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Preface 
 

This is the third volume of a three-volume course in physics summing up the 

experience gained by the authors for more than ten years of teaching the subject in 

English at the Tomsk Polytechnic University. 

The stuff of the University has a long history of teaching physics and all of the 

previous developed ideas have been used. But, by no means, this version is a direct 

translation from Russian into English. The manual has been written from the very 

beginning in English using all the advantages of the emotional and expressive language 

of William Shakespeare and Isaac Newton. 

The accent is placed not only on imparting information, but also on the 

formation of physical thinking by the students and on their mastering of the ideas and 

methods of the science. Improved ways of treating a number of questions have been 

found. These made the exposition stricter, and at the same time simpler and easier to 

understand. 

The main content of the present volume is the science of optics, which 

represents the last section of the classical physics; and the second part of our course, 

which we named the modern physics. The second part includes more then 70 items 

dedicated to the most important questions of the modern physics. In particular, the 

phenomenon of superconductivity and the high-temperature superconductors are 

discussed in detail. 

The present course is intended for the foreign students who might have problems 

with Russian language, and above all for our Christian friends from Cyprus. Of course, 

this manual may be used by everybody who wants to improve his knowledge in Physics.  

 

Vladimir M. Antonov  

Vladimir F. Pichugin 

 

Tomsk, March, 2002  
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Part I. Optics 
 

Nature of Light. Laws of Geometrical Optics 
 
1.1.  Nature of light 
 
The light is a complicated phenomenon. In some cases it behaves like an 

electromagnetic wave in others like a stream of special particles (photons). 

What oscillates in an electromagnetic wave are the vectors E and H. 

Experiments show that physical actions of light are due to the electric vector which we 

shall call the light vector. The change in space and time of the projection of the light 

vector onto the direction along which it oscillates can be described by the equation:   

  krtEE m cos


                                            (1.1) 

Here k is wave number, 

         r is distance measured along the direction of the light wave. 

The ratio of the speed of a light wave in a vacuum c to the phase velocity in a medium v is 

known as the absolute refractive index of medium and is designated by the letter n: 

v

c
n                                                         (1.2) 

The values of the refractive index characterise the optical density of the medium. A 

medium with a greater n is called optically denser then that with a smaller n, and vice 

versa. 

The wavelengths of visible light are within the following limits:  = 0.40-0.70m(4000-

7600Å). These values relate to light waves in a vacuum. The velocity of light in a medium 

with index n is ,/ ncv   so  = V/ = C/n = 0/n. 

The frequencies of visible light waves are within the limit: 

 

  Hzv 151075.139.0 
             

                                 
 
(1.3) 

                                                                                               

Neither our eye not any other receiver of luminous energy can track such frequent changes 

of the energy flux because they register the time-averaged flux .The magnitude of this 

quantity is called the light intensity I at the given point of space. 

The density of the flux of electromagnetic energy equals the Pointing vector S. Hence, 

 

  HESI


                                                   (1.5) 

 

We must note that when considering the propagation of light in a homogeneous medium  

 

IE
2

m                                                          (1.6) 

 

The lines along which light energy propagates are called rays. The direction of <S> in 

isotropic media coincides with a normal to the wave surface, i.e. with the direction of the 

wave vector k.The rays are perpendicular to the wave surface. All the light waves are 

transverse, they usually do not display asymmetry relative to a ray. The explanation is that 

in natural light (i.e. in light emitted by conventional sources) there are oscillations that 

occur in the most diverse directions perpendicular to a ray (Fig.1.1) 
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The radiation of a luminous body consists of the waves emitted by its atoms. The process 

of radiation in an individual atom continues about .10 8 s  During this time, a sequence of 

crests and troughs (or, as it is said, a wave train) of about three 

meters in lengths is formed. The atom “dies out” and then “flares 

up” again after a certain time elapses. Many atoms “flares up” at 

the same time .The wave trains are superposed on one another 

and form the light wave emitted by the relevant body. The plane 

of  

 

oscillation is oriented randomly for each wave train. Therefore, 

the resultant wave contains oscillations of different directions 

with an equal probability. In natural light, the oscillations in 

different directions follow one another rapidly and without any 

order. Light in which the direction of the oscillation has been 

brought into order in some way or other is called polarized. 

We shall deal with natural light. The ways of obtaining polarized light and its properties 

are considered in section 3. 

The great number of optical phenomena can be easily explained considering light to be an 

electromagnetic wave. But there are some phenomena (photoelectric effect, in particular) 

which can not be explained from the wave point of view. To explain the laws of 

photoeffect we are to use the quantum conceptions and assume light to be the stream of 

particles having an energy and momentum. 

E                                                              (1.7) 

 kp




                                                              (1.8)  

ħ  is Plank constant. 

The question ”what is the light: particles or waves” is the old one. In our opinion, the 

answer is such one. The light is an electromagnetic phenomenon. Sometimes it can be 

described by ways, sometimes – by particles.                                                                               

 

1.2 Measurements of the Speed of Light 
 

The speed of light is the very important world constant which characterise our 

universe. The most difficulty in measuring of this quantity is due to the very great its 

value. The first experiment concerning this problem and described in scientific literature 

was made by G.Galliley in 1601. 
 

An observer A sends a light signal to observer B. The observer B after having received 

the signal sends it back to observer A. If the time needed for light to run the distance AB 

is measured, then it is very easy to calculate the speed of light: c = 2 AB/t. The distance 

in the Galliley’s experiment was several scores meters, so the light covered this distance 

during 10
-9

 s. It is quite obvious  that with the aid of medieval technique it was 

impossible to measure such short time intervals. And instead of measuring the speed of 

light, the reaction of observers was measured. The speed of light was measured with the 

aid of astronomical methods by Romer (1676) and  Bradly (1725-1728). 

The magnitude of the speed of light appeared to be m/s.100.3 8  But the errors were 

great (1-3%). These experiments were rather complicated and nowadays they are only 

of a historical interest. In 1849 Physo measured the light speed in laboratory conditions 

using method of interruption. The scheme of experiment is shown in Fig. 1.2.     

Fig.1 
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The beam of light emitted by the source propagates between the cogs of the window to the 

mirror M, reflexes and goes back. If the wheel has angle velocity sufficient for next 

opening between the cogs to be inserted in the light beam, it can be seen throw the ocular 

E.  

Let: the distance AM is D, the number of cogs is z, the number of revolutions is n. The first 

interruption of light beam occurs when during the time t=2D/c the wheel turns by the 

angle /z, i.e. 

 

 
 

Fig. 1.2 

Dznc
znc

D
4;

2

12
                                               (1.10)  

 

Later various scientists made the analogue experiments. The accuracy of methods was 

improved, but the error  was not less than 300 – 500 m/s. All the above-mentioned methods 

are the direct methods of measurement. In  1972 the speed of light was measured with the 

aid of an indirect method, namely measuring separately the frequency and wavelength of 

light ( nlс  ) The accuracy of the method was two orders greater (c = 299792456.2 ±1.1 

m/s).  

 

1.3 .The Ray Approximation in Geometrical Optics 

 

The lengths of light waves perceived by the human eye are very small (of the order of 10
-7 

m). For this reason, the propagation of the visible light in first approximation can be 

considered without giving attention to its wave nature and assuming that light propagates 

along lines called rays. In the limiting case corresponding to   0 the laws of optics can 

be formulated using the language of geometry. Accordingly, the branch of optics in which 

the finiteness of the wavelength is disregarded is known as geometrical optics. Another 

name for it is ray optics. 

Geometrical optics is based on four laws:   (1) the law of propagation of light along a 

straight line; (2) the law of independence of light rays; (3) the law of reflection; (4) the law 

of refraction. 

The law of straight-line propagation states that in homogeneous medium, light 

propagates in a straight line, (See Fig.1.3). This law is approximation – when light passes 

through very small (of the order of a wavelength) openings, deviations from a straight line 

are observed that increase with diminishing size of the opening. 
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Fig.1.3 

 

Light that travels directly from point A to point B follows the ray path of a straight line 

rather than some curve line. 

 

The law of independence of light rays states that rays do 

not disturb one another when they intersect, (See Fig.1.4). 

The intersection of rays does not hinder each of them from 

propagating independently of the others. This law holds 

only at not too great luminous intensities. At intensities 

reached with the aid of lasers, the independence of light rays 

stops being observed. The law of reflection states that 

reflected ray lies in one plane with the incident ray and the 

normal to the point of incidence (Fig.1.5). The angle of 

reflection equals the angle of incidence. 

                   

The law of refraction of light states that refracted ray lies in one plane with the incident 

ray and the normal to the point of incidence. The ratio of the sine of the angle of incidence 

 to the sine of the angle of refraction  is constant for the given substance 

 

 12
sin

sin
n




                                                  (1.11)  

                                         

The quantity 12n  is known as the relative retracted index of the second substance with 

respect to the first one. We will discuss this law in detail in the following sections. 

 

 
 

Fig.1.4 

Fig.1.5 Fig.1.6 
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Inspection of the equation 1.11 shows that when light passes from an optically denser 

medium to an optically less dense one, the rays move away from a normal to the interface 

of the media. An increase in the angle of incidence  is attended by more rapid increase in 

the angle of refraction ; when the angle  reaches the value  

 

12arcsin ncr                                                                                               (1.12) 

 

the angle  becomes equal to /2. The angle determined by Eq.(1.12) is called the critical 

angle. 

(5) Principle of ray reversibility: any actual ray of light in an optical system if reversed in 

direction will retrace the same path backward. Graphically the reversibility principle can 

be represented as follows: (see Fig.1.6). 

In order to demonstrate the methods of geometrical optics let us discuss the case of 

refraction (and reflection) of light upon a spherical surface. Assume that the media with 

refractive indexes n1 and n2 are separated by a spherical surface  (Fig.1.7).  

 
 

 

A point source L is located upon the line LL   passing through the center of the sphere. 

Assume that angle   is small and approximately the distances ALSLLALS  ;  and so 

on. Such beam of light is called a paraxial one. From the triangle ALO, it follows LO/LA 

;sin/sin/ iLALO   from the triangle LOA   
 .sin/sin/ rLOLA   Hence, 

./sin/sin/ 12 nnriLOLALALO   We consider the distances in the right direction 

from the point S to be positive and the distances in the left direction to be negative. Thus, 

RaLORaLORSOAOaLSLAaSLAL  2121 ;;;;  and accordingly 

with Eq.(1.13) we have: 

 

.
1111

2

2

1

1 const
Ra

n
Ra

n 
















                                  (1.14) 

 

Eq.(1.14) shows that the quantity n(1/a - 1/R) in the process of refraction is an invariant 

which is known to be  called the Abbey invariant. Sometimes it is useful to write the 

previous expression as follows: 

 

 
R

nn

a

n

a

n 21

2

2

1

1 
                                                   (1.15) 

 

 

Fig.1.7 
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Using Eq.(1.15) it is possible to find the distance a2 = SL
1
 if the distance a1 is given. It 

should be noted that a2 for given n1,n2, and R depends only on a1. Thus, all the paraxial 

rays intersect at the same point L
1
. 

Eq.(1.15) includes all possible variants (a1, a2 > or <; R > or < 0). We adviser the reader to 

investigate all these possibilities and represent them graphically. From the Eq.(1.15), it 

follows that when a1=                                                                                 

 21

2

2

2 fn
n

Rn
a                                                                            (1.16)   

And when a2 =     

 

11

2

1
1 fn

n

Rn
a                                                  (1.17)           

The quantities f1 and f2  depend on radius of curvature and refractive indexes n1, n2. The 

quantities f1 and f2 are called the focal distances: f1 = forward focal distance, the point F1 

is the forward focus, f2 = back focal distance, the point F2 is the back focus (Fig.1.8).  

 

 
The very important device in optics is a lens. The lens is a transparent material with 

spherical surface borders (See Fig.1.9). If the width of the lens S1S2  R1, R2 (radii of 

curvature of the spherical surfaces), the lens is called a thin one. We assume that S1S2  0. 

I.e. both points may be considered as one point S. The point S is called an optic centre of 

the lens. 

 
                                               Fig.1.9 

 

Refraction   on  the  first  spherical  surface  would  produce  in  continuous  glass  with  a  

refractive index n, an image C at a distance SC = a:  1111 /)(// Rnnanan   where a1 =  
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SA, R = radius of curvature of the first spherical surface. Point C is like an unreal source of 

light with respect to the second surface. The image of this source is a point B at a distance  

a2 = SB. We can write the following expression: 2221 /)(// Rnnnnan  , where R2 is 

the radius of the second surface. There is an air from the both sides of the lens, so n1 = n2 

and 

./)()//(;/)()//( 21211111 RnnananRnnanan  By summation of these 

expressions we get: 

 

  


















21

1

12

1

1111

RR
nn

aa
n                                  (1.17) 

 

Or using the relative refractive index N = n /n1 we get 

 

  









2112

11
1

11

RR
N

aa
                                        (1.18) 

 

This expression is valid for convex and concave lenses, for any position of a source. It is 

necessary to have in mind the signs of a1, a2, R1, and R2  are considered to be positive if the 

mentioned distances are being measured in the same direction as that one of the previous 

light ray i.e. to the right, and to be negative if they are directed to the left. If the signs of a1 

and a2 are like, then one of the focuses is imaginable. Using Eq.(1.18), we have for a1 = 

  
 

  











21

22
11

1

1

RR
N

fa                                             (1.19) 

 

For a2 =  

 

  











21

11
11

1

1

RR
N

fa                                            (1.20) 

 

21 ff                                                             (1.21) 

 

Thus, the focal distances are of the same magnitude but of different signs. Introducing f1 

and f2  in Eq.(1.18)  we can write it as follows: 

 

112

111

faa
 , 

 

12 fff                                                       (1.22) 
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It can be seen from Eq.(1.22) that an image moves in the same direction as an object. Only 

the point a1 = f1 is an exemption: a2 = +  changes to a2 = . 

 

1.4 Reflection and Refraction  

 

Assume that a plane electromagnetic wave falls on plane interface between two 

homogeneous and isotropic dielectrics characterized by the permettivities 1 and 2 (1 =2 

= 1). Experiments show that in this case, besides the plane-refracted wave propagating in 

the second dielectric, a plane reflected wave propagating in the first dielectric is present.  

Let us determine the direction of propagation of the incident reflected and refracted waves 

with the aid of the wave vectors kkk ,,  correspondingly (Fig.1.10). 

The following condition is  to be observed: 

 

  21 EE                                                             (1.23) 

 

Here E and E are the tangential 

components of the electric field strengths in 

the first and the second media respectively. 

The plain in which the vectors k and n 

(normal to interface) are is called the plain of 

incidence. It is obvious from considerations of 

symmetry that the vectors k 


 and k 


 can only 

be in the plain of incidence                   (the 

media are homogenous and isotropic). 

Fig.1.10 

 

Let us separate from a naturally falling ray a plain-polarized component in which the 

direction of oscillation of the vector E makes an arbitrary angle with the plain of incidence. 

The oscillations of the vector E in the plain electromagnetic wave propagating in the 

direction of the vector k are described as follows: 

)],(exp[)](exp[ ykxktiErktiEE yxmm  


 (with our choice of the coordinate 

axes, the projection of the vector k onto the z-axis is zero, therefore the addend zk z  

is absent in the exponent).By correspondingly choosing the beginning of reading t, we 

have made the initial phase of the wave equal zero. 

The field strengths in the reflected and refracted waves are determined by similar 

expressions 

 

    '' exp yxm kktiEE                                             (1.25) 

 

    yxm kxktiEE exp''                                            (1.26) 

 

Where  and  are the initial phases of the relevant waves. 

The resultant field in the first medium is  

 

)](exp[)](exp[1  ykxktiEykxktiEEEE yxmyxm           (1.27)        
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In the second medium                                         

 

)](exp[2   ykxktiEEE yxm                              (1.28) 

                  

Having in mind Eq.(1.23) we can write 

)](exp[)]{exp[)](exp[ ,,,    xktiExktiExktiE xmxmxm  (1.29) 

 

For condition (1.29) to be observed at any time, all the frequencies must be the same. 

 

                                                        (1.30) 

 

Condition (1.29) are to be observed at any place; so the projections of the wave vectors 

onto the x-axis must be equal, in other words 

 

 





 xxx kkk                                                     (1.31) 

 

The angles  , shown in Fig.1.10 are called the angle of incidence, the angle of 

reflection and the angle of refraction. 

Obviously, in accordance with Eq.(1.31) we can write 

 

   sinsinsin kkk                                        (1.32) 

   

 










sinsinsin
211 vvv

                                       (1.33) 

 

 Then it follows that   

 

                                                           (1.34) 

                                                                                               

 

12
2

1

sin

sin
n

v

v





                                                 (1.35) 

         

Equation (1.34) is the law of reflection of light and equation (1.35) expresses the law of 

refraction of light. The quantity n12 (relative refractive index) can be written in the form: 

 

1

2

2

1

2

1
12

n

n

cv

cv

v

v
n                                               (1.36) 

 

Thus, the relative refractive index of two substances equals the ratio of their absolute 

relative indices. Substituting the ratio 12 / nn  for n12 in equation (1.35), we can write the 

law of refraction in the form 

 

  sinsin 21 nn                                              (1.37) 
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Inspection of this equation show that when light passes from an optically denser medium to 

an optically less dense medium, the ray moves away from a normal to the interface of the 

media. An increase in the angle of incidence  is attended by a more rapid growth in the 

angle of refraction  , and when the angle  reaches the value 

  

12arcsin ncr                                                                                                                 (1.38), 

 

 the angle    becomes equal to /2.The angle determined by equation (1.38) is called the 

critical angle. The energy carried by an incident ray is distributed between the reflected 

and refracted rays. As the angle of incidence grows, the intensity of the reflected ray 

increases, while that of the refracted ray diminishes and vanishes at the critical angle. At 

angles of incidence within the limits from cr to /2, the light wave penetrates into the 

second medium to a distance of the order of a wavelength  and then returns to the first 

medium. This phenomenon is called total internal reflection.  

Let us find the relation between the amplitudes and phases of the incident, reflected, and 

refracted waves. For simplicity, we shall limit ourselves to the normal incidence of a wave 

onto the interface between dielectrics. Assume that the oscillations of the vector E in the 

falling wave occur along the direction which we shall take as x-axis. In this case, the 

condition of continuity of the tangential component of the electric field strength has the 

form 

  

 xxx EEE                                                 (1.40) 

   

It is well known that the instantaneous values of the vectors E and H in an electromagnetic 

wave are related by the expression 

 

 000  mmm HHE                              (1.41) 

We assume that  = 1 

 

mmm EnEH
0

0

0

0








                                                                                          (1.42) 

 

Where n is the refractive index of the medium in which the wave propagates 

 

 n   ( = 1)                                                              (1.43) 

 

Thus, HE and the Pointing vector 

 

 2][ nEHES 


                                                    (1.44) 

 

It is easy to see that the energy conservation law leads to the equation 

 

 2
2
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Introducing xE  - Ex  into equation (1.45) instead of xE '  it is easy to see that 

  

xx E
nn

n
E

21

1''
2


                                                       (1.46) 

 

 Using this value of xE   in Eq.(1.40), we find that 

 
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nn
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


                                                    (1.47) 

 

Examination of  Eq.(1.46) shows that the projection of the vectors E and xE  have 

identical signs at each moment of time. Hence, we conclude that the oscillations in the 

incident wave and in the one passing into the second medium occur at the interface in the 

same phase – when a wave passes through the interface there is no jump in the phase.     

It can be seen from Eq.(1.47) that when n2 < n1, the sign of xE '  coincides with that of  Ex . 

This signifies that the oscillations in the incident and reflected waves occur at the interface 

in the same phase – the phase of a wave does not change upon reflection. If n2 > n1 then the 

sign of xE '   is opposite to that of Ex, the oscillations in the incident and reflected waves 

occur at the interface in counterphase – the phase of the wave changes in a jump by  upon 

reflection. The result obtained also holds upon the inclined falling of a wave at the 

interface between two transparent media. 

Using equations (1.42) and (1.43) we can find the reflection coefficient  and 

transmission coefficient  of a light wave (for normal incidence at the interface between 

two transparent media. Indeed, by definition 
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Here I, I' and I are intensities of incident, reflected  and refracted waves. Using Eqs. (1.46) 

and (1.47) we get 
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where n12 = n1 /n2 is the refractive index of the second medium relative to the first one. 
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We must note that the substitution for n12 in Eq.(1.50) of its reciprocal n21 = 1/n12 does not 

change the value of . Hence, the coefficient of reflection of the interface between two 

given media has the same value for both directions of propagation of light. 

The index  of  refraction for  glass is close to 1.45.  Introducing  n12 = 1.5 into  Eq. (1.50),  

we  get  = 0.004. Thus, each surface of a glass plate reflects (with incidence close to 

normal) about four pert cent of the luminous energy falling on it. 

 

 

1.5.    Fermat`s   Principle 

 

Geometrical optics can be based on the principle established by the French mathematician 

Pierre de Fermat (1601- 1665). It underlies the laws of straight – line propagation, 

reflection, and refraction of light. As formulated by Fermat himself, this principle states 

that any light ray will travel between two end [points along a line requiring the minimum 

transit time. 

Light needs the time vdsdt / , where v is the speed of light at the given point of the 

medium, to cover distance ds (Fig.1.11). Replacing v with c/n, we find that .)/1( ndscdt  .   

. 

Time  spent by light in covering the distance from point 1 

to point 2 is 

 



2

1

1
nds

с
                                                      (1.52) 

 

The quantity 

 


2

1

ndsL  n                                                  (1.53)                                                                                      

 

having the dimension of length is called the optical path. In a homogeneous medium, the 

optical path equals the product of the geometrical path s and the index of refraction n of the 

medium: 

 

 nsL                                                          (1.54)  

 

According to Eqs.(1.52), (1.53), we have 

 

c

L
                                                           (1.55)  

 

The proportionality of the time  of covering a path to the optical path L makes it possible 

to word Fermat’s principle as follows: light travels along a path whose optical length is 

minimum. More exactly, the optical path must be extremal, i.e. either minimum or 

maximum, or stationary  - identical  for all possible paths. In the last case, all the paths of  
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                                                          Fig.1.12 

 

 

 
 

  

Fig.1.13 

 

light between two points are tautochronous (requiring the same time for covering them). 

The reversibility of light rays ensues from Fermat’s principle automatically. 

Let us use Fermat,s principle to obtain the laws of reflection and refraction of light. 

Assume that a ray of light reaches point B from point A after being reflected from surface 

MN  (Fig.1.12, the straight path from A to B is blocked by opaque screen Sc). The medium 

in which the ray travels is homogeneous. It is obvious that the shortest way is AOB and 

  . Any other way (for example A0'B) is longer. 

Now let us find the point at which a ray travelling from A to B must be refracted for the 

optical path to be extremal (Fig.1.13). 

The optical path for an arbitrary ray is 

   

 22
22

22
112211 xbanxansnsnL    

 

To find the extreme value, we have to differentiate L with respect to x and equate the 

derivative to zero: 
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The factors of n1 and n2 equal sin  and  sin , respectively. So, we get the relation 

 

    sinsin 21 nn                                       

 

 expressing the law of refraction (Snellius law). 

The optical paths are stationary when the rays passthrough a lens (Fig.1.14).  

 
Fig.1.14 

 

Ray POP' has the shortest path in the air (where the index of refraction n is virtually equal 

to unity) and the longest path in glass (n = 1.5). Ray PQQ'P' has the longest path in the air, 

but a shortest one in glass. As a result, the optical paths will be the same for all the rays. 

Hence, latter are tautochronous, avd the optical path is stationary. 

 

 

1.6.  Huygen’s   Principle 
 

In the chapter 3 we shall have to do with processes taking place behind an opaque barrier 

with apertures when a light wave impinges on the barrier. In the approximation of 

geometrical optics, no light ought to penetrate beyond the barrier into the region of the 

geometrical shadow. Actually, however, a light wave in principle propagates throughout 

the entire space behind the barrier and penetrates into the region of the geometrical 

shadow, this penetration being more noticeable, the smaller are the dimensions of the 

apertures. With a diameter of the apertures or a width of slits comparable with the length of 

a light wave, the approximation of geometrical optics is absolutely illegitimate.  

 

 

 

The behavior of light behind a barrier with an aperture can be explained qualitatively with 

the aid of  Huygens’  principle, named in honor of the Dutch physicist Christian Huygens 

(1629 – 1696) who discovered it. The principle establishes the way of constructing a  

wavefront at the moment of time t + t accordingly to the known position of the wavefront 

at the moment t. According to  Guygens’ principle, every point on an advancing wavefront 

can be considered as a source of secondary wavelets, and the envelope of these wavelets, 

defines a new wavefront (Fig.1.15). 
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 Fig. 1.15                                                                                                 Fig. 1.16                                                                  

 

Assume that a plane barrier with an aperture is struck by a wave front parallel to it 

(Fig.1.16) 

According to Huygens, every point on the portion of the wave front bordering on the 

aperture is a centre of secondary waveles which will be spherical in a homogenous and 

isotropic medium. Constructing the envelope of these wavelets, we shall see that the wave 

penetrates beyond the aperture into the region of  the geometrical shadow (these regions 

are shown by dash lines in the figure), bending around the edges of the barrier. 

Huygens’ principle gives no information on the intensity of waves propagating in various 

directions. The French physicist Augustin Fresnel (-1788 – 1827) eliminated this 

shortcoming. The improved Huygens-Fresnel principle is treated in Sec. 3.1, where a 

physical substantiation of the principle is also given.  

 

 

2. Interference of Light Waves 
 

2.1 Conditions for Interference 

 

Let us assume that two waves of the same frequency being superposed on each other at a 

certain point in space produce oscillations of the same direction: 

 

 )cos();cos( 222111   tAtA                                  (2.1) 

 

The amplitude of the oscillation at the given point is described by the expression  

 
2
221

2
1

2 cos2 AAAAA              (2.2)       

 = 2 -1  (Fig.2.1). 

 

Expression (2.2) can be easily got with the aid of the 

thrigonometrical or graphical methods (see Fig.2.1). If 

the phase different  of the oscillations set up by the 

waves remains constant in the time, then the waves are 

called coherent. The phase difference  for incoherence 

waves varies continuously. Averaged value of cos             

Fig. 2.1.                                         equals zero. Therefore: 
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2

2
1 AAA                                          (2.3)  

 

Having in mined that intensity of light I=A
2
, we conclude that the intensity observed upon 

the superposition of incoherent waves equals the sum of the intensities produced by each of 

the waves individually:   

 

 21 III                                                (2.4) 

 

For coherent waves, the value of cos  is a time constant  (but a different one for each 

point of space), so that 

cos2 2121 IIIII                                                (2.5)  

 

At the points of space for which 0cos  , the intensity I will exceed )( 21 II  ; at the 

points for which 0cos  , it will be smaller than )( 21 II  . Thus, the superposition of 

coherent light waves is attended by redistribution of the light flux in space. As a result, 

maxima of the intensity will appear at some spots and minima at others. This phenomenon 

is called the interference of waves. Interference manifests itself especially clearly when 

the intensity of both interfering waves is the same: I1 = I2. Hence, according to Eq.(2.5), at 

the maxima I = 4I1, while at the minima I = 0. For incoherent waves in the same condition, 

we get the same intensity everywhere [see Eq.(2.4)]. 

It follows from what has been said above that when a surface is illuminated by several 

sources of light (for example, by two lamps), an interference pattern ought to be observed 

with a characteristic alternation of maxima and minima of intensity. We know from our 

everyday experience, however, that in this case the illumination of the surface diminishes 

monotonously with an increasing distance from the light sources, and no interference 

pattern is observed. The explanation is that natural light sources are not coherent. 

The incoherence of natural light sources is due to the fact that the radiation of a luminous 

body consists of the waves emitted by many atoms. The individual atoms emit the wave 

trains with a duration of about 10
-8 

s and a length of about 3 m. The phase of a new train is 

not related in any way to that of preceding one. In the light wave emitted by a body, the 

radiation of one group of atoms after about 10
-8 

s is replaced by the radiation of another 

group, and the phase of the resultant wave undergoes random changes. 

Coherent light waves can be obtained by splitting (by means of reflection or refraction) the 

wave emitted by a single source into two parts. Assume that the splitting into two coherent 

waves occurs at point O (Fig. 2.2.). 

Up to point P, the first  wave travels the path s1 in 

a medium of refractive index n1, and the second 

wave travels the path s2 in a medium of refractive 

index n2. It is obvious that the difference in 

optical path 

121122 LLsnsn                            (2.6)      

 

Hence, the phase difference 
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Fig.2.2 
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0 is the wavelength in a vacuum. 

A glance at Eq.(2.7) shows that if the difference in the optical path equals an integral 

number of wavelengths in a vacuum: 

 ,...)2,1,0(,0  mm                                             (2.8) 

 

then the phase difference  is a multiple of  

2 and the oscillations produced at point P 

by both waves will occur with the same 

phase. Thus, Eq. (2.8) is the condition for 

an interference maximum, i.e. for 

constructive inteference. 

If the difference in the optical path equals 

a half-integral number of wavelengthsin a 

vacuum 
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2

1
0 
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 mm    (2.9),  

 

 = ±(2m + 1), so that the oscillations at point P are in counterphase. Thus, Eq. (2.9) is the 

condition for an interference minimum, i.e. for destructive interference.  

Examination of Fig.2.3 shows that 

                         
2

22
2

2

22
1

2
;

2



















d
xls

d
xls . Hence,  

 

 

   xdssssss 21221
2
1

2
2                        

 

The experiments show that to obtain a distinguishable interference pattern, the following 

conditions are to be hold: .1;1  xd  In these conditions we can assume that  

l

xd
ssThusssl  1221 ,.2 .Hence, 

 
l

xd
n                                                      (2.10) 

The introduction of this value of  into condition (2.8) shows that intensity maxima will be 

observed at values of x equal to 

 
d

l
mx max     (m = 0,1,2,…)                                   (2.11) 

Here  = 0 /n is the wavelength in the medium filling the space between the sources and 

the screen. 

Using the value of  given by Eq. (2.10) in condition  (2.9), we get the co-ordinates of the 

intensity minima:           

 ,...)2,1,0(;
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l
mx                                 (2.12) 

 Let us call the distance between two adjacent intensity maxima the distance between 

interference fringes, and the distance between adjacent minima the width of an 

Fig2.3 
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interference fringe. It can be seen from Eq. (2.11) and 92.12) that the distance between 

fringes and the width of a fringe have the same value equal to 


d

l
x                                                    (2.13)  

According to Eq. (2.13), the distance between the fringes grows with a decreasing distance 

d between the sources. If d were comparable with l , the distance between the fringes 

would be of the same order as , i.e. would be several scores of micrometers. In this case, 

the separate fringes would be absolutely indistinguishable. For an interference pattern to 

become distinct, the condition ld   must be observed. 

If the intensity of the interfering waves is the same (I1 = I2 = I0), then according to Eq. (2.5) 

the resultant intensity at the points for which the phase difference is  is determined by the 

expression 

 
2

cos4cos12 2
00


 III                                        (2.14)   

The right – hand part of Fig.2.3 shows the dependence of I on x obtained in 

monochromatic light. 

The width of interference fringes and their spacing depends on the wavelength  The 

maxima of all wavelength will coincide only at the centre of a pattern when x = 0. With an 

increasing distance from the centre of the pattern, the maxima of different colours become 

displaced from one another more and more.   The result is blurring of the interference 

pattern when it is observed in white light. The number of distinguishable interference 

fringes appreciably grows in monochromatic light. Having measured the distance between 

the fringes x and knowing l  and d, we can use Eq.(2.13) to find the wavelength. It is 

exactly from experiment involving the interference of light that the wavelengths for light 

rays of various colours were determined for the first time. 

 

2.2. Young’s  Double – Slit  Experiment 

 

The English scientists Thomas Young (1773 – 1829) in 1802 obtained interference from 

two slits. Young’s experiment has tremendous historical significance since it 

instrumentally demonstrated that light indeed behaved like a wave. However its 

importance in optics is more than historical. This experiment is an ideal system for 

illustrating, understanding, and analysing numerous properties of the wave nature of light, 

including interference, diffraction and coherence. 

Figure 2.4 shows the experimental arrangement. A point source of light illuminates two 

tiny apertures in a opaque screen; the resultant intensity pattern is observed on a viewing 

screen. 

 
Fig. 2.4 
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The first aperture A ensures that the light waves that arrive at apertures at apertures A1 and 

A2 originate from a single point source and thus have equal (or at least correlated) phase. 

The degree to which the phase at two points in a light wave is correlated is called 

coherence. The fact that light spreads out as if from a point source when it is passed 

through a small aperture is a fundamental consequence of the wave nature of light that is 

called diffraction. 

The second apertures A1 and A2 act like point sources of two spherically (in three 

dimensions) or cylindrically (in two dimensions) expanding waves which interfere and 

thus produce fringes on the viewing screen. Young’s experiment corresponds to the 

classic interference experiment (see Fig.2.3). And all formulas of section 2.1 are valid. 

Thus, for the first time in history, Young observed the interference of light waves and 

determined the lengths of these waves. 

It should be noted that that Young’s layout is unique because no optical devices are used. 

Later the others classical interference layouts were used by other scientists using some 

optical devices (mirrors, lenses, prisms). For example, the Fresnel double mirror 

experiment uses reflection for  splitting a light wave into two portions. The Fresnel biprism 

layout uses refraction of light. We shall not discuss these schemes. 

 

 

2.3 Interference of Light Reflected from Thin Plates 

 

Assume that a plane wave that can be considered as a parallel beam of rays falls on a 

transparent plane-parallel plate (Fig.2.5). The plate reflected upwards two parallel beams 

of light: one from the top and the other from the bottom surface. In Fig.2.5 each of  these 

beams  is  represented by only one ray. In addition to these two beams, the plate throws 

upward beams produced as a result of three-, five-fold, etc. reflections from the plate 

surfaces. Owing to their small intensity, however, we shall take no account of  these 

beams. Indeed, at n = 1.5, about 5% of the incident luminous flux is reflected from the 

surface of the plate. After two reflections, the intensity will be only 0.25%, after three 

reflections 0.0125% which is 1/ 400 of the intensity of the singly reflected beam. We shall 

also display no interest in the beams passing through the plate. 

                                                                              

 
 Fig.2.5 

 

  The path difference acquired by rays 1 and 2b before they meet at point C is 

 

  12 sns                                                   (2.15)  
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  Here s1 = length of segment   BC 

          s2 =total length of  segments AO and OC 

          n =refractive index of the plate. 

We assume that the refractive index of the medium surrounding the plate is unity. 

From the Fig. 2.5 it follows that s1 = 2b tan 2sin 1, and s2 = 2b/cos2 (b is the 

thickness of the plate). Using these values in Eq.(2.15), we get 
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Substituting sin 1 for 2sinn  and taking into account that 

1
22

2
222

2 sinsincos   nnnn  

we arrive to the equation 

1
22 sin2  nb                                         (2.16) 

We must take into account a phase jump at the point C where reflection occurs on the 

interface (n2 > n1). Hence, an additional phase difference equal  is produced between 

rays 1 and 2. It must be taken into account by adding to  (or subtracting from it) half a 

wavelength in a vacuum. The result is: 

2
sin2 0

1
22


  nb                                    (2.17) 

Interference from a plane-parallel  plate is observed in practice by placing in the path of 

the reflected beams a lens that gathers rays at one of the points of the screen in the focal 

plane of the lens. The illumination at this point depends on the quality .  When   

= m0, we get maxima, and when  = (m + 1/2)0 - minima of  the intensity (m is an 

integer). The condition for the maximum intensity has the form 

01
22

2

1
sin2 








 mnb                                 (2.18) 

It is easy to understand that for given values of 0 and m there are a number of angles: 

  ,,  for which condition (2.18) holds. Thus, for a diffuse monochromatic light, 

the result will be the appearance of a system of alternating bright and dark fringes on the 

screen. Each fringe will be formed by the rays falling on the plate at the same angle  . 

This is why the interference fringes  produced under such conditions are known as 

fringes of equal inclination. The shape of the fringes depends  on  position  of  lens  

relative to the plate. For example, if the lens is parallel to the plate, the fringes are 

circular. It should be noted that in all cases, the plane of a screen must coincide with the 

focal plane of the lens. 
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Fig.2.6 

 

Fringes of equal inclination can be viewed as follows (Fig.2.6). 

Each point P of the extended source produces rays of an unique angle of inclination   (as 

a resultant action of the first lens) which converges on an unique point on the screen (as 

a resultant action of the second lens); thus, producing bright and dark fringes. 

Suppose that a ray of monochromatic light falling upon a thin film is perfectly  

collimated, in such a way that there is a single, constant angle of incidence . Then, if 

the film thickness is not constant, we will see the alternating regions of constructive and 

destructive interference on the surface of the film (Fig.2.7). 

 
Fig.2.7 

 

Since all locations of the equal thickness of the film produce similar interference, these 

fringes are called the fringes of equal thickness. 

When observed in white light, the fringes will be coloured, so that the surface of the 

plate or film will have rainbow colouring. For example, the thin films of oil on the 

surface of water and soap films have such colouring. The temper colours appearing on 

the surface of steel articles when they are hardened are also due to interference from a 

film of transparent oxides. 

A classical example of fringes of equal thickness is Newton’s rings. They are observed 

when light is reflected from lens having large radius of curvature (Fig.2.8). 
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The part of a thin film from whose surfaces 

coherent waves are reflected is played by 

the air gap between the plate and the lens 

(owing to the great thickness of the plate 

and the lens, no interference fringes appear 

as a result of reflection from other surfaces). 

With normal incidence of the light, fringes 

of equal thickness have the form of 

concentric rings, and with inclined 

incidence, of ellipses. Let us find the radii of 

Newton’s rings produced when light falls 

along a normal to the plate. In this case, 

,0sin 1    and the optical path difference   

equals the double thickness of the gap (n = 

1). 

 

It follows from Fig.2.8 that 
22222 2)( rRbRrbRR                              (2.19) 

Here  R = radius of curvature of the lens 

R =  radius of a circle with the identical gap b corresponding to all of its points.            

To take into account, the change in the phase by  occurring upon reflecting from the 

plate, we must add 0 to 2b = r
2
 / R. Thus: 
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                                         (2.20)  

 

At points for which  = m0, maxima appear and at points for which  = (m + 1/ 

2)0, minima of the intensity appear. As a result find the radii of bright and dark 

Newton’s rings:   
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2

10 
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 m
mR

r                                  (2.21)  

 

Radii of bright rings correspond  to even m’s, and radii of dark rings to odd ones. The 

value  

r = 0 corresponds to m = 1, i.e. to the point of the place of contact of the plate and the 

lens. A minimum of intensity is observed at this point. It is due to the change in the 

phase by  when a light wave is reflected from the plate. 

The coating of lenses is based on the interference of light when reflected from thin 

films. The transmission of light through each refracting surface of a lens is attended by 

the reflection of about four per cent 0f the incident light. In multicomponent lenses,  

such reflections occur many times, and the total loss of the light flux reaches an 

appreciable value. In addition, the reflection from the lens surfaces result in the 

appearance of highlights. The reflection of light is eliminated by applying a thin film of 

a substance having a refractive index other than that of the lens to each free surface of 

the latter. The components obtained in this way are called coated lenses. The thickness 

Fig.2.8 

Fig. 2.8 
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of the coating is chosen so that the waves reflected from both its surfaces interfere 

destructively. An especially good result is obtained if the refractive index of the film 

equals the square root of the refractive index of the lens. When this condition is 

satisfied, the intensity of both waves reflected from the film surface is the same.      

 

 

2.4 The Michelson Interferometr 

 

Many varieties of interference instruments called interferometers are in use. Figure 

2.9 is a schematic view of a Michelson interferometer (named after its inventor, the 

American physicist Albert Michelson (1852 – 1931)).  Light beam from source S falls 

on semitransparent plate P1 coated with a thin layer of silver (this layer is depicted by 

dots in the figure). Half of the incident light flux is reflected by plate P1 in the direction 

of ray 1, and half passes through the plate and propagates in the direction of ray 2. 

Beam 1 is reflected from mirror M1 and returns to P1, where it is split in two beams of 

equal intensity. One of them passes through the plate and forms beam 1', and the second 

one is reflected in the direction of S. The latter beam will no longer interest us. Beam 2 

after being reflected by mirror M2 returns to plate P1  where it is divided into two parts: 

beam 2' reflected from the semitransparent layer, and the beam transmitted through the 

layer, which will also no longer interest us. Light beams 1' and 2' have the same 

intensity. 

The result of the interference of beams 1' and 2' depends on the optical path difference 

from plate P1 to mirrors M1 and M2 and back. Ray 2 passes through the plate three 

times, and ray 1 only once. To compensate the resulting change in the optical path 

difference (owing to dispersion) for waves of different length, plate P2 is placed in the 

path of ray 1. Plates P1 and P2 except for the silver coating on the former. This 

arrangement  makes the paths of rays 1 and 2 in glass equal. The interference pattern is 

observed with the aid of telescope T. 

Michelson used the  described  instrument to carry out several experiments that entered 

annals of physics. The most famous of them, performed together with the American 

chemist Edward Morley (1838 – 1923) in 1887, had the aim of detecting the motion of 

the Earth relative to hypothetical ether. In 1890 – 1895, Michelson used the 

interferometer he had invented to make the first comparison of the wavelength of the 

red line of cadmium with the length of the standard metre.  

In 1881, Michelson carried out his famous experiment by means of which he counted on 

detecting the motion of the Earth relative to ether (the ether wind). The experiment was 

based on the following reasoning. Let us assume that interferometer arm PM2 (Fig.2.9) 

coincides with the direction of motion of the Earth relative to ether. Consequently, the 

time needed for ray 1 to cover the path to mirror M1 and back will differ from the time 

needed for ray 2 to cover path PM2P. As a result, even when the length of both arms are 

equal, rays 1 and 2 will acquire a certain path difference. If we turn the arrangement 

through 90 degrees, the arms will exchange places, and the path difference will change 

its sign. This should result in displacement of the interference pattern whose magnitude, 

as shown by calculations performed by Michelson, could be detected quite readily. 
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                              Fig.2.9                                                                  Fig.2.10                          

  

To calculate the expected displacement of the interference pattern, let us find the time 

spent by rays 1 and 2 to cover the relevant paths. Assume that the Earth velocity relative 

to ether is v. If the ether is not carried along by the Earth and the velocity of light 

relative to ether is c (refractive index of air is practically equal to unity). Then the 

velocity of light relative to the instrument will be  c - v for direction PM2 and c+v for 

direction M2P. Hence, the time needed for ray 2 is determined by the expression 
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 (the Earth velocity along its orbit is 30 km/s, therefore v
2
/c

2
 = 10

-8
 <<1). 

Before commencing to calculate the time t1,let us consider the following example from 

mechanics (Fig.2.10). Suppose that a launch developing the velocity c relative to the 

water has to cross a river with a current velocity of v in a direction strictly perpendicular 

to its banks  

For the launch to travel in the required direction, its velocity c relative to the water must 

be directed as shown in the figure. Therefore, the velocity of the launch relative to the 

banks will be  

22 vcvc 


.  The velocity of ray 1 relative to the arrangement (as assumed by 

Michelson) will be the same. Consequently, the time taken by ray 1 is  
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Here we have used the formula xx
2

1
1)1( 2

1




 holding for small values of x. 

Substituting for t2 and t1 in the expression  = c(t2 - t1) their values from expressions 

(2.22) and (2.23), we get the path difference for rays 1 and 2: 
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When the arrangement is turned through 90 degrees, the path difference changes its 

sign. Consequently, the number of fringes by which the interference pattern will be 

displaced is  
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The arm length l (taking into account multifold reflections) was 11 m, 0 = 0.59m. It 

gives  

 = 0.4 fringes 

The arrangement made it possible to detect a displacement of the order of 0.012 fringes. 

But no displacement of the interference pattern was detected. The negative result of this 

classical experiment was explained in terms of Relativity. 

 

 

 

 

2.5 Coherence 

   

By coherence is meant the coordinated proceeding of several oscillatory or wave 

processes. We can accordingly introduce the concept of the degree of coherence of two 

waves. 

Temporal and spatial coherence are distinguished. We shall begin with a discussion of 

temporal coherence. 

Temporal Coherence. The process of interference described in the preceding section is 

idealized. This process is actually mach more complicated. The reason is that a 

monochromatic wave described by the expression  )cos(  krtA  

(A, , and  are constants) is an abstraction. A real light wave is formed by 

superposition of oscillations of all possible frequencies (or wavelengths) confined 

within more or less narrow but finite range of frequencies  (or corresponding range 

of wavelengths ). Even for light considered to be monochromatic the frequency 

interval  is finite (a “natural” width of spectral lines emitted by atoms have the value 

of the order of   = 10
8
 rad/s (x  10

-4
Å). In addition, the amplitude of the wave A 

and the phase  undergo continuous random (chaotic) changes with time. Hence, the 

oscillations produced at a certain point of space by two superposed light waves have the 

form 

 

)]()(cos[)()];()(cos[)( 22221111 tttAttttA                     (2.24) 
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We shall assume for simplicity’s sake that that the amplitudes A1 and A2 are constant. 

Changes in the frequency and phase can be reduced either to change only in the phase, 

or to a change only in the frequency. Let us write the function  

 

 )]()(cos[)( tttAtf                                  (2.25)    

 

in the form 

 

)}(])([cos{)( 00 ttttAtf    

 

(0 is a certain average value of the frequency), and introduce the notation  

).()(])([ 0 ttt    Equation (2.25) will thus become  

 

 )](cos[)( 0 ttAtf                                             (2.26) 

 

We have obtained a function in which only the phase of the oscillation changes 

chaotically.  

      On the other hand, it is proved on mathematics that an inharmonic function, for 

example, function (2.37), can be represented in the form of sum of harmonic functions 

with frequencies confined within a certain interval  [see Eq. (2.41)]. 

Thus when considering the matter of coherence, two approaches are possible: a “phase” 

one and a “frequency” one. Let us begin with the phase approach. Assume that the 

frequencies 1 and 2 are identical, i.e. .321 const According to Eq.(2.5), 

the intensity of light at a  given point is determined by the expression 

 

 )(cos2 2121 tIIIII                                    (2.40)  

 

(t) = 2(t) - 1(t). The last addend in this equation is called the interference term. 

An instrument that can be used to observe an interference pattern has a certain inertia. 

Let tinstr be the time needed for operation of the instrument. The coherent properties of 

waves are characterized by introducing the coherence time tcoh . It is defined as the time 

during which a chance change in the wave phase (t) reaches a value of the order of . 

When ,.. cohinstr tt  the instrument will detect a sharp interference pattern. 

The distance cohcoh ctl   is called the coherence length (or the train length). To obtain 

an interference pattern by splitting a natural wave into two parts, it is essential that that 

the optical path difference   be smaller than the coherence length. 

Let us pass over to a consideration of the part of the non-monochromatic nature of light 

waves. Assume that consist of a sequence of identical trains of frequency of 0 and 

duration . When one train is replaced with another one, the phase experiences 

disordered changes. As a result, the trains are mutually incoherent. With these 

assumptions, the duration of a train  virtually coincides with the coherence time tcoh. 

In mathematics, the Fourier theorem is proved, according to which any finite and 

integrable function F(t) can be represented in the form of the sum of an infinite number 

of  harmonic components with a continuously changing frequency: 
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Assume that the function F(t) describes a light disturbance at a certain point at the 

moment of time t due to a single wave train: 
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A graph of the real part of this function is given  in Fig.(2.11) 

Outside the interval from -/2 to + /2, the function F(t) is zero. Therefore, expression 

(2.42) determining the amplitude of the harmonic component has the form 
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After introducing the integration limits and simple transformations, we arrive at the  

 

equation  

 
                                                    Fig.2.11 

 

2/)[(

]2/)sin[(
)( 0




 AA . 

 

The intensity I() of a harmonic wave component is proportional to the square of the 

amplitude, i.e. to the expression 
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A graph of function (2.45) is shown in Fig. 2.12. 
 

A glance at the figure shows that the intensity of the component whose frequencies are 

within the interval of width  = 2/ considerably exceeds the intensity of the 

remaining components. This circumstance allows us to relate the duration of a train  to 

the effective frequency range  of a Fourier spectrum: 
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                                                            Fig.2.12 

 

 Identifying  with the coherence time, we arrive at the relation 

                                                     

 



1

coh                                                       (2.47) 

 

(The sign "" stands for “equal to in order of magnitude”). 

It can be seen from expression (2.47) that the broader the interval of frequencies present 

in a given light wave, the smaller is the coherence time of this wave. 

The frequency is related to the wavelength in a vacuum by the expression  = c/0. 

Differentiation of this expression yields  = c/0
2 
cx/

2
. (We have omitted the 

minus sign obtained in differentiation and also assumed that    0). Substituting for 

 in Eq.(2.47) its expression through  and , we obtain the following expression for 

the coherence time:  
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Hence, we get the following value for the coherence length: 
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Examination of Eq.(2.35) shows that the path difference at which a maximum of the m-

th order is obtained is determined by the relation 

 

 mmm 0  

 

When this path difference reaches values of the order of the coherence length, the 

fringes become indistinguishable. Consequently, the extreme interference order 

observed is determined by the condition 
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2

cohextr lm                                                (2.52)  

 

It follows  from Eq.(2.52) that the number of interference fringes observed according to 

the layout shown in Fig. 2.3 grows when the wavelength interval in the light used 

diminishes. 

Spatial coherence. According to the equation cnvk //  k, scattering in the 

frequencies  results in scattering of the values of k. We have established that the 

temporal coherence is determine by the value of . Consequently, the temporal 

coherence is ass0siated with scattering of the values of the magnitude of the wave 

vector k. Spatial coherence is associated with scattering of the directions of vector k 

that is characterized  by the quantity ek. 

The setting up at a certain point of space of oscillations produced by waves with 

different values of ek is possible if these waves are emitted by different sections of an 

extended (not a point) light source. Let us assume for simplicity’s sake that the source 

has the form of a disc visible from a given point at the angle . It can be seen from Fig. 

2.13 that the angle  characterizes the interval confiding the unit vector ek. We shall 

consider that this angle is small. This is needed for the degree of temporal 

coherencetobe sufficient for obtaining  a sharp interference pattern 

 

 
Fig.2.13 

 

 

 



 34 

Assume that the light from the source falls on two narrow slits behind which there is a 

screen (Fig. 2.14). We shall consider that the interval of frequencies emitted by the 

source is very small. This is needed for the degree of temporal coherence to be 

sufficient for obtaining a sharp interference pattern. 

The wave arriving from the section of the surface designated in Fig.2.14 by O produces 

a zero-order maximum M at the middle of the screen. The zero-order maximum M’ 

produced  by the wave arriving from section O’ will be displaced from the middle of the 

screen by the distance x’. Owing to the smallness of the angle  and the ratio ld / , we 

can consider that 2/lx  . The zero-order maximum M’’ produced by the wave 

arriving from section O” is displaced in the opposite direction from the middle of the 

screen over the distance x’’ equal x`. The zero-order maxima from the other sections of 

the source will be between the maxima M’ and  M”. 

  
 

                                                             Fig. 2.14      

The separate sections of the light source produce waves whose phases are in no way 

related to one another. For this reason, the interference pattern appearing on the screen 

will be a superposition of the patterns produced by each section separately. If the 

displacement  x' is much smaller than the width of an interference fringe dlx /  

[see Eq. (adc)], then the maxima from different sections of the source will practically be 

superposed on one another, and the pattern will be like one produced by a point source. 

When x'  x, the maxima from some sections will coincide with the minima from 

others, and no interference pattern will be observed. Thus, an interference pattern will 

be distinguishable provided that x' < x, i.e. 

2


< 

d

l
                                                                 (2.52) 

or 
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d


                                                                      (2.53)    

We have omitted the factor 2 when passing over from expression (2.52) to (2.53). 

Formula (2.53) determines the angular dimensions of a source at which interference is 

observed. We can also use this formula to find the greatest distance between the slits at 

which interference from a source with the angular dimension  can still be observed. 

Multiplying inequality (2.53) by d/, we arrive at the condition  




d                                                                     (2.54) 

 A collection of waves with different values of ek can be replaced with the resultant 

wave falling on a screen with slits. The absence of an interference pattern signifies that 

that the oscillations produced by this wave at the places where the first and the second 

slit s are situated are incoherent. Consequently, the oscillations in the wave itself at 

points at a distance d  are incoherent too. If the source were ideally monochromatic  

(this means that  = 0 and tcoh= ), the surface passing through the slits would be a 

wave one, and the oscillations at all the points of this surface would occur in the same 

phase. We have established that when   0 and the source has finite dimensions  

(  0, the oscillations  at  points  of  a  surface  at  a distance of d > / are incoherent.  

We shall call a surface which would be a wave one if the source were monochromatic, a 

pseudowave surface for brevity. We could satisfy condition (2.53) by reducing the 

distance d between the slits, i.e. by taking closer points of the pseudowave surface. 

Consequently, oscillations produced by a wave at adequately close points of a 

pseudowave  are coherent. Such coherence is called spatial.  

Thus, the phase of oscillations changes chaotically when passing from one point of 

pseudowave surface to another. Let us introduce a distance coh, upon displacement by 

which along a pseudowave surface a random change in the phase reaches a value of 

about . Oscillations at two points of a pseudowave surface spaced apart at a distance 

less than coh will be approximately coherent. The distance coh is called the spatial 

coherence length or the coherence radius. It can be seen from expression (2. 54) that  




coh                                                          (2.54) 

The angular dimension of the Sun is about 0.01 radian, and the length of its light waves 

is about 0.5m. Hence, the coherence radius of he light waves arriving from the Sun has 

a value of the order of  

.05.050
01.0

5.0
mmmcoh                                         (2.55)  

The entire space occupied by a wave can be divided into parts in each of whose the 

wave approximately retains coherence. The volume 0f such a part of space, called the 

coherence volume, in its order of magnitude equals the product of the temporal 

coherence length and the area of a circle of radius coh.. 

The spatial coherence of a light wave near the surface of the heated body emitting it is 

restricted by a value of coh of only a few wavelengths. With an increasing distance 

from the source, the degree of spatial coherence grows. The radiation of a laser has an 

enormous temporal and spatial coherence. At the outlet opening of a laser, spatial 

coherence is observed throughout the entire cross section of the light beam. 

It would seem possible to observe interference by passing light propagating from an 

arbitrary source through two slits in opaque screen. With a small spatial coherence of 
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the wave falling on the slits, however, the beams of light passing through them will be 

incoherent, and an interference pattern will be absent. The English scientists Thomas 

Young (1773-1829) in 1802 obtained interference from two slits by increasing the 

spatial coherence of the light falling on the slits. Yong achieved such an increase by first 

passing the light through a small aperture in an opaque screen. This light was used to 

illuminate the slits in a second opaque screen. Thus, for the first time in history, Young 

observed the interference of light waves and determined the wavelengths of these 

waves.  

 

2.6 Multibeam Interference 

 

Up to now, we have dealt with two-beam interference. Now let us investigate the 

interference of many light rays. 

Assume that N rays of the same intensity arrive at a given point of a screen, the phase of 

each following ray being shifted relative to that of the preceding one by the same value 

. Let us represent the oscillations set up by the rays in the form of exponents: 
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Here, a is the amplitude of an oscillation. The resultant oscillation is determined by the 

formula 
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The expression obtained is the sum of N terms of a geometrical progression with its first 

term equal to unity and its common ratio equal to e
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is the complex amplitude that can be represented in the form 

   iAeA                                                      (2.57) 

(A is the usual amplitude of the resultant oscillation,  is the initial phase).        

The product of quantity (2.57) and its complex conjugate gives the square of the 

amplitude of the resultant oscillation: 

2AAAeAA ii                                               (2.58) 

Substituting for A in Eq.(2.58) its value from Eq.(2.56), we get the following expression 

for the square of the amplitude: 
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The intensity is proportional to the square of the amplitude. Hence, the intensity 

produced upon the interference of the N rays being considered is determined by the 

expression  
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(K is a constant of proportionality, 2
0 KaI   is the intensity produced by each of the 

rays separately ). 

At the values 

                        = 2m     (m = 0, ±1, ±2, …)  

Eq.(2.60) becomes indeterminate. For this reason, we apply L’Hospital’s rule. After 

rather simple calculations we get: 
2

0 NII                                                      (2.61) 

This result could be predicted. Indeed, all the oscillations arrive at points for which 

= m in the same phase. Hence, the resultant amplitude is N times the amplitude of 

a separate oscillation, and the intensity is N
2 
 times that of a separate oscillation. 

Let us call the spots where the intensity determined by condition (2.60) is observed the 

principal maxima. Their position is determined by condition (2.60). The number m is 

called the order of the principal maximum. It can be seen from Eq.(2.59) that the space 

between two adjacent principal maxima accommodates (N-1) minima of the intensity. 

 
 

Fig.2.15 

Fig.2.15 shows a plot of the function I() for N = 10. For comparison, a plot of the 

intensity for N=2 is shown by a dash line. Inspection of the figure shows that the 

principal maxima become narrower and narrower with an increase in the number of 

interfering rays. The secondary maxima are so weak that the interference pattern 

practically has the form of narrow bright lines on a dark background. 
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3.Diffraction and Polarization 

3.1 Introduction to Diffraction 

By diffraction is meant the combination of phenomena observed when light propagates 

in a medium with sharp heterogeneity and associated with deviations from the laws of 

geometrical optics. Diffraction, in particular, leads to light waves bending around 

obstacles and to the penetration of light into the region of a geometrical shadow. 

There is no appreciable physical difference between interference and diffraction. Both 

phenomena consist in redistribution of light flux as a result of the superposition of 

waves. For historical reasons, the redistribution of the intensity produced as a result of 

the superposition of waves emitted by a finite number of discrete coherent therefore 

speak about the interference pattern from two narrow slits and the diffraction pattern 

from one slit. 

Two kinds of diffraction are distinguished. If the light source S and the point of 

observation P are so far from a barrier that the rays falling on the sources arranged 

continuously has been called the diffraction of waves. We barrier and those travelling to 

point P form virtually parallel beams, we have to do with diffraction in parallel rays 

or with Fraunhofer diffraction (Fig.3.1). 

 
 

                         source       lens         aperture       lens                 screen                             

                     

 

 

 

 

 

 

 

                                                          Fig.3.1         

Otherwise, we have to do with Fresnel diffraction (Fig.3.2) 

 

 

 

 

                                                                    Or                 

 

 

 

 

source         aperture                   screen                        lens       aperture             screen             

 

                                                              Fig3.2         
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Historically, a very important example of Fresnel diffraction is Poison’s spot (Fig.3.3). 

The penetration of the light wave into the region of geometrical shadow can be 

explained with the aid of the Huygens principle.  

This principle, however, gives no information on the amplitude, and consequently, on 

the intensity of  waves propagating in different directions. The French physicist  

                                                            

 
 

Fig.3.3 

 

 

Augustin Fresnel (1788-1827) supplemented Huygens 

principle with the concept of interference of secondary waves. 

Taking into account the amplitudes and phases of the 

secondary waves makes it possible to find the amplitude of the 

resultant wave for any point of the space. Huygens’s principle 

developed in this way was named the Huygens-Fresnel 

principle. 

  Fig.3.4                         According to the Huygens-Fresnel principle, every 

element of wave surface (fig.3.4) is the source of a secondary 

spherical wave whose amplitude is proportional to the size of 

element dS. 

The resultant oscillation at the point P is the superposition of oscillations produced by 

every element ds, i.e. 

 

 
S

dSkrt
r

a
KE )cos()( 0

0                                       (3.1) 

 

The coefficient K() depends on the angle   between a normal n to the area dS and the 

direction from dS to point P. When  = 0, this coefficient is maximum; when  = /2, it 

vanishes. The factor a0 is determined by the amplitude of the light oscillation at the 

location of dS. This equation is an analytical expression of the Huygens-Fresnel 

principle. 

What has been said above signifies that when calculating the amplitude of the 

oscillation set up at point P by a light wave propagating from a real source, we can 

replace this source with a collection of secondary sources arranged along the wave 

surface. This is exactly the essence of Huygens-Fresnel principle. 

The performance of calculations by Eq.(3.1) is a very difficult task in general case. As 

Fresnel showed, however, the amplitude of resultant oscillation can be found by simple 

algebraic or geometrical summation in cases distinguished by symmetry (Fig.3.5) 
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Fig.3.5           

 

Rather simple calculations show that the area of the m zone (when m is not too great) is 

 

ba

ab
Sm





                                                     (3.2) 

 

and the radius of the outer bounding of the m zone is 

 

m
ba

ab
rm


                                                    (3.3) 

 

Zones having the properties shown in Fig.(3.4) are known as the Fresnel zones. It if 

clear that the oscillations arriving at point P from similar points of two adjacent zones 

(i.e. from points at the middle of the zones, or at the outer edges of the zones, etc.,) are 

in counter phase. Therefore, the resultant oscillations produced by each of the zones as a 

whole will differ in phase for adjacent zones by , too. 

If we assume that a = b = 1 m and  = 0.5m, then we get a value of r1 = 0.5 mm for the 

radius of the first (central) zone. The radii of the following zones grow as m . 

Thus, the radii of Fresnel zones  are aproximately identical. The distance bm from a zone 

to point P slowly increases with the zone number m. The angle  between a normal to 

the zone elements and the direction toward the point P also grows with m. All this leads 

to the fact that the amplitudes of the oscillations produced at point P by Fresnel zones 

form a monotonously diminishing sequence: 

 

A1 > A1 >A2 > A3 >… Am-1 > Am >Am+1


 >…                          (3.4)   

 

The phases of  the oscillations produced by the adjacent zones differ by . Therefore, 

the amplitude A of the resultant oscillation at point P can be represented in the form  

 

A = A1 – A2 + A3 – A4 + . . .                                       (3.5) 

 

Let us write Eq.(3.5) in the form: 
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Owing to the monotonous diminishing of Am , we can approximately assume that  

 

2

11  
 mm

m

AA
A                                                (3.7)      

 

The expression in parentheses will therefore vanish, and Eq.(3.6) will be simplified as 

follows: 

 

2

1A
A                                                          (3.8) 

 

According to Eq.(3.8), the amplitude produced at point P by an entire spherical wave 

surface equals half of the amplitude produced by the 

central zone alone. If we put in the path of a wave an 

opaque screen having an aperture that leaves only the 

central Fresnel zone open, the amplitude at point P will 

equal A1, i.e. it will be double the amplitude given by 

Eq.(3.8). Accordingly, the intensity of the light at point P 

will in this case be four times greater than where there 

are no barrier between points S and P.  

The oscillations from the even and odd Fresnel zones are 

in counterphase and, therefore mutually weaken one 

another. If we would place in the path of a light wave 

aplate that would cover all the even or odd zones, the 

intensity of the light at point P would sharply grow. Such 

a plate, known as a zone one functions like a converging 

lens. Fig.3.6 shows a plate covering the even zones 

A still greater effect can be achieved by changing the phase of the even (or odd) zone 

oscillations by  instead of covering these zones. This can be done with the aid of a 

transparent plate whose thickness at the places corresponding to the even or odd zones 

differs by a proper selected value. Such a plate is called a phase zone plate. In 

comparison with the amplitude zone plate covering zones, a phase plate produces an 

additional two-fold increase in the amplitude, and a four-fold increase in the light 

intensity.   

 

 

 3.2 Fresnel Diffraction from a Simple Barriers 
 

Diffraction from a Round Aperture. The scheme of experiment is shown in Fig.3.7. 

 

 

 

 

 

 

Fig.3.6 



 42 

                                                                      

 
 

Fig.3.7                                                                                         b)                    c) 

 

If the distances a and b satisfy the relation 

 

m
ba

ab
r


0                                                      (3.9) 

 

where m is an integer, then the aperture will leave open exactly m first Fresnel zones 

constructed for [point P [see Eq.(3.3)]. Hence, the number of open Fresnel zones is 

determined by the expression 

 

)
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(
2

0

ba

r
m 


                                                   (3.10) 

 

According to Eq.(3.5), the amplitude at point P will be 

 

mAAAAAA  4321                                      (3.11) 

 

The amplitude Am is taken with a plus sign if m is odd and with a minus sign if m is 

even. Then in accordance with Eq.(3.6) we have 

 

22

1 mAA
A       (m is odd)                                         (3.12) 

 

m
m A

AA
A  

22

11   (m is even)                                     (3.13) 

 

The amplitudes from two adjacent zones are virtually the same. We e may therefore 

replace (Am-1 / 2) – Am / 2. The result is 
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22

1 mAA
A  .                                               (3.14) 

 

The plus sign is taken for odd and the minus sign for even m. 

The amplitude Am differs only slightly from A1 for small m’s. Hence, with odd m, the 

amplitude at point P will approximately equal A1, and at even m , zero. 

If we remove the barrier, the amplitude at point P will become equal to A1 / 2 [see 

(Eq.3.8)]. Thus, a barrier with an aperture opening small odd number of zones not only 

does not weaken the illumination at point P, but, on the contrary, leads to an increase in 

the amplitude almost twice, and of the intensity, almost four times. 

The diffraction pattern produced by a round aperture has the form of alternating bright 

and dark concentric rings. There will be either a bright (m is odd) or dark (m is even) 

spot at the centre of the pattern. The variation in the intensity I with the distance r from 

the centre  of the pattern is shown in Fig.3.7b (for an odd m) and in Fig.3.7c (for an 

even m). When the screen is moved parallel to itself along straight line SP, the patterns 

shown in Fig.3.8 will replace one another [according to Eq.(3.10)], when b changes, the 

value of m becomes odd and even alternately. 

                      Even m                                                                Odd m 

 

                                                           Fig.3.8 

 

If the aperture opens only a part of the central Fresnel zone, a blurred bright spot is 

obtained on the screen; there is no alternation of dark and bright rings in this case.  If 

thee aperture opens a great number of zones, the alternation of dark and bright rings is 

observed only in avery narrow region on the boundary of the geometrical shadow; 

inside this region the illumination is virtually constant. 

 

Diffraction from a Disc. The scheme of experiment is shown in Fig.(3.9). If the dick 

covers m first Fresnel zones, the amplitude at point P will be 
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The expression in parentheses can be assumed to equal zero, consequently  
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2

1 mA
A                                                            (3.16) 

 

Let us determinate the nature of the pattern obtained on the screen (see Fig.3.9). It is 

obvious that the illumination can depend only on the distance r from point P. With a 

small number of covered 

Zones, the amplitude Am+1 differs slightly from A1. The intensity at point P will be 

therefore almost the same as in absence of a barrier between source S and point P [see 

Eq.3.8)]. For point P' displaced relative to point P in any radial direction, the disc will 

cover a part of the (m+1) Fresnel zone, and a part of the m zone will be opened 

simultaneously . This will cause the intensity to diminish. At a certain position of point 

P', the intensity will reach its minimum. If the distance from the centre of the pattern is 

still greater, the disc will cover additionally a part of the (m+2) zone, and a part of the 

(m-1) zone will be opened simultaneously. As a result, the intensity grows and reaches a 

maximum at point P''. 

                                                            a)                                                                     b)                  

 
                                                                   Fig.3.9 

 

Thus, the diffraction pattern for an opaque disc has the form of alternating bright and 

dark concentric rings. The centre of the pattern contains a bright spot (see Fig.3.3). The 

light intensity I varieties with the distance r from point P as shown in Fig.3.8b. 

If the disc covers only a small part of the central Fresnel zone, it does not form a 

shadow at all; the illumination of the screen everywhere is the same as in the absence of 

barriers. If the disc covers many Fresnel zones, alternation of the bright and dark rings 

is observed only in a narrow region on the boundary of the geometrical shadow. In this 

case, Am+1<<A1, so that the bright spot at the centre is absent, and the illumination 

in the region of the geometrical shadow equals zero practically everywhere. 

 

3.3 Fraunhofer Diffraction from a Slit 

 

The scheme of experiment is shown in Fig.3.9. The wave surface of the incident wave, 

the plane of the slit, and the screen are parallel to one another. 

Let us divide the open part of the wave surface into elementary zones of width dx 

parallel to the edges of the slit. The secondary waves emitted by the zones in the 
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direction determined by the angle  will gather at point P. The lens will gather plane  

(not spherical) waves in the focal plane. Therefore, the factor 1/r in Eq.(3.1) for dE will 

be absent for Fraunhofer diffraction. Limiting ourselves to a consideration of not too 

great angles , we can assume that the coefficient K in Eq.(3.1) is constant. Hence, the 

amplitude of  the oscillation produced by a zone at any point of the screen will depend 

only on the area of the zone. The area is proportional to the width dx of the zone. 

  

Consequently, the amplitude dA of the oscillation dE produced by a zone of 

width dx at any point of the screen will have the form 

                                                                CdxdA   

where C is a constant. 

 
 

Fig.3.10 
 

Let A0 stand for the algebraic sum of the amplitudes of the oscillations produced by all 

the zones at a point of the screen. We can find A0 by integrating dA over the entire 

width of the slit b: 

 

  





CbCdxdAA

b

b

2/

2/

0                                       (3.18) 

 

Hence, C = A0/b and, therefore, 

 

dx
b

A
dA 0                                                (3.19) 

 

Now let us find the phase relation between the oscillations.  We shall compare the 

phases of the oscillations produced at point P by the elementary zones having 

coordinates 0 and x. The optical paths OP and QP are tautochronous . Therefore, the 
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path difference between the oscillations being considered is formed on the path  equal 

to x sin . If the initial phase of the oscillation produced at point P by the elementary 

zone at the middle of the slit ( = 0) is assumed to equal zero, then the initial phase of 

the oscillation produced by the zone with the coordinate x will be 

 










 sin

2
2 x                                         (3.20) 

 

 is the wavelength in the given medium. 

Thus, the oscillation produce by the elementary zone with the coordinate x at point P 

(whose position is determined by the angle ) can be written in the form 
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(we have in mind the real part of this expression). 

Integrating Eq.(3.21) over the entire width of the slit, we shall find the resultant 

oscillation produced at point P by the part of the wave surface uncovered by the slit:    
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Let us put the multipliers not depending on x outside the integral. In addition, we shall 

introduce the symbol 
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As a result, we get 
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The expression in braces determines the complex amplitude A of the resultant 

oscillation. Taking into account that the difference between the exponents divided by 2i 

is  ,sin b  we can write 
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[we have introduced the value of   from Eq.(3.23)]. 

Equation (3.25) is a real one. Its magnitude is the usual amplitude of the resultant 

oscillation. 
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AA                                       (3.26)      

 

For a point opposite the centre of the lens,  = 0. Introduction of this value into 

Eq.(3.26) gives the value A0 for the amplitude  

At values of  satisfying the condition b sin / ± k, i.e. when 

 

,...)3,2,1(;sin  kkb                                   (3.27) 

 

the amplitude A  vanishes. Thus, condition (3.27) determines the positions of the 

minima of intensity. We must note that bsin is the path difference  of the rays 

travelling to point P from the edges of the slit (see Fig.3.10). 

The intensity of light is proportional to the square of the amplitude. Hence, in 

accordance with Eq.(3.26), 
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Here I0 is the intensity at the middle of the diffraction pattern (opposite the centre of the 

lens), and I is the intensity at the point whose position is determined by the given value 

of . 

 We find from Eq.(3.28) that I- = I. This signifies that the diffraction pattern is 

symmetrical relative to the centre of the lens. We must note that when the slit is 

displaced parallel to the screen (along the x-axis in Fig.3.9), the diffraction pattern 

observed on the screen remains stationary (its middle is opposite the centre of the lens). 

Conversely, displacement of the lens with the slit stationary is attended by the same 

displacement of the pattern on the screen. 

The relative intensity of maxima  are arranged in the following proportion: 

 

...:008.0:016.0:045.0:1...::: 3210 IIII                               (3.29) 

 

Thus, the central maximum considerably exceeds the remaining maxima in intensity; 

the main fraction of the light flux passing through the slit is concentrated in it. 

The number of  intensity minima is determined by the ratio of  the width of a slit b to 

the wavelength . It can be seen from condition (3.27) that sin = ±k/b. The 

magnitude of sin can not exceed unity. Hence, k/b < 1 , whence 




b
k                                                          (3.30) 

At a slit width less than a wavelength, minima do not appear at all. In this case, the 

intensity of the light monotonously diminishes from the middle of the pattern towards 

its edges. 
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 The values of the angle  obtained from the condition bsin   = ± correspond to the 

edges of the central maximum. These values are ± arcsin (/b). Consequently, the 

angular width of the central maximum is 

 

b


 arcsin2                                              (3.31) 

 

When b >> , the value of sin(/b) can be assumed equal to /b. The equation for the 

angular width of the central maximum is thus simplified as follows: 

 

b
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3.4 Diffraction Grating 

 
Fig.3.11 

A diffraction grating is a collection of a large number of identical equispased slits 

(Fif.3.11). The distance d between the centres of adjacent slits is called the period of the 

grating. The resultant oscillation at point P whose position is determined by the angle  

is sum of N oscillations having the same amplitude A shifted relative to one another in 

phase by the same amount . According to Eq.(2.60), the intensity in these conditions is 
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 (here I  plays the part of I0). 

A glance at Fig.(3.11) shows that the path difference from adjacent slits is  d sin . 

Hence, the phase difference is 
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Introducing into Eq.(3.33) Eqs.(3.28)  and (3.34) for I and , respectively, we get 
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(I0 is the intensity produced by one slit opposite the centre of the lens). 

The first multiplier of I0 in Eq.(3.35) vanishes for points for which condition (3.27) is 

observed, i.e., 

 

b sin  =  ±k  (k = 1, 2, 3, . . .) 

 

At these points, the intensity produced by each slit individually equals zero. 

The second multiplier of I0 in Eq.(3.35) acquires the value N
2
 for points satisfying the 

condition 

 

,...)2,1,0(;sin  mmd                                   (3.36)  

 

[see Eq.(2.61)].  For the directions determined by this condition, the oscillations from 

individual slits mutually amplify one another. As a result, the amplitude of the 

oscillations at the corresponding point of the screen is  

 

 NAAmax                                               (3.37)  

 

(A

 is the amplitude of the oscillation emitted by one of the slit at the angle ). 

Condition (3.36) determines the positions of the intensity maxima called the principal 

ones. The number m gives the order of the principal maximum. There is only one zero-

order maximum, and there are two each of the maxima of the 1
st
, 2

nd
, etc. orders. 

    Squaring Eq.(3.37), we find that the intensity of the prinsipal maxima Imax is N
2
 times 

greater than the intensity I produced in the direction  by a single slit: 

 

 INI 2
max                                              (3.38) 

 

Apart from the minima determined by condition (3.27), there are (N-1) additional 

minima in each interval between adjacent principal maxima . These minima appear in 

the directions for which the oscillations from individual slits mutually destroy one 

another. In accordance with Eq.(3.27), the directions of the additional minima are 

determined by the condition 
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,...)12,12,...,1,1,...,3,2,1(  NNNNk  

 

In Eq.(3.39), k' takes on all integral values except for 0, N, 2N, . . ., i.e. except for those 

at which Eq.(3.39) transforms into Eq.(3.36). 

The number of principal maxima observed [see Eq.(3.36) 
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
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d
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The position of the principal maxima depends on the wavelength . Therefore, when 

white light is passed through a grating, all the maxima except for the central one will 

expand into a spectrum whose violet end faces the centre of the diffraction pattern, and 

whose red end faces outward. Thus, a diffraction grating is a spectral instrument. We 

must note that whereas a glass prism deflects violet rays the greatest, a diffraction 

grating, on the contrary, deflects red rays to a greater extent. 

Fig.3.12 shows schematically the spectra of different orders produced by a grating when 

white light is passed through it. 

 

 
 

                                                                      Fig.3.12 

 

At the centre is a narrow zero-order maximum. At both sides of the central maximum 

are two first-order spectra, then two second-order spectra, etc. The positions of the red 

end of the m order spectrum and the violet end of the (m+1) order one are determined 

by the relations 
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Here d has been taken in micrometers. When the condition is observed that  

 

0.76m > 0.40 (m+1) 

 

the spectra of the m and (m+1) orders partly overlap. The inequality gives m>10/9. 

Hence, partial overlapping begins from the spectra of the second and third orders (see 

Fig 3.12) in which for illustration the spectra of different orders are displaced relative to 

one another vertically. 

The main characteristics of a spectral instrument are its dispersion and resolving 

power. The dispersion determines the angular or linear distance between two spectral 

lines differing in wavelength by one unit (for example by 1Å). The resolving power 

determines the minimum difference between wavelength  at which the two lines 

corresponding to them are perceived separately in the spectrum. 

The angular dispersion is defined as the quantity  
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


D                                                           (3.41) is the angular distance between 

spectral lines differing in wavelength by .  

From eq.(3.36) we get (omitting the minus sign) 
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Within the range of small angles .1cos  We can therefore assume that 
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Linear dispersion is defined as the quantity 
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Here l is the linear distance on a screen or photographic plate between spectral lines 

differing in wavelength by . A glance at Fig.3.13 shows that for small values of the 

angle  we can assume that l  f', where f' is the focal length of the lens gathering 

the diffracted rays on a screen. Thus, 

 

DfDlin                                                        (3.45) 

 

 

                                                                Fig.3.13 
            

 Taking into account Eq.(3.44), we get 
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The resolving power of a spectral instrumrnt is defined as the dimensionless quantity 




R                                                                                                                        

(3.47) where  is the minimum difference between the wavelengths of two spectral 

lines at which these lines are perceived separately. 

The possibility of resolving (i.e. perceiving separately) two close spectral lines depends 

not only on he distance between them (that is determined by the dispersion of the 

instrument), but also on the width of the spectral maximum. Fig.3.14 shows the 

resultant intensity (solid curves) observed in superposition of two close maxima (the 

dash curves). In case a, both maxima are perceived as a single one. In case b, there is a 

minimum between the maxima. Two close maxima are perceived by the eye separately 

if the intensity in the interval between them is not over 80 per cent of the intensity of a 

maximum. According to the criterion proposed by the British physicist John Rayleigh 

(1842-1919), such a ratio of the intensities occurs if the middle of one maximum 

coincides with the edge of another one (Fig.3.14b). Such a mutual arrangement of the 

maxima is obtained at a definite (for the given instrument) value of  

 

 
Fig.3.14 

 

Let us find the resolving power of diffraction grating. The position of the middle of the 

m maximum for the wavelength ± is determined by the condition 

 

d sin  = m(  ± )                                                                                                 

 

The edges of the m maximum for the wavelength  are at the angles complying with the 

condition 

 











N
md

1
sin min                                                                                                

 

The middle of the maximum for the wavelength ± coincides with the edge of the 

maximum for the wavelength  if 

 

  

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Whence 

    

N
m


  

 

Solving this equation relative to /, we get an expression for the resolving power: 

 

 mNR                                                           (3.48) 

 

Thus, the resolving power of a diffraction grating is proportional to the order m of the 

spectrum and the number of slits N. 

The best gratings have up to 1200 lines per mm ( mkmd 8.0 ). It can be seen from 

Eq.(3.40) that no second-order spectra are observed in visible light with such a period. 

The total number of lines in such gratings reaches 200000 (they are about 200 mm 

long). With a focal length of the instrument f ' = 2 m, the length of the visible first-order 

spectrum in this case is over 700 mm. 

 

3.5 Diffraction of X-Rays 
 

Diffraction can be observed in three-dimensional structures, i.e., spatial formations 

displaying  periodicity along three directions not in one plane. All crystalline bodies are 

such structures. Their period  (~ 10
-10

 m), however , is too small for the observations of 

diffraction in visible light. The condition d >  is observed for crystals only for X-rays. 

The diffraction of X-rays from crystals was first observed in 1913 in an experiment 

conducted by the German   physicist Max fon Laue (1879-1959). 

 
 

Fig.3.15 

 Let us find the conditions for the formation of diffraction maxima from a three-

dimensional structure. We position the coordinate axes x, y, and z in the directions 

along which the properties of the structure display periodicity (Fig.3.15). The structure 

can be represented as a collection of equally spaced parallel trains of structural elements 

arranged along one of the coordinate axes. We shall consider the action of an individual 

linear train parallel, for instance, to the x-axis (Fig.3.16). Assume that a beam of parallel 
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rays making the angle 0 with the x-axis falls on the train. Every structural element is a 

source of secondary wavelets. An incident wave arrives at adjacent sources with a phase 

difference of 0 = 20/, where 010 cos d  (here d1 is the period of the structure 

along the x-axis). Apart from this, the additional path difference cos1d  is 

produced between the secondary wavelets propagating in directions that make the angle 

 with the x-axis (all such directions lie along the generatrices of a cone whose axis is 

the x-axis). The oscillations from different structural elements will be mutually 

amplified for the directions for which 

 

,...)2,1,0(;)cos(cos 1101  mmd                                  (3.49)   

 

There is a separate cone of directions for each value of m1, and along these directions we 

get maxima of the intensity from one individually taken train parallel to the x-axis. The 

axis of this cone coincides with the x-axis. 

The conditions of the maximum for a train parallel to the y-axis has the form  

 

,...)2,1,0(;)cos(cos 2202  mmd                                                                

(3.50)  

 

Here d2 = period of the structure in the direction of y-axis, 

         0=angle between the incident beam and the y-axis,           

          =angle between the y-axis and the directions along which diffraction maxima 

         are obtained. 

A cone of directions whose axis coincides with the y-axis corresponds to each value of 

m2. 

In directions satisfying condition (3.49) and (3.50) simultaneously, mutual amplification 

of the oscillations from sources in the same plane perpendicular to the z-axis occur. The 

directions of the intensity maxima produced lie along he lines of intersection of the 

direction cones, of which one is determined by condition (3.49), and the second one by 

condition  (3.50). 

Finally, for the train parallel to z-axis , the directions of the maxima are determined by 

the condition 

 

,...)2,1,0(;)cos(cos 3303  mmd                             (3.51)  

  

Here d3 = period of the structure in the direction of the z-axis, 

         0=angle between the incident beam and the z-axis,    

         =angle between the z-axis and the directions along which diffraction maxima are 

obtained. 

As in the preceding cases, a cone of directions whose axis coincides with the z-axis 

corresponds to each value of m3. 

In the directions satisfying conditions (3.49), (3.50), and (3.51) simultaneously, mutual 

amplification of the oscillations from all the elements forming the three-dimensional 

structure occurs. As a result, diffraction maxima are produced by the three-dimensional 

structure. The directions of these maxima are on the lines of intersection of threecones 

whose axes are parallel to the coordinate axes. The conditions (3.49), (3.50), and (3.51) 

are called Laue’s formulas. 
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The angles , and  are not independent: 

 

1coscoscos 222                                          (3.52) 

 

We have not treated the question of how rays travelling from different structural 

elements are made to converge to one point on a screen. A lens does this for visible 

light. A lens can not be used for X-rays because the refractive index of these rays in all 

substances is virtually equal to unity. For this reason, the interference of the secondary 

wavelets is achieved by using very narrow beams of rays producing spots of a very 

small size on a screen (or a photographic plate) even without a lens. 

The Russian scientist Yuri Vulf (1863-1925) and the British physicists William Henry 

Bragg (1862-1942) and his son William Lawrence Bragg (1890-1971) showed 

independently of each other that the diffraction pattern from a crystal lattice can be 

calculated in the following simple way. Let us draw parallel equispaced  planes through 

the points of a crystal lattice (Fig.3.16). We shall call these planes atomic layers. If the 

wave falling on the crystal is plane, the envelope of the secondary waves set up by the 

atoms in such a layer will also be a plane. Thus, the summary action of the atoms in one 

layer can be represented in the form of a plane wave reflected from an atom-covered 

surface according to the usual law of reflection. 

The plane secondary wavelets reflected from different atomic layers are coherent and 

will interfere with one another like the waves emitted in the given direction by different 

slits of a diffraction grating. As in the case of a grating, the secondary wavelets will 

virtually destroy one another in all directions except those for which the path difference 

between adjacent wavelets is a multiply of . Inspection of Fig.3.16 shows that the 

difference between the path of two waves reflected from adjacent atomic layers is 

2dsin, where d is the period of identity of the crystal in a direction at right angles to the 

layers being considered, and  is angle supplementing the angle of incidence and called 

the glancing angle of the incident rays. Consequently the directions in which diffraction 

maxima are obtained are determined by the condition 

 

,...)3,2,1(;sin2  mmd                                      (3.53) 

 

This expression is known as the Bragg-Wulf formula 

We should note that calculations by the Bragg-Wulf formula  and by Laue’s formulas 

lead to coinciding results. 

The diffraction of X-rays from crystals has two principal applications.It is used to 

investigate the spectral composition of X-radiation (X-ray spectroscopy) and to study 

the structure of crystals (X-ray structure analysis). 
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3.6 Polarization of Light 

 

We remind our reader that light is called polarized if the direction of oscillatons of the 

light vector in it are brought into order in some way or other. The simplest kind of 

polarization is known to be the plane polarization i.e. when the light vector oscillates 

in a fixed direction.  

The plane in which the light vector oscillates in a plane polarized wave will be called 

the plane f oscillations. For historical reasons, the term plane of polarization was 

applied not to the plane in which the vector E oscillates , but to the plane perpendicular 

to it. 

 

We can obtain more complicated types 

of polarization by summation of several 

plane-polarized waves. For example, 

two plane polarized waves whose planes 

of polarization are mutually 

perpendicular produce an elliptically 

polarized light (Fig.3.17). 

 

 

                      

                             

                            Fig.3.17 

If the amplitudes of the waves are equal the ellipse transforms into a circle – circularly 

polarized light is produced. 

Plane-polarized light can be obtained from natural light with the aid of devices called 

polarizers. These devices freely transmit oscillations parallel to the plane which we 

shall call the polarizer plane and completely or partly retain the oscillations 

perpendicular to this plane. We shall apply the adjective imperfect to a polarizer that 

only partly retain oscillations perpendicular to its plane. We shall apply the term 

“polarizer” for brevity to a perfect polarizer that completely retains the oscillations 

perpendicular to its plane and does not weaken the oscillations parallel to its plane. 

Light  produced at the outlet from an imperfect polarizer in which the oscillations in one 

direction predominate over the oscillations in other directions is called partly 

polarized. It can be considered as a mixture of natural and plane-polarized light. Partly 

polarized light, like natural light, can be represented  in the form of a superposition of 

two incoherent plane-polarized waves with mutually perpendicular planes of 

oscillations. The difference is that for natural light, the intensity of these waves is the 

same, and for partly polarized light it is different.   

If we pass partly polarized light through a polarizer, then when the device rotates about 

the direction of the ray , the intensity of the transmitted light will change within the 

limits from Imax to Imin. The transition from one of these values to the other one will 

occur upon rotation through an angle of /2 (during one complete revolution both the 

maximum and the minimum intensity will be reached twice). The expression 

 

minmax

minmax

II

II
P




                                                   (3.54) 
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is known as the degree of polarization. For plane-polarized light, Imin = 0, and P = 1. 

For natural light, Imax = Imin, and P = 0. 

The concept of the degree of polarization can not be applied to elliptically polarized 

light (in such light the oscillations are completely ordered, so that the degree of 

polarizaion always equals unity). 

An oscillation of amplitude A occurring in a plane making the angle  with the 

polarizer plane can be resolved into two oscillations having the amplitudes A =  A 

cos   and A = A sin  (Fig.3.18; the ray is perpendicular to the plane of the drawing). 

 

 

  

 
Fig.3.18                                                                    Fig.3.19  

 

 

The first oscillation will pass through device, the second will be retained. The intensity 

of transmitted wave is proportional to A
2
 = A

2
 cos

2
, i.e. is I cos

2
 where I is the 

intensity of the oscillation of amplitude A. Consequently, an oscillation parallel to the 

plane of the polarizer carries along a fraction of the intensity equal to cos
2
. In natural 

light, all the values of  are equally probable. Therefore, the fraction of the light 

transmitted through the polarizer will equal the average value of cos
2
 , i.e. one-half. 

When the polarizer is rotated about the direction of a natural ray, the intensity of the 

transmitted light remains the same. What changes is only the orientation of the plane of 

oscillations of the light leaving the device.       

Assume that plane-polarized light of amplitude A0 and intensity I0 falls on a polarizer 

(Fig.3.20). The component of the oscillation having the amplitude A = A0 cos , where 

 is the angle between the plane of oscillation of the incident light and the plane of 

polarizer, will pass through device. Hence, the intensity of the transmitted light I is 

determined by the expression 

 

I = I0 cos
2
                                              (3.55) 

 

Relation (3.55) is known as Malus’s law. It was first formulated by the French physicist 

Etienne Malus (1755-1812). 

Let us put two polarizers whose planes make the angle  in the path of a natural ray. 

Plane-polarized light whose intensity I0 is half that of natural light Inat will emerge from 

the first polarizer. According to Malus’s law, light having an intensity of I0 cos
2
  will 

emerge from the second polarizer. The intensity of the light transmitted through both 

polarizers is 
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 2cos
2

1
natII                                           (3.56) 

 

The maximum intensity equal to (1/2)Inat  is obtained at  = 0 (the polarizers are 

parallel). At  = /2, the intensity is zero – crossed polarizers transmit no light.     

Assume that elliptically polarized light falls on a polarizer. The device transmits the 

component  E   of the vector E in the direction of the plane of polarizer (Fig.3.20). 

                                          The maximum value of this component is reached at points 1 

and 2.   Hence, the amplitude of the plane polarized light 

leaving the device equals the length of 01'. Rotating the 

polarizer arund the direction of the ray, we shall bserve 

changes in the intensity ranging from Imax (obtained when the 

plane of polarizer coincides with the semimajor axis of the 

ellipse) to Imin (obtained when the plane of the polarizer 

coincides with the semiminor axis of the ellipse). The 

intensity of light for partly polarized light will change in the 

same way upon rotation of the polarizer. For circularly Fig. 

3.20                              polarized light, rotation  of the polarizer is not attended  (as 

for natural light ) by a change in the intensity of the light transmitted through the device. 

   

 Polarization in Reflection and Refraction. If the angle of incidence of light on 

interface between two dielectrics (for example, on the surface of a glass plate) differs 

from zero, the reflected and refracted rays will be partly polarized. Oscillations 

perpendicular to the plane of incidence predominate in the reflected ray (in Fig.3.22 

these oscillations are denoted by points(, and oscillations parallel to the plane of 

incidence predominate in the refracted ray (the are depicted in the figure by double-

headed arrows). The degree of polarization depends on the angle of incidence. 

Let Br stand for the angle satisfying the condition 

 

12tan nBr                               (3.57) 

 

 (n12 is the refractive index of the second medium relative 

to the fist one). At a angle of incidence 1 equal to Br, 

the reflected ray is completely polarized (it contains only 

oscillations perpendicular to the plane of incidence). The 

degree of polarization of the refracted ray at an angle of 

incidence equal to Br                reaches is maximum 

value, but this ray remains polarized only partly. 

                         Fig.3.21 

 

Relation (3.57) is known as Brewster’s law, in honour of its discoverer, the British 

physisist David Brewster (1781-1868), and the angle Br is called Brewster’s angle. It 

is easy to see that when light falls at Brewster’s angle, the reflected and refracted rays 

are mutually perpendicular. 

The degree of polarization of the reflected and refracted rays for different angles of 

incidence can be obtained with the aid of Fresnel formulas which establish the relation 

between the amplitudes of the incident, reflected, and refracted waves. We shall not 

discuss this  question. 
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37 Polarization in Double Refraction. When light passes through all transparent 

crystals except for those belonging to the cubic system, a phenomenon is 

observed called double refraction. It consists in that a ray falling on a crystal is 

split inside the latter into two rays propagating, generally speaking, with different 

velocities and in different directions. 

38 Doubly refracting crystals are divided into uniaxial and biaxial ones. In uniaxial 

crystals, one of the refracted rays obeys the conventional law of refraction, in 

particular 9t is i the same plane as the incident ray and a normal to the refracting 

surface. This ray is called an ordinary ray and is designated by the symbol o. For 

the other ray, called extraordinary ray (designated by e), the ratio of the sinus of 

the angle  of incidence and the angle of refraction does not remain constant when 

the angle of incidence varies. Even upon normal incidence of light on a crystal, an 

extraordinary ray, generally speaking, deviates from a normal (Fig.3.22). In 

biaxial crystals, both rays are extraordinary. 

 

Uniaxial crystals have a direction along which 

ordinary and extraordinary rays propagate without 

separation and with the same velocity. This direction is 

known as the optical axis of the crystal. A plane 

passing through an optical axis is called a principal 

section or a principal plane.  

 

 

39  Fig.3.22 
 

40 Investigation of the ordinary and extraordinary rays shows that they are both 

completely polarized in mutually perpendicular directions (see Fig.3.22). The 

plane of oscillations of the ordinary ray is perpendicular to a principal section of 

the crystal. In the extraordinary ray, the oscillations of the light vector occur in a 

plane coinciding with the principal section. When they emerge from the crystal, 

the two rays differ from each other only in the direction of polarization so that the 

term “ordinary” and “extraordinary” have a meaning only inside the crystal. 

Double refraction is explained by the anisotropy of crystals. 

Interference of Polarized Rays. When two coherent rays polarized in mutually 

perpendicular directions are superposed, no interference pattern with the characteristic 

alternation of maxima and minima of the intensity can be obtained. Interference occur 

only when the oscillations in the interacting rays occur along the same direction. The 

oscillations in two rays initially polarized in mutually perpendicular directions can be 

brought into the plane by passing these rays through a polarizer installed so that its 

plane does not coincide with the plane of oscillations of any of the rays. 

Let us see what happens when an ordinary and extraordinary ray emerging ffrom a 

crystal plate are superposed. Assume that the plate has been out parallel to an optical 

axis (Fig.3.23). With normal incidence of the light on the plate, the ordinary and 

extraordinary rays will propagate without separating, but with different velocities. The 

following path difference appears between the rays while they pass through the plate: 

 

 = (n0 – ne)d                                                   (3.58) 
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or the following phase difference: 

 

 





 2

0

0 dnn e                                              (3.59) 

 

(d is the plate thickness, and 0 the wavelength in a vacuum). 

 
Fig.3.23 

                                                                     

 Thus, if we pass natural light through a crystal plate cut out parallel t to the optical axis 

(Fig.3.23a), two rays 1 and 2 that are polarized in mutually perpendicular planes will 

emerge from the plate, and between them there will be a phase difference determined by 

Eq. (3.59). Let us place a polarizer in the path of those rays. Both rays after passing 

through the polarizer will oscillate in one plane. Their amplitudes will equal the 

components of the amplitudes of rays 1 and 2 in the direction of the plane of the 

polarizer (Fig.3.23b). In the crystal, ray 1 was extraordinary and could be designated by 

the symbol (e), and ray 2 was ordinary (o). Upon emerging from the crystal, these rays 

lost their right to be called ordinary and extraordinary. 

The rays emerging from the polarizer are produced as a result of division of the light 

obtained from a single source. Therefore, they ought to interfere. If rays 1 and 2 are 

produced as a result of natural light passing through the plate, however, the do not 

interfere. The explanation is very simple. Although the ordinary and extraordinary rays 

are produced by the same light source, they contain many oscillations belonging to 

different wave trains emitted by individual atoms. The oscillations in the ordinary ray 

are predominantly due to the trains whose oscillation planes are close to one direction in 

space, whereas those of the extraordinary ray are due to trains whose oscillation planes 

are close to another direction perpendicular to the first one. Since the individual trains 

are incoherent, the ordinary and extraordinary rays produced from natural light, and, 

consequently, rays 1 and 2 too, are also incoherent. 

Matters are different if plane-polarized light falls on a crystal plate. In this case, the 

oscillations of each train are divided between the ordinary and extraordinary rays in 

some proportion. Consequently, rays (o) and (e), and therefore rays 1and 2 too,  will be 

coherent and will interfere. 

Rotation of Polarization Plane. Some substances known as optically active ones have 

the ability of causing rotation of the plane of polarization of plane-polarized light 

passing through them. Such substances include crystalline bodies (for example, quartz, 

cinnabar), pure liquids (turpentine, nicotine), and solutions of optically active 

substances in inactive solvents aqueous solutions of sugar, tartaric acid, etc.). 
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Crystalline substances rotate the plane of polarization to the greatest extent when the 

light propagates along the optical axis of the crystal. The angle of rotation  is 

proportional to the path l travelled by a ray in the crystal: 

 

l                                                        (3.60) 

 

The coefficient  is called the rotational constant. It depends on the wavelength. 

In solutions, the angle of rotation of the plane of polarization is proportional to the path 

of the light in the solution and to the concentration of the active substance c: 

 

cl][                                                      (3.61) 

 

Here, [] is a quantity called the specific rotational constant. 

Depending on the direction of rotation of the polarization plane, optically active 

substances are divided into right-hand and left-hand ones. All optically active 

substances exists in two varieties – right-hand and left-hand. There exists right-hand and 

left-hand quartz, right-hand and left-hand sugar, etc. 

Optically inactive substances acquire the ability of rotating the plane of polarization 

under action of magnetic field. This phenomenon was discovered by Michael Faraday 

and is therefore sometimes called the Faraday effect. It is observed only when light 

propagates along the direction of magnetization. The angle of rotation of the 

polarization plane  is proportional to the distance l traveled by the light in the 

substance and to the magnetization of the latter. The magnetization, in turn, is 

proportional to the magnetic field strength  H. We can therefore write that 

 

VlH                                                     (3.62) 

 

The coefficient V is known as the Verdet constant or the specific magnetic rotation. 

The constant V, like the rotational constant , depends on the wavelength. 

Optically active substances when acted upon by a magnetic field acquire an additional 

ability of rotating the plane of polarization that is added to their natural ability.         

Kerr effect. The appearance of double refraction in liquids and amorphous solids under 

action of an electric field was discovered by the Scotch  physicist John Kerr (1824-

1907) in 1875. This effect was named the Kerr effect after its discoverer. In 1930, it 

was also observed in gases. 

An arrangement for studying Kerr effect  consists of a Kerr cell  placed between 

crossed polarizers P and P'. A Kerr cell is a sealed vessel containing a liquid into which 

capacitor plates have been introduced. When a voltage is applied across the plates, a 

virtually homogeneous electric field is set up between them. Under its action, the liquid 

acquires the properties of a uniaxial crystal with an optical axis oriented along the field. 

The resulting difference between the refractive index no and ne is proportional to the 

square of the field strength E: 

no – ne = kE
2 
                                                (3.63) 

 

The path difference  

 = (no – ne)l = klF
2
 

appears between the ordinary and extraordinary rays along the path l. The 

corresponding phase difference is 
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The latter expression is conventionally written in the form 

 

=  2BlE
2
                                                   (3.64) 

where B is a quantity characteristic of a given substance and known as the Kerr 

constant. 
The Kerr constant depends on he temperature of a substance and on the wavelengthof 

the light. Among known liquids, nitrobenzene (C6H5NO2) has the highest Kerr constant. 

The Kerr effect is explained by the different polarzation of molecules in various 

directions. In the absence of a field, the molecules are oriented chaotically, therefore a 

liquid as a whole displays no anisotropy. Under the action of a field,, the molecules turn 

so that either their electric dipole moments (in polar molecules) or their directions of 

maximum polarization (in non-polar molecules) are oriented in the direction of the field. 

As a result, the liquid becomes optically anisotropic. The thermal motion of the 

molecules counteracts the orienting action of the field. This explains the reduction in the 

Kerr constant with elevation of the temperature. 

The time during which the prevailing orientation of the molecules sets in (when the 

field is switched on) or vanishes (when the field is switched off) is about 10
-10

 s. 

Therefore, a Kerr cell placed between crossed polarizers can be used as a virtually 

inertialess light shutter. In the absence of a voltage across the capacitor plates, the 

shutter will be closed. When the voltage is switched on, the  shutter transmits a 

considerable part of the light falling on the first polaizer. 

 

3.7 Holography 

 

Holography (i.e. “complete recording”, from 

the Greek “holos” meaning “the whole” and 

“grapho” – “write”) is a special way of 

recording the structure of the light way  

reflected by an object  on a photographic plate. 

When this plate (a hologram) is illuminated 

with a beam of light, the wave recorded on it 

is reconstructed in practically its original form, 

so that when the eye perceives the 

reconstructed wave, the visual sensation is 

virtually the same as it would be if the object 

itself were observed. 

Holography was invented in 1947 by the 

British physicist Dennis Gabor. The complete 

embodiment of Gabor’s idea became possible, 

however only after the appearance in 1960 of 

light sources having a high degree of 

coherence – lasers. 

 

              Fig.3.24                 




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We shall limit ourselves to an elementary consideration of the method of recording 

holograms on a thin - layer emulsion. Figure 3.24a contains a schematic view of an 

arrangement for recording holograms, and Fig.3.24b – a schematic view of 

reconstruction of the image. The light beam emitted by the laser, expanded by the 

system of lenses, is split into two parts. One part forming the so-called reference wave 

1is reflected by the mirror to the photographic plate. The second part reaches the plate 

after being reflected from the object; it forms object beam 2. Both beams must be 

coherent. This requirement is satisfied because laser radiation has a high degree of 

spatial coherence (the light oscillations are coherent over the entire cross section of a 

laser beam. The reference and object beams superpose and form an interference pattern 

that is recorded by the 

photographic plate. A plate exposed in this way and developed is a hologram. Two 

beams of light participate in forming the hologram. In this connection, the arrangement 

described above is called two-beam or split-beam holography. 

To reconstruct the image, the developed photographic plate is put in the same place 

where it was recording the hologram, and is illuminated with the reference beam of light 

(the part of the laser beam that illuminated the object in recording the hologram is now 

stopped). The reference beam diffracts on the hologram, and as a result a wave is 

produced having exactly the same structure as the one reflected y the object. This wave 

produces the virtual image of the object that is seen by the observer. In addition to the 

wave forming the virtual image, another wave is produced that gives the real image of 

the object. This image is pseudoscopic; this means that it has a relief which is the 

opposite of the relief of the object – the convex spots are replaced by concave ones, and 

vice versa. 

Let us consider the nature of hologram and the process of image reconstruction. Assume 

that two parallel beams of light rays fall on the photographic plate, with the angle  

between the beams (Fig.3.25). Beam 1 is a reference one, and beam 2, the object one. 

(The object in the given case is an infinitely remote point). We shall assume for 

simplicity that beam 1 is normal to the plate. All he results obtained below also hold 

when the reference beam falls at an angle, but the formulas will be more cumbersome. 

Owing to the interference of the reference and object beams, a system of alternating 

straight maxima and minima of the intensity is formed on the plate. Let points A and B 

correspond to the midle of adjacent interference maxima. Hence, the path difference  

equals .Examination of Fig.3.25 shows that  = d sin;( ).( ABd  Hence, 

 

 sind                                                     (3.65) 

Having recorded the interference pattern on 

the plate (by exposure and developing), we 

direct reference beam 1 at it. For this beam, 

the plate plays the part of a diffraction grating 

whose period grating is the circumstance that 

its transmittance changes in a direction 

perpendicular to the “lines” according to a 
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cosine law. The result of this feature is that the intensity of all the diffraction maxima of 

orders higher than the first one virtually equals 0. 

                          

When the plate is illuminated with the reference beam (Fig.3.26), a diffraction pattern 

appears whose maxima form the angles  with a normal to the plate. These angles are 

determined by the condition 

 

 md sin          (m=0, ±1) 

 

The maximum corresponding to m = 0 is on the continuation of the reference beam. The 

maximum corresponding to m = +1 has the same direction as object beam 2 did during 

the exposure. In addition, a maximum corresponding to m = -1 appears. 

It can be shown that the result we obtained also holds when object beam 2 consists of 

diverging rays instead of parallel ones. The maximum corresponding  to m = +1 has the 

nature of diverging beam of rays 2’(it produces a virtual image of the point from which 

rays 2 emerged during the exposure); the maximum corresponding to m = -1, on the 

other hand, has the nature of a converging beam of rays 2” (it forms a real image of the 

point which rays 2 emerged from during the 

exposure).  

In recording the hologram, the plate is 

illuminated by reference beam 1and 

numerous diverging beams 2 reflected by 

different points of object. An intricate 

interference pattern is formed on the plate as 

a result of superposition of the patterns 

produced by each of the beams 2 separately. 

When the hologram is illuminated with 

reference beam 1, all beams 2 are 

reconstructed, i.e. the complete light wave 

reflected by the object (m= +1) corresponds 

to it. Two other waves appear in addition to 

it (corresponding to m=0 and m=-1).  But 

these waves propagate in other directions  

Fig.3.26 

 

and do not hinder the perceptions of the wave producing a virtual image of the object. 

 

The image of an object produced by a hologram is three-dimensional. It can be viewed 

from different positions. If in recording a hologram closest objects concealed more 

remote ones, then by moving to a side we can look behind the closer object (more 

exactly, behind its image) and see the objects that had been concealed previously. The 

explanation is that when moving to a side, we see the image reconstructed from the 

peripheral part of the hologram onto which the rays reflected from the concealed objects 

also fell during the exposure. When looking at the images of close and far objects, we 

have to accommodate our eyes as when looking at the objects themselves. 

If a hologram is broken in several pieces, then each of them when illuminated will 

produce the same picture as the original hologram. But the smaller the part of the 

hologram used to reconstruct the image, the lower is its sharpness. This is easy to 

understand by taking into account that when the number of lines of a diffraction grating 
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is reduced, its resolving power decreases. The application of holography are very 

diverse. A far from complete list of them includes holographic motion pictures and 

television, holographic microscopes, and control of the quality of processing articles. 

The statement can be encountered in publications on the subject that holography can be 

compared in publications on the subject that holography can be compared as regards its 

consequences with the setting up of radio communication.  

 

 

 

Part II. Modern physics 
 

4. Introduction to Quantum Physics 
 

4.1 Blackbody Radiation and Planck’s Hypothesis  

 

In this section, we are going to discuss some phenomena, which can not be explained by 

the classical physics. Radiation of the black body is just one of these phenomena. 

Radiation of the black body is an electromagnetic radiation, which is in the state of 

equilibrium with the bodies, which emit and at the same time absorb it. A cavity 

(Fig.4.1) which walls are at the temperature T is a very good model of the black body. 

At any point in the cavity, the density of the energy flux within a spatial angle d 

 

 d
cu

dj
4

                                                     (4.1) 

 

Here, u = energy density, c = the speed of light in a vacuum. 

An elementary surface S of the cavity (Fig.4.2) sends (within spatial angle 

 ddd sin ) an energy flux 

 







 ddS
cu

Sd
cu

Sdjd sincos
4

cos
4

cos                        (4.2) 

 

 

The total energy flux emitted by the surface element S is 
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We can also represent  by multiplication the magnitude of the emittance R by S, 

i.e.  = R S 
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dTfR , , Here f (, T) is the spectral emittance.  Thus, 
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Equation (4.4) holds for every frequency, so we get                                                                                                                       

                                                                                     

       Fig.4.1                                                    Fig.4.2     

 

                                                                    
 

   Tu
c

Tf ,
4

,                                              (4.5) 

We remind our reader that  



0

,  dTuu  

The expression (4.5) gives relation between the spectral emittance of the black body  

f(,T) and equilibrium density of energy of the heat radiation u(,T).  

At the beginning of the twentieth century, the function u(,T) was found experimentally 

and its form is shown in Fig.4.3 
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Fig.4.3 

 

All the attempts to deduce the function u(,T) with the aid of the classical physics were 

in vain .The classical expression  coincides with the experimental curve only for the 

small frequencies. It is so called the Rayleigh-Jeans formula: 
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Here k = Bolzmann’s constant. 

It is easy to see that integration of the Eq.(4.6) within the limits from 0 to  gives for 

the magnitude of the energy density u unlimited value and is of no physical meaning. 

This result was historically called the ultraviolet catastrophe.   

From the classical point of view, the deduction of the Rayleigh-Jeans formula was 

faultless. This manifested some deep phenomena, which contradicted with classical 

physics. 

In 1900 Max Planck theoretically found the function u( which coincided with the 

experimental data. In order to deduce it, he had to suggest that the electromagnetic 

radiation was emitted and absorbed by separate portions of energy (or quanta) the 

magnitude of which is proportional to the frequency of radiation 

 

E                                                           (4.7) 

 

The constant ħ  was called afterwards the Planck constant (ħ = 1.054 ·10
-34

 Joule ·s).  

(In reality, Planck used the quantity h = 2ħ) 

If the radiation us emitted by portions , the energy n should be integer of this 

quantity i.e. 

 

 nn                                                          (4.8) 

 

In the state of equilibrium, the distribution of oscillations must be in accordance with 

Bolzmann,s law. According to this law, the probability Pn for the energy of oscillation 

of the frequency  to have the magnitude n is given by the expression: 
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                                                   (4.9) 

 

The average energy is given by 
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Using Eqs.(4.8) and (4.9) we can write: 
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Designating xkT /  we can express Eq.(4.11) in the form 
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Obviously, 

 

x
on

nx

e
e












1

1
                                              (4.13) 

 

Thus,we get: 
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The average number of quanta having the frequency  
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The number of levels within the frequency interval from  up to +d is given by the 

well-known formula 
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(In appendix of this section, the derivation of the expression (4.16) is given. 

Multiplying Eqs.(4.13) and (4.16) we get the expression for the density of energy: 
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. Using Eq.(4.5) we arrive at the expression: 
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Expressions (4.17) and (4.18) are called Planck’s formulas. The calculations made in 

accordance with these formulas coincide with experimental data. 

Sometimes it is convenient to use the expression for spectral emittance ),( T  given in 

terms of :  

Obviously,  dTfdT ),(),(                                      (4.19) 

 

With the aid of Eq.(4.19) we easily get 
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In Fig.4.4, the functions f(,T and (,T) for T=5000K are shown. The logarithmically 

scales are used. A glance on figure shows that the frequencies corresponding to the 

maxima of intensity do not coincide. 

 

Fig.4.4 

 

We can write the energy emittance of the black body in the following form 
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Introducing a new argument 
kT

x   we write this expression in the form 
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The integral in this expression equals 
4
/15  6.5. And we have the Stefan-Bolzmann 

law: 
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Using the numerical values of k, c, ħ we get for the Stefan-Bolzmann constant    

=5.6696  10
-8

 W/(m
2 
 K

4
) which coincides with the experimental value. 

In conclusion, let us find the value of the constant in the Wien displacement law.  

 

bT m                                                        (4.22) 

 

Here, m is the wavelength corresponding to maximum of function (, T). Taking 

derivative from Eq.(4.20) and assuming this derivative to be zero, i.e. 
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we arrive at the equation 0)1(5  xxe x . Here ./2 mkTcx   Solution of this 

equation is x = 4.965.Hence, 
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Thus, Planck’s formula describes all aspects associated with the radiation of the black 

body. Historically the world constant h appeared in the world scientific literature in 

1900. This year can be considered as the beginning of new physics – the quantum 

physics. 

 

41 Appendix I 

 

An electromagnetic field in the cavity (see Fig.4.1) must satisfy 
the wave equation 
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If to chose  to be zero at the boundaries of a cube with the side L, then the solution of 

Eq.(4.25) can be written as follows: 
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Here .;; nLkmLklLk zyx                                       (4.27) 

 

Here l, m, n are integer (1, 2, 3, . . .) and  is connected with kx, ky, kz by the condition  
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A general solution of Eq.(4.25) can be represented as the sum of equations (4.26) with 

all possible magnitudes of l, m, n. 

In order to calculate the number of possible partial solutions (abstract oscillators) within 

the frequency interval d, let us investigate the space of vector ck having components 

ckx, cky, ckz and the length ck= (Fig.4.5). 

Obviously, vectors ck having its tails in nudes of a spatial cubical lattice build by 

elementary cubes with sides c/L represent all possible vectors ck and lmn. 

In the space of vector ck, let us imagine a spherical surface of radius ; and designate 

by N() the number of nodes of a cubical lattice within the limits of the first octant of 

this space. Obviously, N() is the total number of abstract oscillators having a 

frequency not greater than . 

Let us assume that the radius f the sphere is much greater than the side of an elementary 

cube, than N() is approximately equal to the number of elementary cubes which are 

inside the octant. Hence, N() can be represented as follows:  
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Fig.4.5 

                                                    

Or, having in mind that L
3
 = V, where V is the volume of a cavity inside the walls at 

which =0, we get 
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Having in mind two ways of polarization 
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The number of abstract oscillators per unit volume which frequencies are within the 

frequency interval d  
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and we arrive to Eq.(4.16). 

 

 

4.2 Photoelectric Effect 

 

The phenomenon associated with emittance of electrons from the surface of metals 

when irradiated by light is called the photoelectric effect or simply photoeffect. It was 

discovered by Hertz in 1887, and investigated systematically the first time by Stoletov 

and later by Lennard, Thompson, and others. 

The typical scheme of experiment is shown in Fig.4.6 
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Fig.4.6                                                                     Fig.4.7 

The light propagating through the quartz window illuminates a cathode. The electrons 

emitted from cathode C move in the direction of anode A. As a result, an electric current 

is produced. The voltage applied between cathode and anode can be changed with the 

aid of potentiometer P. A typical dependence between the electric current and voltage 

applied through the electrodes is shown in Fig.4.7. 

Experiments show that the energy of photoelectrons does not depend on the intensity of 

light, but depends only on wavelength. 

It was established that if the frequency of light is less than a certain quantity (called the 

red border), there is no photoeffect at all. This situation can not be explained by the 

classical theory of electromagnetic waves. Albert Einstein was the first who explained 

the laws of pfotoeffect using the conception of quanta developed by Max Planck. 

According to Einstein, the energy ħ is needed for an electron to leave the bound state 

A, (A is usually called the work of exit) and to acquire the kinetic energy mv
2
/2: 

 

Amv  2

2

1
                                                  (4.33) 

 

The magnitudes of the energy of exit for some metals are given in the following table. 

 

Metal Work of exit [eV]  Metal Work of exit [eV] 

Li 2.38 W 4.54 

Na 2.35 Pd 4.80 

K 2.22 Pt 5.32 

Ca 1.81   

 

The red boundary frequency 0 of photoelectric effect can be easily calculated if the 

work of exit is known 
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Fig.4.6 
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For  K, 0 = 0.6m; and for W, 0 = 0.27m. It can be easily shown that the photoeffect 

is impossible if the electron is in a free state.  Indeed, according to the energy 

conservation law, we can write 
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Equations (4.35) and (4.36) lead to physically senseless result: v=2c !? 

We can try to use the formulas of the special relativity theory: 
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The Eqs.(4.37)  again lead to physically senseless result: v=0 or v=c. 

The photoelectric effect is widely used in techniques. We are not going to discuss this 

question. We just wanted to show to the reader that in order to explain the main features 

of photoelectric effect it is necessary to use the ideas quite different from the classical 

ones.  

 

4.3 Bothe experiment 
 

In order to explain the energy distribution in the spectrum of black-body radiation it is 

quite sufficient (it was shown by Planck) to admit that the light is emitted by discreet 

portions . In order to explain the laws of photoelectric effect it is sufficient to assume 

that the light is absorbed by the same portions. But A.Einstein had made a more 

important step, postulating that the light itself propagates as the flux of discreet particles 

which were called the light quanta. Later (in 1926) these particles were called the 

photons. 
This idea was confirmed by the experiment made by the German physicist Hans Bothe 

(Fig. 3.333). The thin metallic plate was put between two gas-discharged counters. The 

foil was being illuminated by the weak beam of X-rays under action of which it itself 

became the source of X-rays (this phenomenon is called the roentgen fluorescence). The 

initial flux of X-quanta was very small, so the number of the second quanta emitted by 

the foil was also small. When an X-quantum entered the counter, a special mechanism  

which made a mark upon the moving band was put in action. If the emitted radiation 

propagated uniformly in all directions (as it follows from the wave concepts), the both 

counters should act at the same time and the marks on the band should be one against 

the other. In reality, the chaotic recording of marks was registered. It could be explained 

only by the fact that the particles generated in the foil were moving in this or that 

direction. 
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Thus, the existence of light particles (photons) was established. The energy of a photon 

is given by its frequency  

 

E                                                        (4.38) 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                Fig.4.8 

 

We recommend our reader to calculate that the wavelength =5000Å (the green region 

of spectrum) corresponds to the photon’s energy eV5.2 ; when  = 1Å ħ = 12.5 

keV. 

In order to find the momentum of a photon let us use the relations of Relativity. Let two 

reference systems K and K’ move with the relative velocity v0. Let a photon to move 

along v0. The direction of the coordinate axis X and X’ coincide with that of velocity. 

The energy of photon in the system K and K’ is correspondingly equal to ħ and ħ'. 

The frequencies  and ' are connected by the relation 
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Let us designate the momentum of the photon in the reference frame K by the symbol p, 

and in the system K’ – by the symbol p’. From the principle of symmetry, it follows that 

the momentum of the photon should be directed along the X-axis. Thus, we 

have: ppx  , ppx
1 . The energy and momentum are transformed, in accordance with 

the formulas of relativity, as follows: 
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Comparing the last two formulas  we have: 
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Hence 
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Relation (4.43) is true for the particles which have the rest mass equal zero and move  

with the speed of light in a vacuum. 

Taking into account that  = / we get 
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(k is a wave number). A photon moves in the same direction as the electromagnetic 

wave does. Hence, we can write the previous formula as follows 
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4.4 Compton Effect 
 

 In 1923 the British physicist A. Compton , 

studying the scattering of X-rays from some 

substances, had found that in the scattered rays 

besides the radiation with the previous wavelength 

, the rays having wavelengths ' >  were 

present. The difference  = ' -  is dependent on 

the angle  between the previous and secondary 

directions of propagation. It does not depend on 

the wavelength and the nature of substance. 

The scheme of  the experiment is shown in 

Fig.4.9. A monochromatic narrow beam of X-rays 

emitted by the source  after having passed through collimator  falls on the substance 

under investigation. The scattered beam is being  studied with the aid of a X-ray 

spectrometer consisting of a crystal  and  ionization chamber. 
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Fig.410 

 

 

 

 

Fig.4.10 shows the results of scattering of monochromaic X-rays  

(K-line of Molibden) from graphite. The curve ‘a’ represents the initial spectrum. The 

other curves are the results of scattering at various angles . The axis X represents the 

wavelengths and the axis Y represents the intensity of radiation. 



 78 

 
 

                                                               Fig.4.11  
 

Fig.4.11 shows the ratio between the intensities of displaced and nondisplaced 

components of radiation as function of atomic number of scattering substance. The 

upper left-hand curve represents the initial spectrum (K-line of Silver). When the atomic 

number is small (Li, Be, B), the scattered radiation contains the great amount of 

radiation with displaced wavelength; when the atomic number increases, the quantity of 

displaced radiation decreases. 

All particularities of the Compton effect can be easily explained as nonelastic scattering 

of X-photons from practically free electrons. 
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Fig.4.12 

 

Let us assume that a photon with energy ħ and momentum ħ/c falls upon an free 

electron at rest (Fig.4.12). The initial energy of electron is mc
2
 (m is the rest mass of an 

electron), its momentum is zero. After collision, the electron has the momentum p and 

energy 222 cmpc  . After the collision, the energy and momentum of photon will be  

ħ  and ħk'. The energy and momentum conservation laws lead to equations 

 

2222 cmpcmc   
                                    (4.46) 

kpk 





                                                     (4.47) 

 

Let us divide the first equation by c and rewrite i n the form  

 

  mckkcmp  222  

 

(/c = k). Rising this equation in the second power leads to  

 

   kkmckkkkp   222222                                 (4.48) 

 

From Eq.(4.40) it follows that  

 

   cos2222
2

22 kkkkkkp                                (4.49) 

 

( is the angle between the vectors k and k'; see Fig.4.12). 

 

Comparing these last two equations we get  

 

   cos1 kkkkmc  .                                       (4.50) 

 

Multiplying this equation by 2 and dividing it by mckk' we arrive at the equation  

 

 


cos1
222


 mckk


                                           (4.51) 
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Having in mind that that 2/k= , we get to the equation 

 

 =  '-  = C(1-cos).                                      (4.52) 

 

Here,  

 

mc
C




2
                                                      (4.53) 

 

is called the Compton wave length . 

When a photon is scattered by electrons which are strongly bound, then the energy and 

momentum exchange occurs with the atom as a whole. The atom’s mass is much greater 

than the mass of an electron. Thus, the magnitudes of  and  '  are practically the same 

( << ). When the atom number grows, the relative quantity of strongly bound 

electrons is also grows. That leads to weakening of the intensity of the displaced line 

[see Fig.4.11].           

 

                                                                  

                                          

4.5 Atomic Spectra 

 

The electromagnetic radiation of separate atoms consists from separate spectral lines 

(line spectra). The lines can be united in spectral groups. The typical line spectrum is 

that of a hydrogen atom. The frequency hydrogen spectrum lines can be represented as 

follows: 

Layman series 









22

1

1

1

n
R   (n = 2, 3, 4, . . .), ultraviolet light                 (4.54) 

 

Balmer series 









22

1

2

1

n
R   (n = 3, 4, 5, . . . ), visible light                  (4.55)   

 

Pashen series  









22

1

3

1

n
R   (n = 4, 5, 6, . . . ), infrared light                (4.56)    

 

Bracket series  









22

1

4

1

n
R  (n = 5, 6, 7, . . .), infrared light                (4.57) 

 

Pfund series      









22

1

5

1

n
R   (n = 6, 7, 8, . . .), infrared light                (4.58) 

 

Here, R is the Rydberg constant, R = 2.07 · 10
16

 rad/s. 

Sometimes, it is more convenient to characterize the spectral lines by the inverse 

wavelength 

 

c






2

1
                                                      (4.59) 
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Using this quantity, we can write, for example, the formula for the Balmer series in the 

form:  

 











22

1

2

1

n
R                                                 (4.60) 

 

Here R = 109737.309 ± 0.012 cm
-1

. 

Thus, the frequencies of spectral lines for the Hydrogen spectrum can be given as 

follows 

 











22

11

nm
R                                                   (4.61) 

 

where m = 1for the Layman series, m=2 for the Balmer series, and so on. It should be 

noted that this expression is called the general Balmer formula. 

When n is being increased (n  ), the frequency of the spectral line has its maximal 

value R/m
2
 which is called the border of the series. 

The quantities 

 

.)(
2n

R
nT   I.e. ,...

3
,

2
,

1 222

RRR
                                   (4.62) 

    

are called the spectral terms. The frequency of any spectral line can be expressed as the 

difference of two terms. For example, the frequency of the first line of Balmer series is 

equal T(2) – T(3); the frequency of the second line of Pfund series is equal    T(5)-T(7), 

and so on. 

Studying the spectra of other atoms showed that the properties of lines can also be 

expressed as the difference of two terms. But the terms have more complicated form 

than those of a hydrogen atom. 

 

4.6 Bohr’s Model of Atom 

 

In 1913 the Dutch physicist Niles Bohr postulated principles of quantum model of atom. 

These principles can be formulated as follows. The energies of electron in atom are 

discreet and only those orbits are possible for which the angular momentum L=nħ 

(n=1,2,3,. . .); the energy emitted by transition of an electron from En-level to Em-level 

is ħmn=En-Em.  

These two postulates explain properties of a hydrogen atom. Indeed, let us assume that 

an electron rotates about a proton. We can write the equations 

nmvr                                                      (4.63) 

 

2

22

r

e

r

mv
                                                      (4.64) 

 

Here: m = the mass of the electron,   

          e =  the electric charge,  r =  the radius of orbit,   v =velocity.    

(We use CGSE units). 
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From Eqs.(4.55) and (4.56), it follows that the radius of n-th orbit 

 

2

2

2

n
ml

rn


                                                   (4.65) 

 

r1 is called the Bohr radius, and is designated by r0. 

 

 A
mc

r 529.0
2

2

0


                                             (4.66) 

 

The inner energy of atom is equal 

r

emv
E

22

2
                                                   (4.67) 

Using Eqs.(4.55) and (4.56) we have 

 

r

e

r

e

r

e
E

r

emv

22

22
222

22





                                 (4.68a,b) 

 

Or substituting for r expression (4.57), we can write: 

22

4 1

2 n

me
En


                                              (4.69) 

The scheme of the energy levels is 

shown in Fig.(4.13).  

    In accordance with Bohr’s 

postulate, the frequency of emitted 

photons is given by the expression 

 











223

4 11

2 nm

me
mn


    (4.70)      

 

A glance at the expression (4.61) 

shows that the Rydberg constant 

 

3

4

2

me
R    (4.71)          

 

This quantity coincides with the 

experimental one very closely. 

But all attempts to describe other 

atoms (even the Helium atom) were 

not successful. Nowadays, the Bohr  theory is only of historical interest. 

 

 

 

 

 


