, and others). Diameter of string crystals 

is of order of 100 pm. A single screw dislocation causes the spiral growth of the string 

crystals in a unique direction. A single dislocation does not violate the crystal stability 

because while lengthening of crystal, the shift strain does not act upon the dislocation. 

The strengthening limit of ‘moustaches’ is very great. For example the copper holds 

5,910
9 
Pа instead of 1,810

9 
Pа. The elastic deformation can be of several per cents, 

while for usual crystals it is not higher then hundredth fraction of per cent (see Table 

3.1).  

 

3.4 Fragile Destruction.   
 

The plastic deformation precedes the viscosity destruction of a solid. Opposite to the 

viscosity destruction, the fragile destruction can be produced after small plastic 

deformation or even without it. The fragile destruction is observed in many non-metallic 

substances and metallic substances at very low temperatures.  

It is supposed that ideally the fragile destruction is produced as a result of instantaneous 

breaking-off inter-atomic bonds in the plane perpendicular to the acting normal strength. 

Evaluations show that   

10Eтеор  .                                                 (3.30) 

More accurate calculations lead to  

  21
aEsтеор  .                                            (3.31) 

s, - specific surface energy; а – inter-atomic distance.  

For a glass теор (Е = 810
10

 Pа) is about 810
9
 Pа. The real strengthening limit is 

810
9
 Pа, i.e. two orders lower then the theoretical evaluation. Analogue results are 

obtained for other substances.  
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To explain this discrepancy, A.Griffits (1920) supposed that in solids there are micro-

fissures that are the centers of strains. According to him, the fragile destruction of a 

solid can be interpreted as the process of transformation of elastic energy concentrated 

inside the body volume into the surface energy of its parts 

produced during the destruction. He developed a method to 

evaluate the technical strengthening limit of solids. .  

When a lengthening strain is applied to a plate of unique thickens, 

the energy stored in the unique volume:    

E2

1

2

1 2
 .                                                 (3.32) 

When a transversal plane ellipsoid fissure of the length L is 

produced (see Fig.3.14), in the fissure zone (the ellipse axes are L 

и L/2, volume is L
2
/2) the elastic energy is liberated. The plate 

elastic energy decreases by:  

E

LL

E
W

422

1 2222 



 .                    (3.33) 

The appearance of the fissure is accompanied by formation of two new surfaces, the 

energy needed is  

LU s 2 ,                                      (3.34) 

s – specific surface energy. The total energy increment is:  

E

L
LWUT s

4
2

22
 .                              (3.35) 

If 0 LT , the equilibrium is not stabile. A fissure of great size quickly propagates 

because the elastic energy decreases faster (with increase of L) than the surface energy 

increases. The fissure of smaller size would not grow at all and close because the 

surface energy decreases faster than the elastic energy increases. The critical size of a 

fissure can be found using condition LT  =0: 

  24  EL sкр .                                          (3.36) 

With an aid of equation (3.36), it is possible to evaluate the strain needed to destroy the 

body with the fissure of the size of Lкр.  
21

2 













L

Es .                                          (3.37) 

Griffits found a condition of the unstable growth of fissure. He did not take into 

consideration the strained state near the fissure edge the strains are concentrated.  

The sharp fissure with the vertex radius a  (the distance between two atoms) leads to the 

local increasing of strain up to:  

 aL 221 .                                          (3.38) 

Combining (3.38) and  (3.31) at the condition max = теор, we get  
21

2







 
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L

Es .                                               (3.39) 

It means that if in a solid there is a fissure of length L and radius near the vertex is a, 

and the applied strain is  the local strain at the vertex is теор and the fissure 

propagates till the plate is destroyed or the fissure becomes blunt.    

Fig.3.14  The 

fissure model 

трещины 
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To take into account the plastic deformation, it is necessary to insert the expression 

(3.40) in formula (3.7).  

  21




















L

Esp
.                                        (3.40) 

The great number of experiments proved this formula.  

The fissures produce the fragile destruction. The fissures are generated in the process of 

formation of a solid and especially in the 

process of mechanic treatment. There are 

a number of mechanisms producing the 

fissures when the mechanic strain is 

applied to a solid. The dislocation 

mechanism is described in [6].  

Let a lengthening strain to be applied to 

a crystal. The strain produces the sliding 

of edge dislocations along certain plane 

(Fig.3.15). There is a barrier that can not be overrun by dislocations (boundary of 

grains, intersections of slide planes, and others). If the temperature is not high, the head 

dislocation stops in front of barrier. The following dislocations also stop. If a barrier 

would stop n dislocations, the head dislocation would undergo the strain n-times greater 

then the external one. This strain can be too great. The wedge fissure would appear near 

the head dislocation. The fissure is due to unifying of nearest to barrier dislocations.      

Thus, the stability of solids strongly depends on micro fissures inside of a sample. 

Besides, the surface quality of a sample and the external medium are of very 

importance. The surface-active substances that can be strongly adsorbed decrease the 

surface energy. The particles adsorbed by the surface enter the embryo fissures, 

penetrate inside of the body, and decrease its strengthening.  

In order to diminish the influence of surface layer on the strengthening, this layer should 

be ‘cured’ or removed entirely by certain chemical methods. Irradiation of the surface 

by accelerated ions or inert gases or metals with the following thermal treatment is 

widely used.  

 

3.5 Oscillation of Atoms in Crystals.  
 

In solids, the atoms are known to oscillate about their equilibrium position. When the 

oscillation amplitude is small, those oscillations can be considered as the sine-type. The 

more is the temperature, the more is the amplitude and energy of oscillations.  

In a solid, all atoms are strongly bonded. Thus, we can consider all the possible 

oscillations as a set of interacting elastic waves that propagate through the entire volume 

of a body. The volume of the body is finite, and superposition of standing waves is 

produced.  

The oscillations of the crystalline lattice determine many physical phenomena in solids: 

thermal capacity, thermal conductivity, thermal expansion, electric conductivity, and 

others. The theory of oscillations of the lattice atoms is very complicated. Thus, at first 

we will study the propagation of elastic waves inside a uniform string, and through a 

crystal having not taken into account the discrete structure of the body. We will study 

the oscillations of atoms of one-dimensional lattice. Then, we will generalize the results 

for a three-dimensional crystalline lattice. 

Fig.3.15 The dislocation mechanism of the 

fissure formation under the action of normal 

strains  
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3.5.1 Oscillations of a Uniformed String 
  
Let the longitudinal wave to propagate through a uniform unlimited string of the linear 

density . The motion of each element is linear. When the wave transmits through the 

distance х (F.g.3.16), the forces acting upon the element are from the left: S(x); and 

from the right: S (x + х). S is the string cross-

section. (x)  и  (x + х) are the normal elastic 

strains.   The resultant force acting upon element 

х is:  

 

   xSxxSF  .           (3.41) 

 

Under action of this force, the elementary 

element х is displaced. Designating the 

displacement of the mass-center of the element 

by и(х,t), we get:  

 

   xSxxS
t

u
xS 





2

2

,                                        (3.42) 

Sх – the element mass. Equation (3.42) can be written as follows:  
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.                                            (3.43) 

When х  0:  
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u
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2
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.                                                   

(3.44) 

 

In accordance with the Hooke law:  E . Here, 

Е is the Young modulus;  xu   is 

deformation.  Thus, 
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x 
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
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.                                              

(3.45) 

The motion equation can be written as follows:  
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uE
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


.                                                

(3.46) 

The solution is plane monochromatic wave:   

    tkxut
x

utkxiuu ωsinν
λ

2sinωexp 000 







 .          (3.47) 

u0 – oscillation amplitude,  - frequency,  = 2 - angular frequency; t – time;  -

 wavelength; k = 2/ - wave number. Inserting equation (3.47) in (3.46) we arrive to 

dispersion relation:  

Fig.3.16. Concerning the problem 

of the motion of an elastic wave in 

a string  

Fig.3.17 Frequency as 

function of the wave 

number for a continuos 

string  
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kvkE l ω .                                           (3.48) 

Thus, for an elastic wave that propagates in continuos unlimited string, the frequency 

depends linearly on the wave number (Fig.3.17). The wave propagation speed 

 Evl  depends only of material. For example, for iron (Е = 2,110
11

 Pа, 

 = 7,810
3 
 кg/м

3
) v = 510

3 
м/с. 

 
3.5.2 Elastic Waves in Crystals  
 

The processes of propagation of elastic waves are more complicated than those ones of 

electromagnetic waves. The electromagnetic waves are transversal. The elastic (sonic) 

waves are of two kinds: longitudinal and transversal. The first ones are the waves of 

lengthening and contraction; the second ones are the waves of shearing deformation. 

Generally, in every direction in crystal, three polarized elastic waves with different 

speed can propagate.   

Assume that an elementary volume of crystal (density ) is chosen in a form of a 

parallelepiped with edges x, y, z, which are parallel to crystallographic axes х, у, z 

(Fig.3.18).  When the wave propagates through crystal, every side of an elementary 

parallelepiped performs small oscillations under action of the strain i. Let us discuss 

the propagation of the elastic wave along x-direction.   

The strain 11(х) acts upon the side x. 

The parallel side х + x is affected by 

the strain  

  x
x

xx 



 11

1111  

The resultant force in x-direction is 

zyx
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



 11 . Changing the 

strains 12 and 13 inside the 

parallelepiped produces the other 

forces in x-direction. . Thus, the 

resultant force is  
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                   (3.49). 

If to designate the components of the displacement vector of the center of mass by и, v, 

and , the motion equation would be written as follows:  
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                             (3.50). 

If displacements и, v, and  are designated by symbols xi (i = 1, 2, 3), we get:  

)3,2,1(
2

2


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xt

x

j i

iji
.                            (3.51). 

ij are the components of strain tensor.  

Fig.3.18. The forces act upon an elementary 

parallelepiped when the elastic wave 

propagates through a substance.  
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For a cubic crystal, taking into account the restrictions upon the elastic constants Сij [see 

matrix (3.26)] and equation (3.9) and (3.10), we get: 
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Introducing this equation in (3.50), we arrive to the motion equation:   
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           (3.53). 

The equations for displacements v and и  are easily got from (3.53) by cyclic 

transposition:  
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  (3.54). 
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  (3.55). 

Let us find the solution for plane waves, which propagate in direction [100]. The 

solution can be chosen in the form of plane wave:  

  tkxiuu ωexp0  .                                      (3.56) 

 

и0 is the oscillation amplitude; |k|==2 is the wave vector. 

The wave vector k and displacement и are oriented along the cube edges i.e. in x-

direction. Thus, vector k is normal to the wave front.  

Inserting equation (3.56) in (3.53) we get:  

 11Ckvl .                                        (3.57) 

vl – velocity of propagation of the elastic longitudinal (sonic) wave in direction [100]. 

The other solution is a transversal wave (shearing wave), that propagates in x-direction, 

but displacement v is in y-direction.  

  tkxivv ωexp0  .                                      (3.58) 

Inserting equation (3.58) in (3.54) we get:  

 44Ckvt .                                        (3.59) 

vt – velocity of propagation of the elastic transversal wave in direction [100].   

The third solution is also the shearing wave in x-direction, but  is in z-direction.  

  tkxi ωexp0  .                                      (3.60) 

Inserting equation (3.60) in (3.55) we get:  

 44Cvt .                                                (3.61) 
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Thus, three elastic waves propagate in direction [100]: one longitudinal and two 

transversal waves.  It should be noted that two independent transversal waves propagate 

with the same speed. When the direction of a wave vector is arbitrary there are three 

polarized waves. Their velocities are different and do not depend on frequency. 

According to equations (3.57), (5.59), and  (5.61) the greater the rigidity and the less the 

density of a crystal the greater the velocity of propagation of elastic (sonic) waves. It 

follows also that the cyclic frequency  is proportional to the wave number k, i.e. the 

dispersion relations are of the same form as those ones of the elastic string 

 

3.5.3. Oscillation of One-Atomic Linear Chain  
 

The simplest model of a solid is the linear chain of atoms (Fig.3.19) consisting of N 

identical atoms of mass М arranged at the distance а.  The atoms can move along the 

straight line. Thus, the degree of freedom of the entire system is N. The model can be 

interpreted by the Brave linear primitive cell with the translation Т = па (n is аn 

integer). 

Assume that at t = 0 atom of number п = 0 is displaced from the equilibrium position at 

a distance u0. The atoms of the chain are bonded.  Thus, the excitation in the form of 

contraction wave propagates along he chain, and all atoms are displaced from their 

equilibrium positions.   

Let ип(х,t) be the displacement of a n-atom relative its coordinate xп = па. If the 

displacement is small in comparison with the distance а, the forces between atoms can 

be considered quasi-elastic. In accordance with Hooke’s law those forces are 

proportional to displacements. We can assume that atoms of chain are bound by springs 

with an elasticity constant С, and the displacement ип describes the oscillations of atom 

near its equilibrium position.  

Let us assume that the forces are short-handed. Thus, п – atom interacts only with its 

closest neighbor atoms of (n-1), and (n+1) number. The force acting upon the atom  

     nnnnnnnn uuuuuuuF 21111   ,               (3.62). 

 - force constant, which is related with the elastic constant by С = а. The motion 

equation is:  
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                                                                              (3.63) 

 We can find the normal oscillation modes i.e. types of motion when all atoms oscillate 

with the identical frequency  in accordance to; ехр(-t). The solution of equation 

(3.63) is chosen as (running wave):   

     tkxiutknaiuu nn ωexpωexp 00  .                    (3.64) 

 u0 is the displacement of an atom of number п = 0  at the time moment t = 0; k = 2 -

 wave number;  - the mode cyclic frequency. 

Fig.3.19 The linear chain of identical atoms  
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It follows from equation (3.64) that the type of normal mode is determined by the 

displacement of the atom of number п = 0.  Inserting the solution (3.64) into equation 

(3.63) we get:  

      2sin42expexpω 22 kaikaikaM  .                    (3.65) 

Thus, the definite quantity 
2
 corresponds to each wave number. 

2
 is the even function 

of the wave number k. Using equation (3.65) we get the dispersion relation for the 

waves that propagate through the linear chain of identical atoms: 

    2sin4ω
21

kaM                                              (3.66) 

The negative sign corresponds to the region of negative wave numbers k. 

It follows from (3.66) that the oscillation frequency of n-atom does not depend on п, i.e. 

all atoms oscillate with the same 

frequency. The function (3.66) is 

shown in Fig. 3.20.   

According to (3.66) at 

k = 2 = a (short waves)  

 = 2а, and the cyclic frequency is 

maximal.   

  21

max 4ωω M  (3.67) 

Let us evaluate the quantity 

max  vзвk,  Cvзв  is the 

velocity of sonic waves. vзв  510
3
 

м/с. Assume that for solids, a = 10
-

10 
m. Thus, k = a  10

10
 m

-1  
 

max = 510
13

 s
-1

, which (by the order) corresponds to the thermal oscillation frequency 

of atoms in solids. When k is small i.e. the wavelength is greater than the distance 

between atoms of a chain, the dependence of  on k is linear as in the case of 

continuous string with the linear density  = М/а: 
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Thus, in discrete chain there is no proportionality between frequency and the wave 

number. We remind our readers that in continuous string there is such proportionality. It 

is due to the wave dispersion. The short waves, which correspond the high oscillation 

frequency of particles propagate not so fast as the long waves (it is due to inertia of 

particles). The function  = (k) is not linear as that of the elastic string (see Fig.3.20). 

Behavior of the chain of identical atoms relative to the propagation of sonic waves is 

like that one of the elastic string when   2а. 

The propagation velocity depends on wavelength (in a uniform string there is not such 

dependence):     
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This dependence is characteristic for discrete structures. The relation (3.64) describes 

the waves that propagate along the chain with phase velocity  
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Fig.3.20. The linear chain dispersion  
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group velocity  

2
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ka
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k
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


                                       (3.71) 

When k is small (F.g.3.21) the phase and group 

velocities are identical with the sonic speed:  

звгрф vvv        (3.72) 

                                  

A glance at equation (3.71) and Fig.3.21 

shows that the magnitude of the group velocity 

(the velocity of the energy transmittance) of 

the shortest waves (k = а) is zero.  Thus, the 

standing waves of the type  

 

     πcosωexpωexp 00 ntiutknaiuun 

                    (3.73) 

 

are produced. Those waves are the result of superposition of two running waves of the 

same amplitude and frequency but propagating in the opposite directions.   

Having discussed the differential equation (3.63) we said nothing about the boundary 

conditions. Those conditions restrict the interval of the wave number and its magnitude 

in this interval. When the length of a chain is limited the forces, which act upon the 

middle atoms, differ from that ones which act on the atoms at its ends. Thus, the state of 

equilibrium at the edges of the chain is violated. This difficulty can be excluded if 

suppose that atoms form a big ring in such way that the last atom (n = N) is again at a 

distance а from the first one (n = 1). If N is great the properties of the ring slightly differ 

from those of a linear chain. Then, the periodic border condition of Born-Karmann can 

be chosen:  

nNn uu  ,                                                  (3.74) 

The integers п and п+N characterize the same atom. Inserting the solution (3.64) into 

condition (3.74) we arrive to:  

    1expесли,exp  ikNakNaiuu nNn ,                    (3.75) 

It follows that solution (3.64) is in accordance with the boundary condition (3.74) if  

 ,3,2,10, число целое где,π2  nnkNa .                   (3.76) 

Thus k =2n/aN is a quantum quantity. The interval of the wave number can be chosen 

as follows:  

aka ππ-                                                  (3.77) 

This interval coincides with the Brillouin zone of the electron wave vector.  

Obviously, the allowed quantity of wave numbers within the interval (3.77) (taking into 

account (3.74) and (3.76)) is N, i.e. the number of atoms or elementary cells in a chain. 

Every proper quantity k corresponds to its proper function (see 3.64). The number of 

those functions can not be more than N. 

The general solution of the motion equation can be build up as the superposition of 

waves (3.64) of the wave number k, frequency k  and amplitude Ak:  

 

   
k

kkn tknaiAu ωexp ,                              (3.78) 

Summation is performed by all magnitudes of k, which satisfied the condition (3.76).  

Fig.3.21. Dependence of phase and 

group velocity on the wave number 
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The motion of any oscillating system can be written as the motion of independent 

oscillators with the normal coordinate qk. Those coordinates are independent and 

follows the harmonic law: 

 tiNAq kkk ωexp  .                                  (3.79) 

Inserting (3.79) into (3.78) leads to:  

 
k

kn iknaq
N

u exp
1

.                                 (3.80) 

By differentiation of (3.79) with respect to t we wold come to the conclusion that 

coordinate qk satisfies the equation  

 Nkqq kkk  ,3,2,102  .                                 (3.81) 

This equation describes the motion of linear harmonic oscillator. The oscillator total 

energy is given by the classical expression:  

kkkk q
M

q
M

E 2

22
  .                                            (3.82) 

М – mass of an oscillator. Thus, the total energy of atomic chain is:  


k

kEUUTE 0 ,                                            (3.83) 

Т – kinetic energy; U0 – potential energy in the state of equilibrium; U – potential 

energy. 

The Hamilton function of a classical linear oscillator is: 

2
22

22
x

M

M

p
H kx


 .                                            (3.84) 

Here, px – momentum, М – mass, х – deviation from the equilibrium position, k  -

proper frequency. A quantum linear oscillator is a system, which can by described by 

the Hamilton operator (see equation (3.82)):  

 2
22

ˆ
22

ˆˆ x
M

M

p
H kx


 ,                                            (3.85) 

Here, 
dx

d
ipx ˆ  - momentum operator; x̂  - coordinate operator. 

The Schrödinger stationary equation is:  

ψψ
2

ψ

2
ψˆ 2

2

2

22

k
k Ex

M

dx

d

M
H 





.                             (3.86) 

ħ – Plank’s constant; ψ  - wave function; Еk – total energy of oscillator. The proper 

energies of equation (3.86) are:  

  ,,3,2,1,0,
2

1   nnE kk .                                    (3.87) 

The integer n is called the principal quantum number. The energy is discrete. The total 

energy of the atomic chain:  

   
k k

kk nUEUE
2

1
00  .                                 (3.88) 

Factor ½ in bracket corresponds to zero energy (at the temperature of 0 degrees). Even 

at that temperature, the atoms oscillate. It is due to the fact that precise localization of 

atoms would produce too great uncertainty in their momentum (in accordance with the 

Geizenberg uncertainty principle (рхх  ħ).  
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3.5.4. Oscillation of a Two-Atomic Linear Chain  
 
The chain is shown in Fig.3.22. Parameter of a linear elementary Brave cell is 2a. The 

basis consists of two atoms of different mass: М1 and М2. N atoms are arranged along a 

straight line. The number of degrees of freedom is two. The springs can be considered 

as the forces acting between the atoms.  

Let 2па be the even equilibrium positions of atoms with the mass М1, and  (2п + 1) be 

the uneven equilibrium positions of atoms with the mass М2 (п is an integer). Let u2n be 

the displacement of М1 atom from its equilibrium position in direction of x-axis. Let 

u2n+1 be the analogue quantity of М2 atom. Assume that the displacements are small in 

comparison with inter atomic distances а. Assume that the interaction forces are quasi-

elastic. 

Taking into account only the forces produced by the closest neighbors the forces acting 

upon the М1 and М2 are:  

     nnnnnnnn uuuuuuuF 212121222122 2   

     12222212122212 2   nnnnnnnn uuuuuuuF , 

The quantity   and the elasticity constant are  connected by relation: С = а.  

The Newton equation for displacement u2n and u2n+1 can be written as follows:  

 

 122222
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212122

2
2

2
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
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nnn
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uuu
t

u
M

uuu
t

u
M

.                (3.89). 

The longitudinal excitation propagates through the chain. The atoms of different mass 

oscillate with different amplitudes.  

The solution of equation (3.89) can be chosen as harmonic waves:  

  
  tkaniuu

tnkaiuu

n

n





 12exp

2exp

212

12
.                                 (3.90) 

Inserting solutions (3.89) into equation (3.89) and canceling out the common factor 

  tnkai 2exp  we arrive to the system of equations relative и1 and и2: 

 
  02cos2

0cos22

2
2

21

21
2

1





uMuka

ukauM
.                                 (3.91) 

The system of uniform equations can be solved if its determinant is zero:  

   
    0

2cos2

cos22
2

2

2
1 





Mka

kaM
.                                 (3.92) 

Fig.3.22 Two-atomic linear chain In an elementary cell (parameter 2a) there are two atoms 

of mass М1 and М2.  C is the spring rigidity.  
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It follows that the frequency  and the wave number k satisfy the equation:  
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It leads to:  
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


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

 
 .           (3.94) 

 

The negative k is forbidden. It follows from equation (3.94) that to a single wave 

number k, two frequencies  correspond (hence, two modes). Using the border 

condition of Born-Karmann  

( nNn uu 222   or 122)12(   nNn uu ) we find the allowed wave numbers. The 

condition (      NkaitnkaiutkaNniuu Nn 2exp2exp22exp 1122  ) holds if 

  12exp Nkai or mNka  22  (т is an integer). Hence:  

N

m

a
k

2

π2
 .                                                 (3.95) 

The factor k is present only in the expressions of the type of  nkai2exp . Nothing would 

change if to add a quantity multiply  a2π2 . Thus, the range of k can be restricted as:  

   aka 2π2π-                                          (3.96) 

Fig.3.23. The dispersion curves for a longitudinal wave, that propagates along the 

linear two-atomic chain The down curve represents the acoustic branch, the upper 

curve represents the optical branch of the optical spectrum.  
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It follows from equation (3.95) and (3.96) that the allowed number of k in the interval 

(3.96) is inside the range 22- NmN   and equals N (the number of elementary 

cells in the chain). Two modes correspond to a single wave number. Thus, the number 

of the normal modes inside the interval (3.96) equals the number of degrees of freedom 

i.e. 2N. Interval (3.96) is a Brillouin zone of two-atomic chain.   

There are two solutions: k > 0 (the wave running to the right) and k < 0 (the wave 

running to the left).  

Thus, there are two dependencies of  on k, which are called two branches of the 

dispersion law. The branches in Brillouin zone are shown in Fig.3.23 (М1 > М2). 

The down curve is called the acoustic branch; the upper curve is called the optic curve. 

For all wave numbers, the frequency of optic oscillations is greater than the frequency 

of acoustic oscillations. In order to understand the origin of definitions let us discuss the 

situation when k is small and  ak 2π . When kа < 1, sin
2
kа    k

2
а

2
. It is known 

that the roots of a square equation (х
2
 + px + q = 0) follow the relations: x1 + x2 = -p, 

x1x2 = q. The frequency of the optic branch varieties weakly near k = 0. Under those 

assumptions, we find that the roots of equation (3.93) are:  
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                 (optical branch)    (3.97) 
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 Comparing the equation (3.98) and (3.68) we arrive to the conclusion that the function 

 = (k) describes the branch of longitudinal acoustic oscillations. When k is small the 

frequency is proportional to the wave number (as for a mono-atomic chain). The sonic 

speed of long waves is:  

 21β2 MMavзв                                               (3.99) 

If k is small the phase and group velocities are identical: vф = vгр = vзв. If М1 = М2  

 CMavзв β , which is the  sonic velocity in the mono-atomic chain of the 

density  = М/а. 

When  ak 2π , i.e. at the border of Brillouin zone 12 2β M ; the curve is not 

steep, the group velocity becomes zero. Thus, the behavior of the down fraction of the  

curve is like that one of the mono-atomic chain.  

The second branch begins at k = 0 and the maximal frequency 









2

11
β2ω

1
1

MM
. 

When k increases the curve slopes down. When the wave number  ak 2π  

21 2β M .  

The visible light can produce the optical oscillation branch (i.e. the set of optical 

modes). When k  0, the phase velocity of optic oscillations vф = 1/ k  , the group 

velocity is vгр = d/ dk = 0. 

Two branches (see Fig. 3.23) are divided by the band of forbidden frequencies i.e. the 

motion equations (3.89) have no solution in the region 21 2β2β MM  .  
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Let us compare the ratio of amplitudes of neighbor oscillations in both branches. When 

ka < 1) taking into account relation (3.90) and inserting (3.98) into (3.91) (k = 0), we 

get:   
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2 

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u
  (3.99) 

Thus, the oscillation of neighbor atoms 

of the chain is of the same phase and 

amplitude i.e. the cells are displaced as a 

whole. Those oscillations are typical for 

sonic waves (Fig.3.24a).  

If we insert the solution (3.97) into 

equation (3.91), then for an optic branch 

k = 0, we get:  

1

2

2

1

M

M

u

u
             (3.100) 

I.e. the atoms of a cell oscillate in 

opposite directions (in opposite phases) 

provided the center of mass does not 

move (see Fig.3.24b and formula 3.100).  

 

 

 Thus, in the two-atomic chain there are 

two types of oscillation branches: 

acoustic and optic. In acoustic modes, both atoms move in the same phase. In optic 

modes, the neighbor atoms move in opposite phase.   

Under assumption that the wavelength of optic oscillations is great and the charges of 

atoms alternatively change, the anti-phase oscillations produce the displacement of ions, 

and the electric dipole moment of a cell would be changed. As a result, the wave of 

electric polarization propagates through a crystal. In ionic crystals, the optic oscillations 

are produced at infrared frequencies.  

 
 
3.5.4. Oscillation of Atoms of a Three-Dimensional Cell  
 
Assume that the three-dimensional lattice consists of identical atoms (mass M) and in a 

volume V there are N primitive elementary Brave cells. Every atom has three degrees of 

freedom. The entire crystal has 3N degrees of freedom. In harmonic approximation, the 

displacement of each atom follows the motion equation, which is an analogue to the 

motion equation of the chain of identical atoms under condition that the displacement is 

substituted by the vector of displacement uj. As a result, we have the system of 3N 

equations. Its solution is:  

    tiA jvkj  0exp kRkεu ,                                  (3.101) 

k - a wave vector; Аk – oscillation amplitude; v(k) – unit polarization vector of normal 

mode that characterize the direction of ion motion; 
0
jR  -radius-vector of an atom of 

equilibrium configuration.  

Fig.3.24. Displacement of atoms when a 

transversal wave propagates along the 

two-atomic linear chain: линейной 

цепочки: а) acoustic mode; b) optic mode.  
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Introducing solution (3.101) in the system of motion equations, we get the set of 

uniform equations relative amplitudes Аk. That system has an antiviral solution if its 

determinant is zero. The determinant is a polynomial of the third power relative 
2
 and 

generally has three positive roots.  

 

Thus, for every wave vector there are three oscillation modes, which determine three 

branches of dispersion relation (Fig.3.25). 

)3.2.1(  vvk .            (3.102) 

 L mode corresponds to a longitudinal wave, Т1 and 

Т2 modes correspond to transversal waves. In a 

longitudinal wave, in isotropic medium, the polarization 

vector v(k) is parallel to a wave vector k. In transversal 

wave, the polarization vector is perpendicular to the 

wave vector.  

In order to find the interval and number of allowed 

wave vectors, the cyclic condition of Bohr-Karmann is 

used. The assumption is made that the crystal has the 

form of a rectangular parallelepiped with edges N1a1, N 

2a2, N 3a3. а1 = а, а2 = b, а3 = c  are the vectors of  

 

straight cell, N1,  N 2, and N 3 are the great numbers. In accordance with cyclic 

conditions, we have:  

   00
jjjjj uNu RaR  ,                                        (3.103) 

The allowed magnitudes of vectors satisfy the condition:  

   1exp iiNi ka                                   (3.104) 

Hence  

)числоцелое(2  iiii nNnka                                   (3.104) 
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а*, b*, с* - vectors of reciprocal lattice.  

A single Brillouin zone (the Viger-Zeitz cell) can limit the magnitude of k:  

aka ππ-  ,                                                (3.106) 

Obviously that the quantity of allowed wave vectors, which follow the condition (3.104) 

inside the interval (3.106) equals the number N of elementary cells in a crystal. All 

vectors k are distributed in k space with the density V/(2)
3
.  

When in a three-dimension lattice with basis and in an elementary cell there are p 

atoms, the number of degrees of freedom is ЗpN.  Thus, the solution of ЗpN equations 

gives Зp oscillation branches. Dispersion relations can be written as follows:   

),,3,2,1;3.2.1(, psvs
v  k . (3.107) 

Three down branches (Fig.3.26) at small wave numbers tend linearly to zero. They are 

called acoustic branches. The other (Зp - 3) are called the optic branches. Among them 

there are longitudinal and traversal oscillation branches. Velocity of longitudinal waves 

is greater than that one of the transversal waves because the frequencies of longitudinal 

waves are greater than the frequencies of transversal waves.   

Fig.3.25. The dispersion 

curves for a primitive three-

dimensional Brave cell.  
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Thus for the lattice with basis, the motion of 

atoms can be interpreted as superposition of ЗpN 

normal oscillations or modes. Every normal 

oscillation represents a harmonic oscillator. The 

normal coordinates follow the equation:  

  0,
2

,  ss qsq kk k .                                      

(3.108) 

The total oscillation energy of a crystal is the sum 

of energies of ЗpN independent harmonic 

oscillators.  

 

 

 

 

 

The energy of a quantum oscillator with a 

frequency (k,s) is:  
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 The total energy is:  
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kk
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,  .                (3.110) 

U0 is the potential energy of the equilibrium state.  

Thus, the oscillations of strongly bonded crystalline atoms are represented by the set of 

independent waves with a wave vector k and frequency (k,s).  An oscillator with the 

frequency (k,s) corresponds to every wave.  

Thus, summarizing all which is said above we came to the conclusion that the sonic 

wave with the wave vector k and polarization s can be considered as the set of n(k,s) 

quanta of energy ħ(k,s) plus the energy of a basic state  ),(
2

1 sk . Those quanta of 

the sonic wave are called the phonons. The quantity ħ(k,s) is the minimal excitation 

energy above the basic level  ),(
2

1 sk . A photon can be considered as the elementary 

excitation. The complex excitation is the sum of the simple ones. The collective motion 

of atoms in crystal represents the sonic wave. The corresponding excitations are sonic 

quanta or phonons.. 

An oscillation mode of classic frequency (k,s) can be excited by photons of energy 

ħ( k,s). The quantity n(k,s) (see formula (3.109)) is the number of photons with р and 

energy ħ( k,s). While discussing the heat problems, it is needed to know the average 

number of quanta n(k,s) of the energy ħ( k,s) at a given  temperature. To find 

quantity n(k,s), let us use the Plank formula for the average energy of a quantum 

oscillator:    
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Fig.3.26. The dispersion curves for 

a three-dimensional cell with basis: 

Т1 and Т2 represent the transversal 

modes; L represents the 

longitudinal mode.  
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The factor  ),(
2

1 sk can be dismissed because it does not depend on the temperature. 

It follows from the formula (3.111).  
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This expression also describes the Boze-Einstein distribution of photons. Thus, the 

average number o photons per a phase cell of volume (2ħ)
 3

 with energy ħ(k,s) is 

given by the expression (3.111).  

In solids, two types of phonons are possible: acoustic and optic phonons. The oscillation 

frequency of optic phonons is higher than that one of the acoustic phonons. The energy 

of optic phonons is greater than the energy of acoustic phonons. Thus, at very low 

temperatures only the acoustic phonons can be excited.  

Conception of photons gives an opportunity to consider a solid as a set of photons inside 

a box. The photons move from one wall to the other. They collide.  A s a result of those 

collision, the photons can be born and die. The photon gas is not a conventional gas. 

The number of photons in a solid is no constant. The higher is the temperature, the more 

is the number of photons. When the temperature tends to zero, their number tends to 

zero too.  

Thus the oscillation of a lattice is a wave-particle duality phenomenon. The corpuscular 

aspect leads to the conception of phonon. The energy of phonon is h = ħ, its 

momentum is ħk. Thermal conduction, electron scattering, and others phenomena in 

solids are associated with the processes of generation and annihilation of photons.  

In the frequency interval when photon energy ħ is comparable with the thermal energy 

kВТ or greater than that, the classical and quantum statistics lead to essentially different 

results.  

The corpuscular properties are of importance when the frequency is greater than 

   hTkBпорпор  2 . At room temperature пор  610
12

 Hz or пор   

410
13

 rad/s. The threshold wavelength  порпор v  2 . The wave velocity is of 

order of 5000 м/с. Thus, at room temperature, the corpuscular properties demonstrate 

itself when   10
-9

 м. i.e. the wavelength is comparable with the inter atomic distance  

[ (1 – 4) 10
-10

 м]. At very low temperature, the quantum effects are essential even when 

the wavelength is much greater than the size of atoms.  
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3.6. Statistics of Phonons and the Heat Capacity of a Lattice  
 

While investigating the dependence of crystalline energy on the temperature, it is very 

convenient to use the photon concept. If U is the total oscillation energy of a crystal, 

then the volume heat capacity is  vv TUC  . In actual experiments, the pressure 

capacity Ср is being measured. The energy needed for heat expansion is small, the 

quantity (Ср – Сv) is small too, and we can assume that Сv = Ср . 

 

3.6.1 The Classic Model for Calculation of the Lattice Energy  
 

Assume that an atom (mass m) of a crystalline lattice harmonically  oscillates with an 

amplitude xm and cyclic frequency . The elastic constant is . If х is deviation from an 

equilibrium position, then its velocity is xv  , and acceleration is 

  xmxx 2 . The total energy:  

      22222 222 xvmxmvE                               (3.108) 

In accordance with the Boltzmann distribution:  
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                                       (3.109) 

Introducing (3.108) into  (3.109) we get:  

TkE B                         (3.110) 

 

The total energy of a lattice of N atoms 

with three degrees of freedom is:  

TNkU B3 .                  (3.111) 

The volume molar heat capacity can be 

written as:  

 

 

 

  )Кмоль/(Дж94,2433  RkNTUC BAvv

,               (3.112) 

R = 8,31 JoleК
-1
mol

-1
 is a universal gas 

constant.  

Equation (3.112) is known as the 

Dulong-Petit law. The curves shown in Fig.3.27 are typical for many solids. As it 

follows from the figure, the law holds well at room and higher temperature. The law is 

of no use at very low temperature. Thus, at low temperature, the quantum theory should 

be used. Einstein was the first who took into account this discrepancy in 1907.  

 

 
 
 

Fig.3.27 The specific heat as function of 

temperature  
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3.6.2 The Einstein Model  
 

Einstein developed the ideas of the Plank (1900) quantum theory of black radiation). In 

accordance with that theory, the energy of an oscillator of frequency  π2ν   is:  

 ,3,2,1,0,  nnEn .                                     (3.113) 

Probability of n-state:  

 TkEg Bnn  exp .                                              (3.114) 

The average energy in the state of heat equilibrium:  
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Introduce a variable x = -ħ(kВT). The simple transformations lead to:  
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Thus,: 

1




 TkBe
E




                                            (3.117) 

The allowed energy of a quantum oscillator [7] are:    
2

1nEn . The additional 

energy of each mode  
2

1  is the energy of zero oscillations. That energy does not 

depend on the temperature and does not affect the heat capacity. The energy E  tends 

to the classic limit kВT at the temperature higher then (ħ(kВ), but decreases essentially 

faster than kВT at low temperature.  

The total oscillation energy of a solid with N atoms and ЗN oscillation modes of the 

identical frequencies is:   
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The volume heat capacity:  
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FE  - the Einstein function:  
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1). The high temperature: kВT >> ħ. 

  
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The function tends to 1 at high temperature. It leads to a classical result i.e. to the 

Dulong and Petit law [see (3.112].  

1). Lows temperature kВT << ħ. 
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At temperature below TE = (ħ/kВ) (the Einstein characteristic temperature) the function 

FE diminishes exponentially and the heat capacity equation has the form:   
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3 ,                                   (3.121) 

The Einstein model explains the sharp decrease of heat capacity at low temperature if 

the frequency is chosen properly.  

The characteristic temperature can be find from relation TE = kВTE .  If E = 210
13

 с
-1

 

TE  = 150 К. TE depends on the properties of a substance. вещества. Indeed, the 

oscillator frequency can be represented as   21
max 1 M . Thus, the greater the 

force constant , the higher frequency E and the Einstein temperature. At T << TE the 

quantum assumptions are needed. In Einstein model it is supposed that the quantum 

oscillators are independent and their frequencies are identical. It leads to the fact that the 

heat capacity decreases more rapidly than in reality (Fig.3.28). Experimens show that at 

low temperature, the heat capacity is proportional to Т
3
. 

Debye introduced the other model. The results of that model coincide with the 

experimental ones very well in the region of low temperatures.  

 

3.6.3 The Debye Model.  
 

Debye supposed that in a crystal there are 3N different oscillation modes. The energy of 

each mode is given by equation (3.117). The total heat energy of a crystal is:   

dN
e

U
TkB


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

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1




,                                            (3.122) 

dN – the number of normal oscillations in the interval from k up to dk and integration is 

performed through entire Brillouin zone. To determine dN  in k space, consider a 

spherical layer (Fig.3.29). Its volume is:  

dkkdVсл
2

. 4 .            (3.123)                                   

 

Fig.3.28 The heat capacity as function of temperature: 1-exoerimental data, 2-Einstein 

model.   
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Let us subdivide that layer by the elementary cells. 

Each cell corresponds to an allowed wave number 

k. The volume density of the cells is  34V , 

(V = N1a + N2b + N3c – the crystal volume).  

 

 

 

 

 

 

It follows that in k space, each allowed wave 

number corresponds to a cell with the 

volume:  
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In an acoustic branch, the number of the cells per unit volume is:   
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Assume that the sonic speed does not depend on wavelength and the polarization 

orientation. Thus, for all three acoustic branches, the linear dispersion law is true:   

   ,3,2,1,  skvs зв
sk                                       (3.126) 

зв
sv  - sonic speed. Then:  
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                                       (3.127) 

Hence, the number of normal oscillators in the interval  d:   
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The number of normal modes corresponding to a unit frequency interval and unit volume 

is determined as follows:  
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In a solid, three types of acoustic waves can be present: a longitudinal with the speed vl ,   

and two transversal with the speed vt. The density of the resultant mode is the sum of 

the separate mode densities. Thus, the spectral distribution function in interval d is 

described by an equation:  
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Fig.3.29 Spherical layer in k-space  
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The quantity vs is the sonic speed (averaged by crystallographic axes and oscillation 

modes):  
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Thus, the total heat energy of a crystal can be written as:  
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In Eq. (3.122), the integration through the first Brillouin zone is substituted by 

integration through the sphere with the radius kD chosen in such way that the sphere 

would include just N allowed wave vectors k. Hence,  
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And:  

  3126 VNkD  .                                                (3.134) 

If N/V = 10
23

 см
-3

, then kD = 210
8
 см

-1
. That quantity is of the same order as, the size of 

а Brillouin zone. The minimal wavelength   kD = 310 
-8

 сm is of the same order as 

the period (a) of a crystalline lattice. The waves can not propagate through the lattice if 

 < 2a, and the maximal or the Debye oscillation frequency is:  
113107  ckv DsD .                                       (3.135) 

The spectral distribution function is:  
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By integration, we get:  

  Ndg 3
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.            (3.137)    

 

The Einstein and Debye approximations are 

shown in Fig.3.30.  

For a given distribution function (3.136), 

Formula (3.122) can be written as follows:  
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Let us introduce designations:   

 

  BDDB kTkx    ; .  (3.139) 

 

 

We can rewrite the equation (3.136) as:  
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Fig.3.30 Density of states g(): 1 –

 Debye;; 2 – Einstein; 3 –experimental 

data  
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The relation (3.141) is called the Debye interpolation formula, and D(D T) is the 

Debye function. According to equation (3.141), the energy and heat capacity depends on 

a parameter D, which is called the characteristic temperature or the Debye temperature. 

It should be noted that the quantity DBDk    represents the quantum of minimal 

energy, which can excite the lattice oscillations. Using equation (3.139) we get D 

~ 100К. The characteristic temperature depends on the properties of a solid. For the 

great number of solids, it is about 100—400 К, although it is anomaly high for 

beryllium (D  = 1440К) and diamond (D = 2230К). It can be explained by the great 

rigidity of inter atomic bonds.   
Let us discuss two approximations of Debye function. 

High temperature:: ħ  kBT или x << 1.   

Decompose the denominator of equation (3.141) in series: xxex  111 . We can 

write:  
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,                         (3.142) 

Hence, the heat capacity:  

RCV 3                                               (3.143) 

 

I.e. the heat capacity does no depend on 

temperature and follows the Dulong and Petit law.   

Low temperature: ħ  kBT or x << 1.   

The upper integration limit of integral (3.141) can 

be submitted by .   
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Thus, the energy of acoustic oscillations is:  
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According formula (3.144) at low temperature 

the potential energy U is proportional to T
4
. 

Hence, at low temperature the heat capacity is 

proportional to (Т
3
): 
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(3.146) 

Experiments confirm that dependence (Fig.3.31).  

At more high temperature (T < D) there is no such agreement.  

The modern numerical calculation by computers leads to results that well coincide with 

the experimental ones in entire range of temperature.  

Fig.3.31 The temperature dependence 

of molar heat capacity of three-

dimensional Debye model The 

experimental data for yttrium are 

shown. The temperature scales is in 

the terms of the Debye temperature. 

D = 200К. 


