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1.Bonds in solids 
 
In this section, the fundamental laws of the condensed matter physics are under 

consideration. The problems discussed are being studied very closely in the courses of 

general physics, theoretical physics, quantum mechanics and others.    

 

1.1 Properties of Particles. The Wave–Particle Duality 
 

The expression ‘microparticicle’ (or just particle) is used for designating the elementary 

particles and complex particles compounded of the small number of elementary 

particles. Every microparticle is a composition with the features of a particle and wave. 

That duality describes not only optic phenomena but is of the universal character (Luis 

de-Broglie, 1924). The motion of an electron (or other particle) is associated with the 

wave process with the wavelength and frequency: 
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– de-Broglie wavelength of a particle, m – its mass, v –velocity, h = 6,610
-34

 Jole·s –

the Plank constant, ħ h ()=1,0510
-34

 Jole·s. 

We are going to investigate the behavior of electrons. In accordance with (1.1), the 

electron kinetic energy:  
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Having in mind that the wave number k = 2, we get: 
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Equation (1.4) describes the dispersion law, i.e. the 

dependence of the kinetic energy of a free electron on the 

wave number (Fig.1.1). In accordance with equation 

(1.1),  

kp  .                                        (1.5) 

If the wave vector is normal to the wave front we can 

write Eq.(1.5) as follows:  

kp                                         (1.6) 

Equation (1.1) – (1.6) describe the particle–wave duality. 

The wave propagates with the speed: 
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The frequency  and the angular frequency  are related by   . In order to 

describe the properties of electrons, the harmonic wave is used:   

 tkx   sin                                                     (1.8) 

To illustrate the concepts of the wave – particle duality, let us consider the combination 

of two waves with a small difference of frequencies.  

Fig.1.1 
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If  is the frequency of the first wave, then ( + ) is the frequency of the second 

wave and k and (k + k) are their wave numbers. Using condition  <<  and k << k. 

We can write: 

                                                        tkx   sin1                                                    (1.9) 

                                                            

 

    txkk   sin2                                             (1.10) 

 

The wave 1 and 2 superpose and a new wave  is born:  
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Equation (1.11) describes a sine wave, the amplitude of which is modulated by a cosine 

function. That phenomenon is called beating.  

Superposition of the great number of waves leads to 

a single wave packet (Fig.1.2). A wave (or a flux of 

particles having the same speed) propagates in a 

medium. 

The phase velocity of the wave v is given by the 

second part of equation (1.11): 
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The expression (1.12) coincides with (1.7). The 

phase velocity depends on the wavelength. 

Previously we defined a particle as a wave packet. The velocity of propagation of the 

wave packet (i.e. of the particle) is called the group velocity. In accordance with 

equation (1.11):   
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The more exactly the position x of the particle is known, the greater is the frequency 

interval  of the waves, which build up the wave packet. That principle is called the 

Heisenberg uncertainty principle. It states that the product of uncertainties of two 

canonically conjugate quantities can not be less than the Planck constant. In other 

words, the Heisenberg uncertainty principle defines the region of the space localization 

of a particle when the range of the canonically conjugate momentum is given, for 

example for the x-direction:   

hdxdpx                                                    (1.14) 

 
1.2 Density of States 

 
Equation (1.14) can be written for all  three dimesions in the form: 

  

 

Fig.1.2 The particle (the wave 

momentum) moves with the 

group velocity vg.  -the 

momentum width.. 

.;; hdzdphdydphdxdp zyx 
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Multiplying the right and left parts of these relations we get:  

.3hdpdpdxdydzdp zyx       (1.15) 

Let us define a minimal (elementary) phase cell of the six-dimensional space of 

coordinates and moments for a particle to be localized inside this cell using the 

following condition.  

.3000000 hdpdpdpdzdydx zyx          (1.16) 

Let dZ be the number of elementary cells inside an 

arbitrary volume zyx dpdpdxdydzdp of the six–

dimensional coordinates–momentum space. Obviously:  
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The number of elementary phase cells inside the 

unit volume of coordinates space corresponding to an elementary volume of the 

momentum space can be written as follows: 
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Let us find the value of dz inside a spherical layer of momentum-space (Fig.1.3) 

between two spheres with radii р and р + dp. It is clear that dppdpdpdp zyx

24  and. 

.222 mEmEp k   The kinetic energy of the particle Еk equals the total energy Е, 

because the potential energy of a free particle is zero. According (1.4): 
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Substituting (1.19) in (1.18) we get                
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Let us find the number of elementary phase cells 

inside the unit energy interval. This quantity is 

known as the density of states. 
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This parabolic law describing the density of states 

of free electrons as function of energy is shown in 

Fig.1.4.  

 

 
 

Fig.1.3 The spherical layer in 

the momentum space 
пространстве импульсов. 

Fig.1.4 Dependence of the 

state density on the free 

electron energy  
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1.3 Schrödinger Equation 
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 The Schrödinger equation describes the wave properties of particles. The motion of 

particles is represented by  - function  (complex function of coordinates and time). 

m – mass of the particle, i –imaginary unit, U – force field, 
2
 – the Laplas operator: 
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If U is stationary, the solution of the Schrödinger equation consists of two multipliers. 

The first multiplier depends on coordinates and the second depends on time. 

      .,,,,, tEiezyxtzyx                                         (1.24) 

Substituting (1.24) in (1.22), we get the stationary Schrödinger equation:  
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Е is the total energy. The square module of  defines the probability dP of finding the 

particle inside the volume dV:   dP =  dV. Normalization condition has the form: 

.1
 dV                                                (1.26) 

As a result of solution of the Schrödinger equation, we get the set of proper energies  

and proper functions. In general, it is a very tiresome task. We discuss some rather 

simple situations.  

 
1.3.1 Free Electrons 

 

Let the particle move in a positive direction of x-axis. The potential energy is zero and 

the Schrödinger equation can be written as:  
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It is the equation of free oscillations. The solution can be written in the form: 

             ,tixi eAex                                                (1.28) 
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It follows from (1.29): 
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Taking into account (1.1), we arrive to the well-known dependence (1.4) of energy on 

the wave number k: 
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Thus, the spectrum of allowed energies of a free electron is continuos. 



 5 

 

1.3.2 Step Potential Barrier 

 

Let a free electron fall on the step barrier U (Fig.1.5). Three possible situations are 

under consideration: 1) Е > U; 2) Е = U; 3) Е < U.  The Schrödinger equation has the 

form: 

           ,0ψ
ψ 2

2

2





k

x
                             (1.33) 

       kmEk 2
1


                                 (1.34) 

k is a wave number. 

In region A, Ек = Е,  = 1, In region B, 

 Ек = Е  - U,  = 2. Hence: 
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The general solution of equation (1.35) and (1.36) can be written as follows: 
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The refraction index R (analogously to optics) is defined as the ratio of the fluxes of 

probability i.e. as the ratio of squares of amplitudes of reflected and falling waves: 
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The barrier transmission coefficient D is defined as the ratio of fluxes of transmitted and 

falling waves: 

            

 

1

2

2

2

2

2

k

k

B

A
D                                                  (1.42) 

 

The coefficient R is the probability of reflection on the interface between two regions 

and the coefficient D is the probability of penetration in the second region. Obviously:  

               ,1DR                                                 (1.43) 

.Continuity condition on the interface is:  
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Fig.1.5 The step barrier  
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For the sake of simplicity, let A=1. The barrier is not limited from the right side, it 

means B2 = 0. Hence:  
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Let us find R and D for the situations shown in Fig.1.5. 1) If E > U, then  
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Hence, we get the result that differs from the classical one: some particles can be 

reflected. The less k2, ( i.e  Е – U), the greater R. 

2) If Е = U, then k2 = 0 and R = 1, D = 0. In other words, the wave is totally reflected. 

3) If Е < U, then k2 is imaginary in accordance to  (1.38). Let us introduce the real 

quantity:  
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The probability to find the particle in the region В at the locality х is:  
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This resultant does not contradict equation (1.55) if we take into account that some 

particles after having propagated in the region В, again enter the region А. The 

exponential factor in (1.57) increases very fast when x grows. For example if U-Е=1eV 

and x=10 Å, it is about 10
-8

. 
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1.3.3 Rectangular Barrier 

 

The motion of an electron is analogues the one just 

discussed. Let us resume that outside the barrier, the 

potential energy is zero. Inside the barrier, the 

potential energy is U (Fig.1.6). 

We can write the Schrödinger equation for regions А, 

В, С then using continuity condition will find R и D.  

The wavelength in the regions А and С is the same. 

We get for UE (having in mind А1 = 1) after simple 

calculations:  
 33
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When the quantity  (U–E) increases, the quantity D 

decreases. Practically when d>150 Å, D   for any 

U–E >0. Thus, the particles can pass through the thin 

barrier if the total energy Е is less than the potential 

energy U. This phenomenon is called the tunnel 

effect. 

If the barrier is not rectangular, the expression (1.59) 

transforms in:  
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 The magnitudes of х1 and х2 depend on Е and the barrier form (Fig.1.7). For different 

barriers, the expressions for D are different. The quantity D can be calculated with the 

help оf (1.60), if the function U – E = f(x) is known. The quantity D0 is about a unit. 

 

1.3.4 Deep Rectangular Well 
 

The deep rectangular well is shown in Fig.1.8. In the regions А and С, the potential 

energy equals U; in the region В, the potential energy is zero.  Let us take into 

consideration the particles, which are located  in the region В. Assume that U = . Let а 

be the width of the well, and Е be the total energy of the particle. 

The depth of the well is infinite. Thus the particle can not leave the well. It means that 

in the region А and С,  = 0. The function  is continuos, and we have: 

    00  a                    (1.61) 

Inside the well, the Schrödinger equation can be 

written as:           
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Fig.1.6 Rectangular barrier 

Fig. 1.7 An arbitrary 

potential barrier  

Fig.1.8. The rectangular well 

. 
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The solution of (1.62):  

                         .sin0   kxAx               (1.64)                                     

Condition (1.61) can be satisfied by proper choice of constant k и .  

If x = 0, 

  00                                                                (1.65) 

It leads to  = 0. If x = а:  

                       ,0sin0  kaAx                                             (1.66) 

It follows that:  

      ,nka                                                                (1.67) 

n = 1, 2, 3, ..., hence:  
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h
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From equation (1.68), it follows that boundary condition of the task is true only for 

discrete quantities of energy.  

The proper functions n(x) and proper energies are shown in Fig.1.9: 

.sin0 x
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The energy levels and squares of the wave functions (the probability density of finding 

an electron inside the potential well) are shown in Fig.1.10. It can be seen that if п = 1, 

the probability is maximal when х = а/2; if п = 2 there are two maximums (at х = а/4 

and at х = За/4); if п = 3 – three maximums and so on. 

When quantity п is great, the number of maximums is also great and the particle having 

the great energy can be located in the vicinity of the walls of the potential well. This 

circumstance can be of very importance for some problems of semiconductors and 

dielectrics.  

 

1.4 Atoms. Filling of Electron Shells 
 

In the first approximation, an atomic electron can be assumed to move in the central 

symmetrical field. Four quantum numbers characterize the electron:  

1) principal  п = 1, 2, 3, 4, ...; 

2) orbital (angular)  l = 0, 1, 2, ..., (п - 1); 

3) magnetic m = 0, 1,...,  l; 

4) spin s = +1/2,-1/2. 

The energy depends on п. The angular momentum of an electron depends on the 

quantum number l as follows:  

 1 llpl                                           (1.70) 

                                               

Magnetic quantum number т can be only integer. It describes the projections of angular 

momentum into given direction. The spin quantum number describes (in ħ units) the 

intrinsic angular momentum of an electron. It can be oriented parallel or anti-parallel in 

respect to the angular momentum. 

The set of electrons having the same principal quantum number п is called the layer. 

The layers are subdivided into shells, which have the different quantum numbers l. The 

following notation is convenient. 

  

  The magnitude of п 1 2 3 4 5 6 7 
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  Notation              K L M N O P Q 

 

Inside the layer, the electrons with different angular numbers  l build up the shells. 

 

 The magnitude of l  0 1 2 3 4 5 

 Notation         s p d f g h 

 

In accordance with the exclusion principle, in a single quantum state characterized by  

four quantum numbers, only one (or none) particle can be found . In a state 

characterized by three quantum numbers п, l, and т, not more than two electrons with 

anti-parallel spins can be found. 

The number of states with different m in the interval from  – l to  + l is 12 l . 

Hence, the maximal number of electrons inside the shell:  

 .122  lNl                                                 (1.71) 
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Thus, we can find two electrons in K–layer, eight electrons in L–layer, eighteen 

electrons in М–layer l and so on. There are: two electrons in s–shell, six electrons in p–

shell, ten electrons in d–shell and so on. In single atoms, s–levels are not degenerated 

but all the other levels are degenerated. It means that for given п and l i.e. for given Е, 

there are g = (2l + 1) different quantities of т, in other words the possible number of 

electrons is g. Hence, the degeneration factor g (not taking the spin into consideration) 

equals 3 for p-level. Thus, p-level is three times degenerated. For  d-level g = 5. Thus, 

d-level is five times degenerated.  

When occupying the shells, the electrons have the tendency to fill the lowest energy 

levels. Thus the occupation begins from the first layer. Then the second layer is filled 

and so on.  

Unfortunately, the interaction between electrons violates this simple scheme. The first, 

for given п, the shells are filled in accordance with l, i.e. at first s–shell is filled, then р– 

shell, d–shell and so on. The second, 4s–shell is lower  than  Зd–shell, 5s–shell is lower  

than 4d–shell, and  6s–shell is lower not only than 

5d-shell but even  4f-shell.  

The symbolic notation is used for electron states in 

atoms. For example, the electron configuration of 

the eleventh element of  periodic table  sodium:  

3s-electron is bound to atom not so strong as the 

others. It is called the optic or valence electron. For 

electrons of 14Si  

22622 33221 pspss . Numbers 11 and 14 correspond 

to number of electrons in neutral atoms. The sum 

of the upper indices corresponds to the number of 

electrons in the shells and is identical with the number of chemical element in the 

periodical table.  

The potential well of an atom and energy levels of electrons аre had shown in Fig.1.11. 

Fig.11. The potential well of an 

isolated atom  

.2
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Thus, the state of electrons in atoms is discrete. It is characterized by four quantum 

numbers. The shells and levels are compound in accordance with these quantum 

quantities. The energy levels can be shown as horizontal lines inside the potential well 

of the atom (see Fig.1.11).  

 


