Schrödinger equation

- Schrödinger equation with a periodic potential has the form
- *U* is a periodic function
- *a, b, c* are the lattice constants

$$-\frac{\hbar^2}{2m}\nabla^2\psi + U\psi = E\psi$$

$$U(x, y+b,z) = U(x, y,z)$$
$$U(x+a, y,z) = U(x, y,z)$$
$$U(x, y,z+c) = U(x, y,z)$$

Bloch functions

- Felix Bloch proved that the solution of the Schrödinger equation a periodic function
- *u*_k(**r**) is a function having the periodicity of the potential, i.e. periodicity of the lattice.

 $\psi_{\mathbf{k}} = u_{\mathbf{k}}(\mathbf{r})e^{i\mathbf{k}\mathbf{r}}$

Band structure

In the periodic field of a crystal, the dependence of *E* on *k* is also periodic. The bands of quasicontinuously change of energy (allowed bands) depicted by solid lines alternate with the forbidden bands

Band structure

- Each allowed band consists of closely arranged discrete levels which number equals the number of atoms in a crystal. The region of k - space in which the energy of an electron in a crystal changes quasicontinuously is called a Brillouin zone. There is an interruption in the energy at the boundaries of the zones.
 - Previous figure shows the Brillouin zones for a one-dimensional crystal.

motion of an electron

- the lattice affects the motion of an electron only when k is close to nπ/a and this effect produces energy gaps
- at intermediate values of *k*, the electrons move freely through the lattice

scattering

 The motion of electrons in the lattice can be considered as similar to the propagation of an electromagnetic wave in a crystal The scattering of the electromagnetic wave by the atoms in the lattice gives rise to a reinforced scattered wave when Bragg's condition is satisfied

linear lattice and Bragg's condition

- for normal incidence $(\theta = \pi/2)$, and $2a=n\lambda$
- the reflected rays

 and 2' have a
 path difference 2a
 and a phase
 difference 2π(2a)/λ

the motion of electrons

• For maximum reinforcement of 1' and 2', this phase difference must be equal to $2\pi n$, resulting in $2a = n\lambda$. Setting $\lambda = 2\pi/k$, we obtain $k = n\pi/a$. Therefore, these values of k are those at which the linear lattice blocks the motion of electrons in a given direction by forcing them to move in the opposite direction

Brillouin zone

- The range of k values between π/a and +π/a constitutes the first Brillouin zone. For k between -2π/a and -π/a and between π/a and 2π/a, we have the second Brillouin zone, and so on.
- the spectrum of possible values of the energy of valence electrons in a crystal is divided into a number of allowed and forbidden bands

Metals, Dielectrics, Semiconductors

 The existence of energy bands makes it possible to explain the existence of metals, semiconductors, and dielectrics

Metals, Dielectrics, Semiconductors

Metals, Dielectrics, Semiconductors

- Metals and dielectrics differ principally;
- Dielectrics and semiconductors differ only quantitatively
- The type of the filling of energy band depends also on crystalline structure. For example, the Carbon structured as diamond is dielectric. The Carbon structured as graphite is a metal.