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PREFACE 

Physics, the most fundamental science, is concerned with the basic principles of the 

Universe. It provides the basis for other sciences.  

     This textbook is a course in introductory physics for students mastering science 

or engineering. The main objectives of this introductory physics textbook are 

twofold: to provide the student with a clear and logical presentation of the basic 

concepts of physics, and to strengthen an understanding of these concepts through 

applications to the real world. So we have attempted to motivate readers through 

practical examples. The mathematical background of the student taking this course 

should include one semester of calculus. A large number of examples of varying 

difficulty are presented as an aid in understanding concepts. In many cases, these 

examples serve as models for solving another problems.  

     In general, all the physical phenomena are parts of one or more of the following 

areas of physics: 

1. Classical mechanics, which is concerned with the motion of objects moving at  

speeds that are low compared to the speed of light 

2. Relativity, which describes objects moving at speeds approaching the speed of 

light 

3. Thermodynamics, which deals with heat, work, temperature, and statistical 

behavior of a large number of particles 

4. Electromagnetism, which involves the theory of electricity, magnetism, and  

electromagnetic fields 

5. Quantum mechanics, a theory dealing with the behavior of particles on the 

submicroscopic level 

     The first part of this textbook deals with classical or Newtonian mechanics. 

Mechanics is of vital importance for students from all disciplines. The laws 

introduced in mechanics retain their importance in fundamental theories that 

follow, including theories of modern physics. The second part gives an introduction 

to the special theory of relativity, with emphasis on some of its consequences. The 

third part deals with mechanical oscillations and wave motion. In fourth part, we 

turn to the study of thermodynamics, which is concerned with the concepts of heat 

and temperature. Thermodynamics is very successful in explaining properties of 

matter and correlation between these properties and mechanics of atoms and 

molecules. 

     And finally, there is no simple answer to the question: “How to study physics 

and prepare for examination?” But there are some recommendations based on our 

experience in learning and teaching over the years. The first and the main 

recommendation is: maintain a positive attitude toward the subjects’ matter, keep in 

mind that physics is most fundamental of all natural sciences. Other science courses 

that follow will use the same physical principles, so it is important that you 

understand and be able to apply various concepts and theories discussed in the text. 
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Part 1. Mechanics 
 
     Mechanics studies the effect of forces on bodies and their mechanical motion. 

Spatiotemporal changes in relative positions of bodies or different parts of one 

body with respect to other bodies are called  the mechanical motion. Every motion 

is relative. Classical (Newton) mechanics studies  the motion of bodies whose 

speed v is small compared to that of light, i.e., v << c. The motion with v  c is a 

subject of relativistic mechanics.  

To describe the mechanical motion, the following abstract concepts are 

conventionally used:  

1. Mass (material) point is a body whose dimensions are neglected when 

solving a specific problem. Sometimes the term  point particle is used. 

2. A body whose deformations may be disregarded for a given problem is 

called perfectly rigid, or simply rigid body.        

Motion occurs both in space and time. Consequently, to describe the motion, a 

reference frame is needed. A set of stationary bodies with respect to which the 

motion is being considered, a coordinate system attached to the reference body, and 

a timepiece indicating the time form a reference frame. In classical mechanics, the 

features of space are described by the Euclidean geometry and the time is assumed 

to be the same in all reference frames. 

 

1. Kinematics 

 

1.1. Vector Quantities 

 
Scalar, vector, and tensor quantities are widely used in physics. These  

mathematical concepts can be applied to solve a lot of physical problems. Vectors 

are defined as quantities characterized by magnitude and direction. They are added 

by the triangle or parallelogram method (see Figure 1.1). 

 

           Parallelogram method                               Triangle method 
Figure 1.1. c = a + b (addition of vectors). 

 

Usually a Cartesian (rectangular) coordinate system is chosen in a lot of 

physical applications and an arbitrary vector a  can be expressed as follows: 

     zyx aaa  kjia .                     (1.1)   

a

b

a

c

b
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Here kj,i,  are unit vectors along the x, y, and z axes, respectively; ax, ay, and az are 

the projections of the vector onto the coordinate axes. So if you have to add or 

subtract two vectors (a and b), this can be done in such a way: bac  ,  

)()()( zzyyxxzyx bababaccc  kjikjic .        (1.2) 

The magnitude of the vector can be expressed as follows: 

222
zyx aaaa a .                                              (1.3) 

The vector division cannot be defined in general case, but it is possible to multiply 

vectors. Two  vectors a and b can be multiplied in two ways. One of them results in 

a scalar quantity, and the other in a certain new vector. 

 Scalar  product is defined as follows: 

αabc cos)(  ab ,                                                      (1.4) 

where  is the angle between vectors a and b. It can be expressed in terms of 

projections  

zzyyxx bababac  (ab) .                   (1.5) 

Vector  product is defined as the vector c determined by the equation 

 nbac )sin( αab                              (1.6) 

(see Figure 1.2). 
 

Figure 1.2. 

Figure 1.2 shows that the magnitude of the vector product has a simple geometrical 

meaning. The expression αabsin  numerically equals the area of the parallelogram 

constructed on the vectors being multiplied. We determine the direction of the 

vector c by relating it to the direction of rotation from the first multiplier to the 

second one according to the right-screw rule.  Using the projections, c  can be 

expressed as follows: 



zyx

zyx

bbb

aaa

kji

c  

         )()()( xyyxzxxzyzzy babababababa  kji .           (1.7)  

Sometimes, a vector triple product is used 

]][[ abcd  .                              (1.8) 

A scalar triple product is also used  

  abcd  .                                          (1.9) 

 

 

b

a
n
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Vectors can be polar (true vectors) and axial (pseudovectors). Vectors whose 

direction is related to that of rotation are called pseudovectors. 

A position vector or radius vector r of a point is defined as the vector drawn 

from the origin of coordinates to the given point (See Figure 1.3). 

y

X

A

i
k

j

r

kz

jy

ix

x
 

Figure 1.3. 

 

Its projections upon the Cartesian coordinate system are x, y, z; so 

zyx kji r                           (1.10) 

and in accordance with Eq. (1.3), we have 

 222 zyxr  .                ( 1.11) 

 
1.2.  Linear Kinematic Characteristics of Motion. General Case 

 

A material point moves along a certain line. The latter is called a trajectory. 

The length of the trajectory is called the distance traveled by the particle. The 

vector  12 rrr  (see Figure 1.4) is called a displacement vector (or just 

displacement). 

Figure 1.4. 

 

The derivative of the displacement vector with respect to time is called the velocity   

                                        
dt

dr
v          (1.12) 

z

y

x

S
S

1

2

r1

r

r2
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Obviously, the velocity is a vector quantity. It is easy to understand that the 

direction of the velocity coincides with the tangent to the curve. Equation (1.12) 

can be written in terms of projections: 

        
dt

dz

dt

dy

dt

dx
 kjiv ,                         (1.13) 

where 

        xv
dt

dx
 , yv

dt

dy
 , zv

dt

dz
   

are components of the velocity vector. The modulus of the velocity vector is given 

by 

   222222 zyxvvv zyx  v               (1.14)  

(Dots above symbols indicate the derivative of this quantity with respect to time). 

If the motion is uniform and linear, then v=const and a=0. The derivative of 

v with respect to time is called the acceleration, i.e.,  

zyx
dt

d
  kji

v
a                  (1.15) 

or 

    zyx   kjia .           (1.16) 

Here xx avx    and so on. Obviously, 

222
zyx aaa a                    (1.17) 

 

For the curvilinear motion it is convenient to represent the vector a as a sum 

of two components (see Figure 1.5)    

    nτ aaa  .     (1.18) 

Normal, an, and tangential, a components of the acceleration vector. O is the center of curvature. 

Figure 1.5. 

 

The first, a, has the direction coinciding with that of the tangent to the 

trajectory and therefore is called the tangential acceleration. Its magnitude is  

   

v

a 

a

a n

O.
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r S
x

z

y

       
dt

dv
a  .                                     (1.19) 

 The second component  an is directed along the normal to the trajectory toward the 

center of curvature. Its magnitude is  

    
R

v
an

2

 ,         (1.20) 

where R is the radius of curvature. It is clear that aand an are perpendicular. 

 

1.3.  Angular Kinematic Characteristics of Motion. Rotation 
 

If a solid body rotates about a fixed axis, the trajectories of all its points are 

circular. The angular speeds of points are the same, but the linear velocities are 

different. 

Let us assume that a particle moves along a circular trajectory in the XY 

plane (see Figure 1.6). The Z axis is said to be the axis of rotation. The rotation of 

the particle through an angle dcan be represented 

by the straight line whose length is d and whose 

direction coincides with the axis of rotation. The 

direction of rotation about the given axis can be 

reckoned by the right-hand screw rule (Figure 1.7): 

it is the same as the direction of advance of a right-

hand screw if rotated clockwise. 
 

               Figure 1.6.                                                                                                     

   Figure 1.7. 

                                                            
                                                               Figure 1.8. 

 

 

The distance traveled by any point of the body (displacement) when rotated 

through a small angle (dcan be assumed the straight line (Figure 1.8). 

Consequently, two small circular motions dand dperfomed sequentially, as 

can be seen, result in the same displacement 213 rrr ddd   of any point of the 

d

d

dr1
dr3

dr2

d

d
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body as the circular motion dobtained from dand dby the parallelogram 

method. Hence it follows that elementary angular displacements can be considered 

as vectors (we denote these vectors by dSo we can write 

       ddd                                        (1.21) 

Owing to the fact that the direction of the vector dis associated with the 

direction of rotation of the body, dis a pseudovector rather than a true vector. It 

should be noted that rotations through finite angles cannot be added by the 

parallelogram method and are therefore not vectors. The vector quantity   

              
dt

d
ω                                              (1.22) 

is called the angular velocity. The angular velocity  is directed along the axis 

about which the body rotates in accordance with the right-hand screw rule (Figure 

1.9).  

The magnitude of the angular velocity is usually 

called the angular speed. If  is constant, the motion 

is called angular uniform. For a uniform circular 

motion, we can write 

                     
t


 ,                          (1.23) 

where  is the finite angle of rotation during the time          

               Figure 1.9                  t (compare with 
t

s
v  ). The uniform circular motion 

can be characterized by the period of revolution T. This quantity is defined as the 

time over which a body completes one revolution, i.e., rotates through an angle of 

360 degrees or 2 radians. Since the time interval t=T corresponds to the angle of 

rotation  

                 
T




2
  

and 

       





2
T    

The number of revolutions per unit time (frequency) is equal to 

 





2

1

T
                (1.26) 

or 

    2 .                               (1.27)  

If angular motion is nonuniform, it can be characterized by the angular 

acceleration This quantity is defined as  

  
dt

dω
ε                                                             (1.28) 

or 



v 
R 
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2

2

dt

d 
ε                          (1.29) 

(compare with 
dt

dv
a   and 

2

2

dt

d r
a  ). In general, the directions of  and do not 

coincide. But if the direction of the rotation axis does not change, we can write 

ωε   if > 0 and ε  if < 0.  

There are simple relations between the linear and angular characteristics of motion. 

Let us find them using Figure 1.10. 

Examination of the figure shows that 

the direction of the vector product 

[∙r] coincides  with vector v, and its 

magnitude is Rαr  sin . 

But it is quite clear that 




 R
dt

d
R

dt

ds
v .          (1.30) 

So we can write  

           ωrv  .            (1.31)           

Using the conventional expression  

          

              Figure   1.10.                                                
dt

dv
a    

we have 

                   ωvεrrωrωωra  
dt

d
.                                 (1.32) 

The first term in the above equation is called a tangential acceleration 

            ]r[εa  .                         (1.33) 

The second term is called a normal acceleration  

                  ][ωva n .                                  (1.34) 

If we introduce the vector R drawn from the axis of rotation to the given point of 

the body at the right angle to the axis, then we can write (using the expression         

v = R∙) 

                Ran  2
,                        (1.35) 

      Rεa τ ,                                              (1.36) 

      Ra  2
τ ω                                                       (1.37)  

So, the normal and tangential accelerations linearly increase with distance 

from the axis of rotation to the point. 

 

 

 

 

v

r

o



d

ds


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2. Dynamics of a Point Particle 
 

2.1.  Newton’s Laws of Motion 
 

Kinematics describes the motion of bodies without consideration of the cause 

why a body moves exactly in a given way and not in a different one. Dynamics 

studies the motion of bodies with reference to the cause of the motion (the 

interactions between bodies). The so-called classical or Newtonian mechanics is 

based on three laws of motion that were formulated by Isaac Newton in 1687. 

Newton’s laws (like all other laws of physics) were the result of generalizing many 

experimental facts. 

 Newton’s first law is formulated as follows: a body at rest remains at rest, 

and a body in motion remains in uniform motion in a straight line unless acted on 

by an external unbalanced force. Both states are characterized by the acceleration 

equal to zero. Therefore, the first law can also be formulated as follows: the 

velocity of a body remains constant (in particular, zero) until the action of other 

bodies causes it to change. So  

a = 0, if F = 0.                  (2.1) 

Newton’s second law is formulated as follows: the rate of change of the momentum 

of a body is equal to the force F acting on the body: 

      F
P


dt

d
.                                   (2.2) 

This equation is called the equation of motion of a body. 

 Substituting mv for P and taking into account that in Newtonian mechanics 

the mass is assumed constant, we have 

 aFav
P

m i.e.,  ,m)(m
dt

d

dt

d
 .                          (2.3) 

 Newton’s third law is formulated as follows: the forces exerted by 

interacting bodies on each other are equal in magnitude and opposite in direction, 

i.e., 

      2112 FF  .                            (2.4) 

 

2.2 . Inertial Reference Frames. Galilean Principle of Relativity 
 

The reference frames where Newton’s first law holds are called inertial. Any 

reference frame which moves at a constant velocity relative to the given inertial 

frame is also inertial. A reference frame which moves with an acceleration relative 

to an inertial reference frame is called noninertial. It is obvious that there are an 

infinite number of reference frames of both types.  

It has been established experimentally that the reference frame whose center 

coincides with the Sun and whose axes are directed toward some stars is an inertial 

one. This system is called the heliocentric reference frame. 

The Earth moves relative to the Sun and stars along a curvilinear trajectory. 
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The Earth also rotates about its axis. Because of this, a reference frame affixed to  

the Earth moves with an acceleration relative to the heliocentric one and is not 

inertial in the strict sense. However, the acceleration of the frame is small and this 

frame may be considered inertial in many cases. Accelerations caused by the 

rotation of the Earth about its axis and the Sun are very small (in comparison with 

the free fall acceleration g = 9.8 m/s
2
), and are equal to 3.4∙10

-2
 and 6∙10

-3
 m/s

2
, 

respectively. 

Transition from one inertial frame to another can be performed with the help 

of the Galilean transformation. If the inertial frame K(x, y, z) moves with the 

constant velocity v0 relative to the inertial frame K(x, y, z) (see Figure 1.11), we can 

write 

Figure 1.11. 

 

                                            rrr  0 .                                (2.5) 

 Here r and r specify positions of a body in coordinate systems x, y, z and x, 

y, z; r0 is the radius-vector of the origin of the coordinate system x, y, z in the 

coordinate system x, y, z. 

The relation between the coordinates of systems K and K can be easily 

found. If we count time from the moment when the x coordinates of two frames 

coincide x = x = 0, then it is easy to see that  

x = x + v0∙t, y = y + a, z = z + b,                        (2.6) 

where a and b are constants. These relations are called the Galilean 

transformation. 

In classical mechanics, the time is the same in both reference frames. So, for 

the velocities we have (using Eq. (2.5)) 

     v = v0 + v1           (2.7)  

or 

Z Z’

v
0

M

X’

r

X

Y

Y’

O’

O

R’

r0
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vx = vx + v0, vy = vy, vz = vz, )( 10 vva 
dt

d
 

or 

     a = a.                             (2.8) 

The acceleration of a body does not depend on the relative velocity of an inertial 

frame and is the same in each inertial frame. The body’s mass (v << c) in each 

inertial reference frame is also the same. Just because of this, it is impossible to say 

whether an inertial frame moves or does not move (using any physical devices 

which are inside the inertial frame). In every inertial reference frame, all 

mechanical laws are the same. The equation of motion does not change in going 

from one reference frame to another. 

 

2.3 . Force. Mass 
 

Four interaction types are distinguished in modern physics: (1) gravitational, 

(2) electromagnetic, (3) strong, and (4) weak. 

1. Gravitational interaction is caused by the universal gravitation. The 

gravitational attraction acting between two point masses is given by 

Newton’s universal law of gravitation  

2
21

r

mm
GF


 ,                                                (2.9) 

where m1, m2 are the masses of the bodies, r is the distance between them, 

and G is the gravitational constant. 

2. Electromagnetic interaction is due to an electromagnetic field. The 

electric component of this field acting between two point electric charges 

q1 and q2 is defined by Coulomb’s law 

 
2

21

r

qq
kF


 ,                         (2.10) 

where k is the coefficient depending on a chosen system of units, and r is 

the distance between the point electric charges. If the charges are moving, 

then magnetic forces act on them in addition to the forces defined by Eq. 

(2.10)  

  F=kq[vB].                                          (2.11) 

Here B is the magnetic induction, and k is the proportionality factor. 

3. Strong interaction holds the particles in the atomic nucleus together. 

4. Weak interaction is involved in the radioactive decay of some nuclei 

when so-called leptons (electrons, positrons, muons, and neutrinos) are 

emitted. 

In classical mechanics, we deal with gravitational and electromagnetic forces 

and also with elastic and friction forces. The last two forces have an 

electromagnetic origin and are determined by the nature of the interaction between 

molecules of a substance. 
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Gravitational and electromagnetic forces are fundamental, they cannot be 

reduced to any other simpler forces. Elastic and friction forces, on the other hand, 

are not fundamental.  

Mass is a scalar physical quantity. On the one hand, it is the measure of 

inertia, and on the other hand, it determines the gravitational properties of a body. 

The concept of mass was introduced by I. Newton when he defined the momentum 

p = mv and the force F = ma. The mass acts as a source of the gravitational field. In 

the theory of gravitation (using Eq. (2.9)), the free fall acceleration can be written 

in the form: 

      
2
e

e

R

m
Gg  .                          (2.12) 

Here me and Re are the Earth’s mass and radius, respectively. The weight of a body 

on the Earth’s surface may be expressed as  

p=m∙g.                          (2.13) 

Numerous experimental facts indicate that the inertial and gravitational 

masses of bodies are directly proportional to each other. This indicates that these 

masses became identical if the units of measurements are properly selected. This 

statement expresses the equivalence principle. 

 

2.4 . Space and Time 
 

The space and time are the basic concepts of physics describing the order of 

all events in the Universe. In accordance with Newton, the space, the time, and the 

matter are independent; the space is uniform and isotropic, and the time is absolute. 

Later (in the early twentieth century) it was shown that the properties of 

space and time are not absolute and can vary when a body moves with a high 

velocity (v  c) or a strong gravitational field is present. These concepts are the 

main principles of relativity. The expression “space-time continuum” is widely 

used in the special theory of relativity some aspects of which will be discussed in 

the next sections. 

 

3. Work and Mechanical Energy 
 
3.1. Energy. Work of a Force 

 
 Energy is a scalar physical quantity that is the measure of different forms of 

motion of matter and the interactions associated with this motion. For different 

forms of motion, different types of energy are introduced (for example, mechanical, 

internal, electromagnetic, chemical, nuclear, heat energy, and so on). 

Classical mechanics deals with the mechanical energy which is the measure 

of mechanical motion of a body or a system of bodies.  
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The mechanical energy of a body changes if external forces act upon the 

body. In order to describe this process, the physical concept of mechanical work 

done by some forces is introduced. 

The elementary work dA produced by a force F exerted on an object and the 

distance ds the object moves in the direction of the force is defined by the scalar 

product of F and dr (dr is the displacement vector) 

 drFdrFddA t  cos)( rF .                          (3.1) 

Here  is the angle between F and dr, Ft is the projection of F upon the vector dr. 

Total work can be expressed by a definite integral 

    
2

1
12 .rF dA                             (3.2) 

If the function Ft(r) is known (Fig.1.12), Eq. (3.2) can be written in the form  

    
2

1

.d)(12

r

r
t rrFA                                      (3.3) 

So numerically it is equal to the area of irregular tetragonal r1-1-2-r2. 

Figure 1.12. 

In terms of projections, Eq. (3.2) can be represented as the sum of three definite 

integrals 

    
2

1

2

1

2

1

12

x

x

y

y

z

z
zyx dzFdyFdxFA .                                    (3.4) 

Sometimes it is very convenient to calculate the amount of work done using an 

expression 

      
2

1

12

t

t

FvdtA .                               (3.5) 

 Conservative forces can be defined in two ways: 

1. as forces whose work does not depend on the path along which a particle moves 

from one point to another, 

2. as forces whose work along any closed path is equal to zero. 

Forces acting in electrostatic and stationary gravitational fields are just the forces of 

this type. 

1

2

r

F

r
1

r r dr+ r
2
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3.2. Kinetic and Potential Energy 
 

Let us consider the simplest system consisting of a single point particle. The 

equation of motion of the particle is  

            Fv m .                                     (3.6) 

Here F is the resultant force acting on the particle. Multiplying Eq. (3.6) by the 

displacement of the particle dr=v·dt, we obtain 

               rFvv ddtm  .                               (3.7) 

Using Eq. (3.7) we obtain 

        rF
v

d
m

d 


)
2

(
2

.                           (3.8) 

If the system is closed, i.e. F=0, then the quantity 

    
2

2mv
Ek                             (3.9) 

remains constant. This quantity is called the kinetic energy of the particle. For an 

isolated particle the kinetic energy is an integral of motion. If there are several 

particles in a mechanical system, the total kinetic energy is the sum of their kinetic 

energies, i.e.,  

      
)(i

kik EE .                         (3.10) 

When a particle moves from point 1 to point 2, then using Eq. (3.10) we obtain 

   
2

1
12 rFdEE                                   (3.11) 

or 

        AE  .                              (3.12) 

In other words, the work done by the external forces acting upon a particle equals 

the increment of the kinetic energy of the particle. It is easy to see that  

       
m

p
Ek

2

2

 .                                        (3.13) 

For many physical applications, it is possible to represent the force in the form 

     UgradF ,                                 (3.14) 

z

U

y

U

x

U
U














 kjigrad               (3.15) 

or using the Laplacian operator 

   
zx 












 kji

y
                                 (3.16) 

we have  

       UF .                                   (3.17) 

The scalar quantity U is called the potential energy. Fields whose force can be 

expressed by Eq. (3.17) are called the potential fields. 
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 In general physics it is proved that the potential energy numerically equals to 

the work done by the external forces when a particle moves from the given point r 

to the infinity, i.e.,  

    



r

drU rF)( .                                  (3.18) 

Using Eqs. (3.17)-(3.18), it is easy to derive formulas of the potential energy for: 

 a spring, 
2

2xk
U


 , 

 two interacting electric charges, 
r

qq
kU 21  , 

 two mass points, 
r

mm
cU 21  , 

 a mass point in a uniform gravitational field, U=mgh, 

 so-called centrifugal potential, 
2

22 rwm
U


 , and so on.  

 

4. Mechanics of a Rigid Body 
 

4.1. Center of Mass of a Body 
 

  In some applications, a body cannot be represented by a point mass. 

However, by dividing the body into elementary masses mi, we can represent it as a 

system of point particles whose arrangement remains unchanged. Any elementary 

mass is acted upon by inertial forces due to its interaction with other elementary 

masses of the body being considered and by external forces. For each elementary 

mass we have  

 iiim Ffa  ,                          (4.1)  

where fi and Fi are the resultant internal (fi) and external (Fi) forces exerted to the 

given elementary mass. Summation of Eqs. (4.1) over the elementary masses yields 

        iiim Ffa .                                   (4.2) 

The sum of internal forces acting in the system equals zero (in accordance with 

Newton’s third law). So we have   

            iiim Fa .                                 (4.3) 

Here  iFF  is the resultant external force acting on the body. To simplify Eq. 

(4.3), the concept of the center of mass (rc) of the body can be introduced 

  iic m
m

rr
1

                           (4.4) 

 

Here  

      imm                                    (4.5) 
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is the total mass of the body. Differentiating Eq. (4.4) twice with respect to time 

and taking into account that ccii arar    and , we obtain 

         cii mm aa  .                              (4.6) 

Comparing Eqs. (4.3) and (4.6), we can write 

             icm Fa .                          (4.7) 

Thus, the center of mass of a rigid body moves in the same way as a point particle 

whose mass is equal to that of the body. 

 

4.2. Torque. Angular Momentum. Rotary Inertia 
 

 These physical quantities are introduced to describe the rotation of a rigid 

body about an axis. 

 Torque is defined by the formula   

][rFM  .                                     (4.8) 

 Angular momentum is defined by the formula 

 ][rPL  .                                     (4.9) 

Here r is the radius-vector, F is the force, and P is the momentum. For the rotary 

motion, the fundamental equation of angular motion holds 

   M
L


dt

d
.                                   (4.10) 

This equation holds for any rotational motion, but it can be considerably simplified 

if the particle moves along a circular trajectory. In this case, the origin of 

coordinates can be placed on the axis of rotation. So consr,  r vr t, and we can 

write 

                ωL
2mr ,                                             (4.11) 

          
dt

d
mr

ω
M

2 .                        (4.12) 

The physical quantity m∙r
2
 is called the rotary inertia or the moment of inertia (I) 

of the mass point  

      2mrI  .                            (4.13) 

Using this concept, we can express Eqs. (4.11) and (4.12) in the form  

           ωL I ,                         (4.14) 

     
dt

d
I

ω
M  .                        (4.15) 

For the given example of circular motion of the mass point, vectors L and M are 

collinear with the axis of rotation. But for arbitrary rotational motion the situation is 

not so simple. 

 From the definition of the rotary inertia (Eq. (4.13)) it is clear that it is an 

additive quantity. This means that the rotary inertia of a body is equal to the sum of 

the moments of inertia of its parts 

    
2

iirmI  .                        (4.16) 
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Here, instead of mi we use the symbol mi to stress the fact that we tentatively 

subdivided the continuous rigid body into elementary parts. 

 Having in mind that m=dV ( is the density of the body), the rotary inertia 

can be expressed by the formula    

  dVrI
V

2

)(

 .                        (4.17) 

Here r is the distance between the given volume element dV and the axis of 

rotation. It should be noted that every body has a certain rotary inertia about an 

arbitrary axis whether it rotates or stays at rest. 

 

4.3.  Steiner Theorem 

 
 The Steiner theorem on parallel axes is formulated as follows: the rotary 

inertia I about an arbitrary axis equals the moment of inertia Ic about an axis 

parallel to the given one and passing through the body center of mass plus the 

product of the body mass m and the square distance (a) between the axes 
2maII c  .                                (4.18) 

 The Steiner theorem is widely used in many physical applications. The value 

of Ic is usually tabulated  (for regular bodies), and the only 

thing you must do is just to apply this theorem. For example 

(see Fig. 1.13), the rotary inertia of a disk (mass m) about 

point a can be expressed, according to the Steiner theorem, as 

follows:   

  
2222

2

3

2

1
mRmRmRmRII oa  .                      (4.19)                          

The value 
2

2

1
mRIo   is tabulated.     

        Figure 1.13. 

 

4.4. Rotational Kinetic Energy. Rotational Work 

 
A rigid body can be represented as a system of mass points. The kinetic 

energy of every mass point is .
2

1 2
iii vmE   Obviously, vi=ri (is theangular 

speed and ri is the distance between the given mass point and the axis of rotation). 

Taking into account that kinetic energy is an additive quantity, we derive an 

expression for the total kinetic energy of the rotating body 

        






22

2
2

2 I
rmEE iii .                  (4.20) 

In general, the work done by the torque acting upon a body can be expressed by the 

formula 

                 dA  M .                 (4.21) 

a

R

o

.
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It is easy to see that for a body in circular motion Eq. (4.21) can be written in the 

form 

                      dMA .       (4.22) 

Indeed,  dMdrFdsFA . 

 Table 1.4 compares the formulas of mechanics of rotation with the similar 

formulas of mechanics of translation. This comparison shows that in all cases of 

rotation, the part of mass is played by the rotary inertia, the part of force by the 

torque, the part of momentum by the angular momentum, the part of radius vector 

by the angle of rotation, and so on. 
Table 1.4. Comparison of translational and rotational motion characteristics. 

Translation Rotation 

R = radius vector 

v = linear velocity  

a= v  = linear acceleration  

m = mass 

p = m·v = momentum 

F = force 

p  = F  

m·a = F 

2

2

1
vmEk    

drMA   = work 

 = angle of rotation 

angular velocity 

ω = angular acceleration 

I = rotary inertia 

L = I· = angular momentum 

M = torque 

L  = M  

I∙z=Mz (z is the axis of rotation) 

2

2

1
 IEk (for the axis of rotation) 

 dMA z  = work (z is the axis of 

rotation)

  

 It should be noted that in general case I is a tensor (the quantity characterized 

by nine components) rather than a scalar and Eqs. (4.20) and (4.14) assume the 

form: 

               kiikk IE
2

1
,      (4.23) 

        i, k = x, y, z, 

 

                              









































z

y

x

zzyzxz

yzyyxy

xzxyxx

III

III

III

L .              (4.24) 

 

 

EXAMPLE 1 
A boat sails due north and crosses a wide river with a speed of 10.0 km/h relative to 

water. The river flows due east with a uniform speed of 5.00 km /h relative to the 

Earth. Determine the velocity of the boat relative to a ground observer. 
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Solution.  Given:  

brV  = the velocity of the boat, b, relative to the river, r 

reV = the velocity of the river, r, relative to the Earth, e. 

Required: beV , the velocity of the boat relative to the Earth. The relationship 

between these three quantities is 

rebrbe VVV  . 

The terms in the equation are vector quantities; the 

vectors are shown in Figure 1. The quantity brV  is 

due north, reV  is due east, and the vector sum of the 

two, beV , is at angle , as shown in Figure 1.  

Thus, the speed of the boat relative to the Earth can 

be found from the Pythagoras theorem:  
  

                Figure 1.                          km/h2.110.50.10 2222
 rebrbe .  

The direction of beV  is 

626
010

05
tan)(tan 11 .)

.

.
(

br

re 



  . 

 Therefore, the boat will sail at a speed of 11.2 km/h relative to the Earth in the 

northeast direction at an angle of 26.6° to the north direction. 

 

EXAMPLE 2  
If the boat of the preceding example sails due north with the same speed           

(10.0 km/h) relative to water, as shown in Figure 2, what will be its direction? 

Solution.  As in the previous example, we know brV and reV  

and we want to find beV  . The relationship between these three 

quantities, rebrbe VVV  , is shown in Figure 2. That is, the 

boat must sail upstream in order to cross the river due north. 

The speed beV  can be found from the Pythagoras theorem 

km/h 66.80.50.10VVV 2222
 rebrbe .     

 

          Figure 2.              The direction of beV  is 

0.30)
66.8

0.5
(tan)

V

V
(tan 11  

br

re . 

So, the boat must sail northwest, at an angle of 30.0° to the north direction. 

 

EXAMPLE 3  
A particle starts from the origin at t = 0 with an initial velocity having an x 

component of 20 m/s and an y component of -15 m/s. The particle moves in the xy 

plane with the x component of acceleration only, 
2m/s 0.4xa .  



W

S

E

N

v
v

v

br
be

re



v v

v

b r b e

re
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(a) Determine the velocity components as functions of time and the total velocity 

vector at time t. 

 

Solution.  With m/s 20xo  and 2m/s 0.4xa , the kinematic equations give 

m/s )420( ttaxxox  . 

Also, with m/s 15 yo  and 0ya , 

m/s 15 yoy . 

Therefore, using these results and noting that the velocity vector  V    has two 

components, we obtain 

m/s 15)0.420( jijiV  tyx . 

(b) Calculate the velocity and speed of the particle at s 0.5t . 

 

Solution. At s 0.5t , from (a) we obtain 

m/s )1540(m/s 15])0.5(420[ jijiV  t . 

That is, at s 0.5t , m/s 40x  and m/s 15y . Knowing these two 

components, we know the velocity vector. To determine the angle (that V makes 

with the x axis), we take advantage of the fact that yx  /tan , or 

21)
40

0.15
(tan)(tan 11 






 

x

y
. 

The speed is the magnitude of V : 

m/s 43)15(40 2222
 yxV . 

(Note: If you calculate o from the x and y components of  you will find 

that o . Why?) 

(c) Determine the x and y coordinates of the particle at time t and the displacement 

vector at this time. 

 

Solution. Since at 0 ,0 00  yxt , the kinematic equation  gives 

m 0.2202/ 22
0 tttatx xx  . 

Therefore, the displacement vector at time t is 

   152.020 2
ji jir tttyx  . 

Thus, for example, at t = 5.0 s, x = 150 m and y = 75 m,  jir 7150  . Hence it 

follows that the distance of the particle from the origin to this point is the 

magnitude of the displacement: 

m 17075)(150 22  rr . 

Note that this is not the distance the particle travels in this time! Can you determine 

this distance from the available data? 
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EXAMPLE 4 
A mass m1 on a rough, horizontal surface is connected to a second mass m2 by a 

weightless cord over a weightless, frictionless pulley, as shown in Figure 4a. A 

force of magnitude F at an angle  with the horizontal is applied to m1. The 

coefficient of kinetic friction between m1 and the surface is  . Determine the 

magnitude of the acceleration of the masses and the tension in the cord. 

Figure 4. 

Reasoning. First we draw the free-body diagrams of m1 and  m2, as in Figures 4b 

and 4c. Then, we apply Newton’s second law to each block and take advantage of 

the fact that the magnitude of the force of kinetic friction is proportional to the 

normal force nfk  . Finally, we solve for the acceleration in terms of the 

parameters given. 

Solution. The applied force F has the components  cosFFx  and  sinFFy .  

Applying Newton’s second law to both masses and assuming the motion of m1 is to 

the right, we obtain 

Motion of m1:                         amTfFF kx 1cosθ , 

                             01gmsinFnFy  .                    (1) 

Motion of m2: 

                                                               0xF ,                        

                                                       amgmTFy 23                                        (2) 

But nfk  , and from Eq. (1),  sin1 Fgmn   (note that in this case n  is not 

equal to gm1 ; therefore,                      

                                                       sinFgmfk  1 .                                (3) 

That is, the frictional force is reduced because of the positive y component of F. 

Substituting Eq. (3) and the value of T from Eq. (2) into Eq. (1), we obtain           

    amgamFgmF 121 sincos  . 

Solving for a, we obtain                                

  
   

21

12sincos

mm

mmgF
a




 .         (4) 

We can find T by substituting this value of a into Eq. (2). Note that the acceleration 

for m1 can be directed either to the right or to the left, depending on the sign of the 

m

m

1

2

F


m2

T

m g
2

T fk
m g

1

Fsin

Fcos

a
F

n

(a) (b) (с) 
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numerator in Eq. (4). If the motion of m1 is to the left, we must reverse the sign of  

fk, because the frictional force must oppose the motion. In this case, the value of a 

is the same as in Eq. (4) with   replaced by -.                                                  
 

EXAMPLE  5 
Find the moment of inertia of a uniform hoop of mass M and radius R about an axis 

perpendicular to the plane of the hoop passing 

through its center (Figure 5). 

 

Solution.  All mass elements are  at the same 

distance Rr   from the axis, so, applying the 

equation for rotary inertia, for the moment of 

inertia about the  z axis passing through O we 

obtain                        

              222 MRdmRdmrI z   . 

The mass elements of the uniform hoop are all at   

the same distance from O. 
                   Figure 5.                     

 

EXAMPLE 6 
Calculate the moment of inertia of a uniform rigid rod of length L and mass M 

(Figure 6) about an axis perpendicular to the rod (the y axis) and passing through its 

center of mass. 

Uniform rigid rod of length L. The moment of inertia about the y axis is less than that about the y' 

axis. 

Figure 6. 

Solution. The shaded element of length dx has the mass dm equal to the mass per 

unit length multiplied by dx: 

dx
L

M
dm  . 

Substituting this expression for dm into equation for rotary inertia (r = x), we obtain  

               
 

 
2/

2/

2
2/

2/

2/

2/
3222 12/3/

L

L

L

L

L

Ly MLx
L

M
dxx

L

M
dx

L

M
xdmrI . 

 

 

 

 

x

y
M

Ro

o

L

x

y
y'

x

dx
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Exercise. Calculate the moment of inertia of a uniform rigid rod about an axis 

perpendicular to the rod and passing through its end (the y' axis). Note that the 

calculation requires that the integration limits be from x = 0 to x = L. 

Answer: ML/3.                                   

 

EXAMPLE 7 
Suppose a rod is nonuniform such that its mass per unit length varies linearly with x 

according to the expression x , where   is a constant. Find the x coordinate of 

the center of mass as a fraction of L. 

 

Solution. In this case, we replace dm by dx , where   is not constant. Therefore,  

 






L LL

CM
M

L
dxx

M
dxx

M
dmx

M
x

0 0

3
2

0 3

11
. 

We can eliminate   considering that the total mass of the rod is related to   by the 

expression 

   
L L

LxdxdxdmM
0 0

2 2/ . 

Substituting this into the expression for x, we obtain 

L
L

L
xCM

3

2

2/3 2

3





 . 

  

EXAMPLE 8 
The turntable of a  record player rotates initially at a rate of 33 rev/min. It stops in 

20.0 s. (a) What is the angular acceleration of the turntable, assuming it is uniform? 

 

Solution. Recall that 1 rev = 2 rad. We see that the initial angular speed is 

rad/s. 46.3
60

20.33
0 


  

Using t 0  and the fact that 0 at s 0.20t ,we obtain 

,.
.

.

t

20 rad/s 731
020

463



  

where the negative sign indicates that   decreases. 

(b) How many revolutions does the turntable conduct before it stops? 

 

Solution. Using rotational kinematic equations for angular motion, we find that the 

angular displacement in 20.0 s is 

        rad 6.34)0.20)(173.0(
2

1
0.2046.32/ 22

00  tt . 

This correspond to 34.6/ 2  rev or 5.50 rev. 
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(c) If the radius of the turntable is 14.0 cm, what are the magnitudes of the radial 

and tangential components of the linear acceleration of a point on the rim at 0t  ? 

 

Solution.  We can use  rat  and 2 rar , which give 

     2cm/s 42.2173.00.14  rat ,     222 cm/s 16846.30.14  rar . 

 

Exercise.  What is the initial linear speed of a point on the rim of the turntable? 

Answer : 48.4 cm/s. 

 

EXAMPLE 9 
A ski jumper skis down and leaves the ski-jump with a horizontal speed of 

25.0 m/s, as in Figure 9. The landing is inclined at an angle of 35.0. (a) Where 

does she land? 

 Solution. It is convenient to chose the origin 

 0 yx  at the beginning of her jump. Since 

,vx m/s250   and 00 y  in this case, Eqs. (4.12) 

and (4.13) yield 

                          ttx x 0.250  ,                       (1) 

          
22

0 8.9
2

1

2

1
tgtty y  .                     (2) 

Taking d to be the distance  before landing, from 

  Figure 9.            Figure 9 we see that x and y coordinates of the 

point of landing are 
odx 0.35cos .  Substituting them into Eqs. (1) and (2), we 

obtain 

 

    td 0.250.35cos 
,                                          (3) 

          
28.9

2

1
0.35sin td  

.                                        (4) 

Canceling t from these equations, we obtain d = 109 m. Hence, the x and y 

coordinates of the point at which she lands are 

m 3.890.35cos1090.35cos  oodx , 

m 5.620.35sin1090.35sin  dy . 

 

Exercise. Determine how long the ski jumper is into the air and the vertical 

component of her velocity just before she lands. 

Answer: m/s. 0.35 s, 57.3 y  

 

 

 

y d

x

vo

(0, 0)
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4.5. Mechanical Deformation of a Body. Hooke’s Law 
  

  Any real body becomes deformed, i.e., changes its dimensions and shape, 

under the action of forces applied to it. If the body returns to its initial dimensions 

and shape when the forces are removed, the deformation or strain is called elastic. 

If the dimensions and shape are kept when the forces are removed, the deformation 

is called plastic. There are a lot of different kinds of deformations. The most simple 

are the elongation and shear. Any kind of mechanical deformation can be caused 

by different factors: mechanical forces, electric and magnetic fields, heating, and so 

on. 

 Experiments show that the elastic force and deformation are directly 

proportional. This statement is called Hooke’s law. For elongation (Figure 1.14a) 

and shear (Figure 1.14b) it is expressed by the formulas 

Figure 1.14a.                                                  Figure 1.14b. 

Elongation 

               
SE

lF
l




 .               (4.25) 

Here F is the force, l is the length of a sample, S is the cross sectional area, and E is 

the elastic (Young’s) modulus.  

Shear  

           
SG

F


tan .               (4.26) 

Here S is the cross sectional area of a sample and G is the shear modulus. 

 Analogous formulas can be given for all kinds of elastic deformations 

including bending, rotation, and restraint.  

 The quantity  

         
S

F
                (4.27) 

is called the stress. The maximum stress a body can experience without becoming 

permanently deformed is called the elastic limit or the elastic stress.  

 

 

 

S

l l

F



a F

b

ShearElongation
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5.  Mechanical Conservation Laws 
 

A mechanical system is called closed if the resultant external force acting 

upon the system is equal to zero. In this case, three mechanical conservation laws 

can be formulated. 

1. Energy conservation law 

In any closed mechanical system, the total energy does not change. This law 

is based on the uniformity of time, i.e., on the equivalence of all moments of 

time. The equivalence should be understood in the sense that the substitution 

of the moment of time t2 for the moment t1 without changing the coordinates 

and velocities of the particles does not change the mechanical properties of 

the system. This means that after such a substitution, the coordinates and 

velocities of the particles at any moment of time t2 + t will be the same as at 

the moment t1 + t. 

2. Momentum conservation law 

In any closed mechanical system, the total momentum does not change. The 

conservation of momentum is based on the uniformity of space, i.e., on the 

identical properties of space at all points. It should be understood in the sense 

that a translation of a closed system from one position in space to another 

( const ,  aarr ) without changing the mutual arrangement and 

velocities of the particles does not change the mechanical properties of the 

system. 

3. Angular momentum conservation law 

In any closed mechanical system, the total angular momentum does not 

change. The conservation of angular momentum is based on the isotropy of 

space, i.e., on the identical properties of space in all directions. It should be 

understood that the rotation of a closed system as a whole does not change its 

mechanical properties.  

The laws of conservation are very powerful means for solving many physical 

problems. They often allow a problem to be solved without accurate consideration 

of motion equations which sometimes are very complicated. 

 The laws of conservation are more general than Newton’s laws. They are 

strictly obeyed even when Newton’s laws (particularly, the third one) are violated. 

It should be noted that the laws of energy, momentum, and angular momentum 

conservation are exact laws that are also strictly obeyed in relativistic situations. 

 

5.1. Collision of Two Bodies 

 
 Two extreme types of collisions are distinguished: elastic and inelastic ones. 

1. Completely elastic collision is a collision at which the kinetic energy of 

the bodies  after collision is equal to the kinetic energy before collision. 
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2. Completely inelastic collision is a collision between the bodies when 

after collision the system of bodies moves as a whole. Obviously, in this 

case the final kinetic energy is less then the initial one. 

Let us consider a system of two colliding homogeneous spheres having 

masses m1 and m2. The collision is assumed to be central, i.e., the centers of masses 

of the bodies lie on the collision line. 

1. Completely elastic collision is illustrated by Figure 1.15. 

Figure 1.15 

 

Here v1 and v2 are the initial velocities, and u1 and u2 are the final velocities. 

Using the momentum and energy conservation laws, we obtain  

     22112211 uuvv mmmm  ,                       (5.1) 

    
2222

2
22

2
11

2
22

2
11 umumvmvm 










.             (5.2) 

Having solved this system of equations, we obtain two symmetric relations: 

21

22121
1

2)(

mm

mmm






uv
u ,             (5.3) 

12

11212
2

2)(

mm

mmm






uv
u .                     (5.4) 

Let us consider two special cases: 

(A): m1v1 = - m2v2   

      Then u1 = - v1 and u2 = - v2, i.e., the momentum of the body changes its 

sign. 

 (B): v2 = 0 

      Then 
21

121
1

)(

mm

mm






v
u  and 

21

11
2

2

mm

m






u
u . 

 If m1 > m2, the first body moves (after collision) in the same direction, but its 

final speed is less than the initial one. The speed of the second body is higher 

compared to the first one. 

 If m1 = m2, u1 = 0 and u2 = v1, i.e., the first ball stops and the second ball 

moves at a speed equal to the initial speed of the first ball. 

 If m1 < m2, 
21

112
1

)(

mm

mm






v
u  and 

21

11
2

2

mm

m






u
u , i.e., the first ball moves 

in the opposite direction, and the second moves in the same direction at a speed    

u2 < v1. 

 

m1 m2

v1
v2

a) b)

m1 m2

u1 u2
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 2. Completely inelastic collision 

 In accordance with the momentum conservation law, 

       vvv )( 212211 mmmm                      (5.5) 

(v is the identical velocity of both particles after collision). 

Hence,                                   
21

2211

mm

mm






vv
v . 

(Obviously, for the situation shown in Figure 1.15, v1 is higher than v2.) 

 
5.2. Space Velocities 

 
The first space or orbital velocity is the velocity needed for a body to 

become an artificial satellite of a planet (for example, the Earth). Let us designate 

by m the mass of a body, by M the mass of the planet, and by R the radius of the 

planet. In order to move along a circular orbit, the force of attraction should be 

equal to 
R

vm 2
. So we have 

 
R

vm

R

Mm
G

2

2





 .                (5.6) 

Hence,  

         
R

MG
v


 .                (5.7) 

Talking into account that  

  
2R

MG
g


 ,                (5.8) 

we can write the last equation in the form 

          Rgv  .               (5.9) 

For the Earth, the first orbital velocity is v1 = 7900 m/s. 

 The second space or escape velocity is the velocity needed for a body to 

leave a planet (in other words, to be able to overcome the gravitational attractive 

forces and to move to infinity). When r , Ep = 0, and the body velocity for 

r  can be assumed zero (we want the body just to leave the planet). So we can 

write 

             0
2
2 






R

MmG

R

vm
.             (5.10) 

Hence,  

 
R

MG
v




2
2               (5.11) 

or, using Eq. (5.8), we obtain 

    Rgv  22 .      (5.12) 

For the Earth, the escape velocity is v2 = 12200 m/s. 
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5.3. Gyroscopes 

 
A gyroscope (or a top) is a massive symmetrical body spinning rapidly about a  

symmetry axis. We call this axis the spin axis. Physically, it is a metallic spindle. 

To have the two main features of the gyroscope, two conditions should be met: 

1. The mechanical construction of the gyroscope should be such that the 

spindle has three degrees of freedom.  

2. The angular velocity of gyroscope spinning about its axis should be much 

higher compared to that when the direction of the spindle is being 

changed. 

A continuously driven gyroscope holds the direction of its spin axis under 

any perturbations caused by external forces. This property of the gyroscope is due 

to the angular momentum conservation law. 
A

A

0

r

F P( )



 
Figure 1.16. 

If an external force F acts upon the gyroscope spindle (see Figure 1.16), the spin 

axis does not turn in the direction of this force, but in a perpendicular direction.  As 

a result, the gyroscope begins to rotate with angular velocity equal to 

                 



I

M
 .                       (5.13) 

Here, M is the external torque,  is the angular velocity of the gyroscope about its 

axis, and I is its rotary inertia. 

 The gyroscope properties are widely used in technology, for example, in 

satellite or nautical navigation in order to stabilize the direction of ship motion; 

they are also used in geodesy and topography.  

 

5.4.  Laws of Planetary Motion 
 

 The laws of planetary motion were established by a German astronomer 

Johannes Kepler (1571–1630) in the early 17th century.  
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Kepler’s first law. All the planets of the Solar system circulate around the Sun in  

elliptical orbits with the Sun at one focus. Kepler found that planets move fastest 

when closest to the Sun, slowest when farthest away.  

Kepler’s second law. The radius vector from the Sun to the planet sweeps out equal 

areas in equal times (Figure 1.17). 

 

 
Figure 1.17. 

 

So, the velocity at point A (perihelion) is higher than that at point B (aphelion). 

Kepler’s third law. The ratio of the square of the revolution period of a planet T to 

the third power of the larger semi-axis of the ellipse a, 
3

2

a

T
, is the same for all the 

planets of the Solar system. 

 These three laws were established as a result of very hard work done by 

Kepler. Later, Newton analyzed the Kepler’s laws and had come to his famous law 

of the universe gravitation. 

 

6. Relativistic Mechanics 

 

6.1. Basic Postulates of Relativity           
 

 In the early twentieth century it appeared that Newtonian mechanics held 

only for bodies moving at speeds that are much lower than the speed of light in 

vacuum (this speed is denoted by the symbol c). In order to describe motion at 

speeds comparable with c, the special theory of relativity was introduced. Many 

prominent physicists (Poincaré, Larmor, Lorentz, Einstein, Fitzgerald, Minkowski, 

and Voigt) took part in developing this theory. The basic principles of relativity are 

historically called Einstein’s postulate and the postulate on constancy of speed of 

light. 

 Einstein’s postulate of relativity is an extension of Galileo’s mechanical 

principle to all physical phenomena without any exception. According to this 

. .
A BF F
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postulate, all laws of nature are the same for all inertial reference frames. This 

postulate can be formulated as follows: equations expressing laws of nature do not 

change with respect to transformation of coordinates and time from one inertial 

reference frame to another. 

 The postulate on constancy of speed of light states that the speed of light in 

vacuum is the same for all inertial reference frames and does not depend on the 

motion of sources and receivers of light. 

 

6.2. Lorentz Transformations      
      

 It is shown in the special theory of relativity (for inertial reference frames) 

that to have the laws of nature independent of the relative speed of inertial 

reference frames, it is necessary to transform space-time coordinates in accordance 

with the so-called Lorentz transformations (See Figure 1.18): 

                                                         Figure 1.18. 

 

2

2

1
c

v

tvx
x




 , 

  y=y,         (6.1) 

z=z, 

2

2

2

1
c

v

c

xv
t

t






 . 

Inverse transformations can be easily obtained by changing the sign of v (the 

relative velocity of reference frames K and K): 

2

2

1
c

v

tvx
x




 , 

  y=y  ,                          (6.2) 

y y'

z z'
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x x'
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z=z, 

2

2

2

1
c

v

c

xv
t

t






 . 

 
6.3.  Interval 

 
 Let (x1, y1, z1, t1) and (x2, y2, z2, t2) be two world points in reference frame K. 

Let us designate  

ttt  12 , 

     xxx  12 ,                 (6.3) 

yyy  12 , 

zzz  12 . 

The quantity  

         22222 zyxtcS                 (6.4) 

is called the interval. It is very easy to show (using formulas of the Lorentz 

transformation) that in any reference frame the value of the interval is the same: 

SS  .                  (6.5) 

So, the interval is an invariant. 

The quantity  

 
c

S
                  (6.6) 

is called the proper time. Thus, the proper time is also an invariant.  

 According to Eq. (6.4), the interval can be real (if 2rtc  ), imaginary (if 
2rtc  ), or equal to zero (if 2rtc  ). The last case occurs for events of light 

signal emission from the point (x1, y1, z1) at the moment t1 and the arrival of this 

signal at the point (x2, y2, z2) at the moment t2. 

 For a real interval, we have  

       0222222  rtcrtc .               (6.7) 

It can be seen from this relation that it is possible to find a frame K in which       

r = 0, i.e., both events coincide in space. No reference frame exists, however, in 

which t = 0 (the interval would become imaginary for this value of t). Thus, 

events separated by a real interval cannot become simultaneous in any reference 

frame. For this reason, real intervals are called time-like. 

 For an imaginary interval, we have    

       0222222  rtcrtc .              (6.8) 

Hence, it is  possible to find a frame K in which t = 0, i.e., both events occur at 

the same moment t. No reference frame exists, however, in which we would have 

r = 0 (the interval would be real for this value of r). Thus, events separated by 
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an imaginary interval cannot coincide in space in any reference frame. For this 

reason, imaginary intervals are called space-like. 

 The distance r between the points at which the events separated by a space- 

like interval occur exceeds c·t. Therefore, these events cannot affect each other in 

any way, i.e., cannot be causally related to each other. Causally related events can 

be separated only by a time-like or zero interval. 

 

6.4. Corollaries of the Lorentz Transformations 

 
a) Lorentz (or Fitzgerald) contraction 

Let us consider a rod arranged along the x axis and at rest relative to the 

reference frame K (Figure 1.19). 

Figure 1.19. 

  

The length of the rod in K 120 xxl  . The coordinates x2 and x1 can be 

measured at different time moments, but in the reference frame K they should be 

measured simultaneously. Using the Lorentz transformation formulas 
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and designating x2 - x1 = l (the length of the rod relative to the reference frame K), 

we obtain  
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


 , or 

   
2

2

0 1
c

v
ll                   (6.9) 

(l0 is called the proper length). 

 Thus, for moving bodies their dimensions contract in the direction of their 

motion the greater, the higher is the velocity. This phenomenon is called the 
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Lorentz (or Fitzgerald) contraction. It should be noted that the dimensions of the 

rod are identical in all the reference frames in directions of the y and z axes. 

 

b) Time dilation 

 Let us consider a clock at rest in the reference frame K (its position is x). 

Using the Lorentz transformation formulas, we obtain 

2

2
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1
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x
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 , 
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Hence, 

2

2

12
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1
c

v

tt
tt




 , t2  t1=t0 is the time interval registered by the clock at 

rest (t0 is called the proper time); t2 - t1=t is the corresponding time interval 

registered in the reference frame K relative to which the clock moves. Thus; 
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v

t
t




 .               (6.10) 

Obviously, t > t0, so in the reference frame K, moving at a speed v relative to 

the reference frame K, the time slows down (from the K – observer’s point of 

view). This slowing of time is referred to as time dilation.  

 

c) Addition of velocities 

 For an arbitrary direction of the velocity v in the reference frame K, the 

formulas for the velocity in the reference frame K are rather complicated. But if a 

body is moving parallel to the x axis, its velocity v relative to the frame K coincides 

with vx, and its velocity v relative to the frame K coincides with vx. In this case, 

the law of velocity addition has the form:  

  
2

0

0

1 cvv

vv
v




 .               (6.11) 

Here, v0 designates the relative velocity of the systems K and K. It should be noted 

that according to Eq. (6.11), velocities comparable with that of light are not added 

in accordance with the parallelogram rule; the resultant speed v cannot exceed the 

speed of light. 
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6.5. Dynamics of Relativity 

 
The basic equation of motion has the form:  

  F
v
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d
,                       (6.12) 

where m0 designates the “conventional” Newtonian mass. The quantity  
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v

P        (6.13) 

is called the relativistic momentum. Thus, formally Eq. (6.12) coincides with 

Eq. (2.3) of classical mechanics. But in general case, F = m·a does not hold. Using 

Eq. (6.12), it is rather easy to show that only in two cases the force F and 

acceleration a are collinear: 

(a) Transverse force ( vF ) 
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,               (6.14) 

(b) Longitudinal force ( vF , or vF ) 
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In general, the directions of a and F do not coincide. Sometimes, the quantity  

               

2

2

0

1
c

v

m
m



                        (6.16) 

is called the transverse mass, and the quantity  
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is called the longitudinal mass. The quantity  
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is called the total energy of the particle, and the quantity 

         E0 = m0∙c
2                  

 (6.19) 

is called the rest energy. The rest energy of mass particles can be liberated when 

particles annihilate, i.e., convert into field quanta (for example, 2  ee ). The 

kinetic energy of the particle is  

   Ek = E - E0      (6.20)  

or 
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When 
c

v
<<1, the last equation yields  

2

2
0 cm

Ek


 , i.e., the classical expression of 

the kinetic energy. 

 

EXAMPLE 10 
Playing billiards, a player wishes to sink the target ball in the corner pocket, as 

shown in Figure 10. If the angle with respect to the corner pocket is 35°, at what 

angle  will the cue ball be deflected? Assume that friction and rotational motion 

can be neglected and the collision is elastic. 

 

Solution.  Since the target ball is initially at rest, v2i = 0, and the law of  

conservation of energy gives  

2
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2
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2
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1

2

1
ffi vmvmvm  . 

However,  21 mm  , so that 

                                            
2
2

2
1

2
1 ffi vvv  .                                                 (1)       

Applying the law of conservation of momentum to the collision between two balls, 

we obtain 

                                                  ffi vvv 211  .                                                  (2)  
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Figure 10. 
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If we square both sides of this equation, we obtain     

    ffffffffi vvvvvvv 22
2

2
2

12121
2

1 2 . 

However,  o
2121 35cos  ffff vvvv , and            

        o
21

2
2

2
1

2
1 35cos2  ffffi vvvvv .                         (3)                

Subtracting (1) from (3) gives 

0)35cos(2 o
21 ff vv , 0)35cos( o  , oo 9035     or  o55 . 

Again, this result shows that whenever two equal masses undergo a glancing elastic 

collision and one of them is initially at rest, after the collision they will move at 

right angle with respect to each other. 

 

EXAMPLE 11 
A small sphere of mass 2.00 g drops from rest to a large vessel filled with oil. The 

sphere reaches a terminal speed of 5.00 cm/s. Determine the time constant  and the 

time it takes the sphere to reach 90% of its terminal velocity. Assume that the 

resistive force is proportional to the sphere velocity R = bv. 

Solution.  Applying Newtons second law to the vertical motion, choosing the 

downward direction to be positive, and noting that bvmgFy   and  
dt

dv
a  , we 

obtain 

                                           
dt

dv
mbvmg  ,                          (1)                                                                  

where the acceleration is downward. Simplification of this  expression gives 

                                                 v
m

b
g

dt

dv
 .                                                          (2)     

  

Since the terminal speed is given by bmgvt / , the coefficient b is 

sgvmgb t /392/   Eq. (2) is a differential one. Solving this equation for v , we 

obtain              

                                      


v t

dt

v
m

b
g

dv

0 0

, 

                                   t
m

b
v

m

b









1ln , 

                                 t
t

mbt eve
b

mg
v 11 .                                                 (3) 

As t increases, the resistive force increases and the acceleration decreases. 

Eventually, the acceleration becomes zero when the resistive force equals the 

weight. At this point, the sphere reaches its terminal speed tv  and continues to 

move with zero acceleration. The terminal speed can be obtained from last equation 

Figure 11.                   
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by setting t . This gives 

                                                      
b

mg
vt  . 

 

The coefficient b  is 

                                        kg/s 392.0
05.0

8.90.2





tv

mg
b . 

Therefore, the time constant  is given by 

                                        s.101.5
392.0

0.2 3
b

m
 

The speed of the sphere as a function of time is given by Eq. (3). To find the time t 

it takes the sphere to reach a speed of  tv9.0 , we substitute tvv 9.0  into Eq. (3) 

and solve it for t: 

  /19.0 t
tt evv , 

9.01 /  te , 

1.0/ te , 

3.21.0ln/  t , 

ms 711)s1015(3232 3 ....t  
. 

Figure 11. 

Exercise. What will be the sphere speed in oil in 11.7 ms? Compare this value with 

the speed the sphere would  have had if it had fallen in vacuum and hence had been 

influenced only by gravity. 

Answer. 4.50 cm/s in oil versus 11.5 cm/s in free fall. 

 

EXAMPLE 12 
Consider a car of mass m accelerating up a hill, as in Figure 12. Assume that the 

magnitude of the resistive force is 

 Nv27.0218 f , 

where v is the speed, in meters per second. Calculate the power the engine must 

deliver to the wheels. 

 

 



v

t

0.63vt

vt
v

mg

R v=   b

(b) (a)

_
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Figure 12. 

Solution. The forces acting on the car are shown in Figure 12, where F is the force 

of static friction that propels the car, and the remaining forces have their usual 

meaning. Newton’s second law applied to the motion along the road surface gives 

                                              mamgFFx sinf , 

                                27.0218sinsin vmgmamgmaF  f . 

Therefore, the power required for propulsion is 
270.0218sin vvmvgmvaFvP  , 

where mva  represents the power the engine must deliver to accelerate the car. If the 

car moves at constant speed, this term is zero, and the power requirement is 

reduced. The term sinmvg  is the power required to overcome the force of gravity 

when the car moves up the incline. This term would be zero for motion along a 

horizontal surface. The term 218v is the power required to counterbalance the 

rolling friction. Finally, the term 270.0 v  is the power needed to overcome the air 

drag. If we take m = 1450 kg, v = 27 m/s, a = 1.0 m/s
2
, and   = 10°, the terms 

entering into P are calculated to be 

kW 39mva , 

kW 6710sinm/s 8.9m/s 27kg 1450sin o2 mvg , 

kW 147.0 3 v . 

Hence, the total power required is 126 kW. Note that the power requirements for 

moving at constant speed along a horizontal surface are only 20 kW (the sum of the 

last two terms). Furthermore, if the mass is halved (as in compact cars), the power 

required is also reduced by almost the same factor. 

 

EXAMPLE 13 
Two blocks are connected by a massless cord that passes over a frictionless pulley 

and a frictionless peg as in Figure 14. One end of the cord is attached to mass m1 = 

3.00 kg  that is at distance R = 1.20 m from the peg. The other end of the cord is 

connected to a block of mass m2 = 6.00 kg resting on a table. From what angle  

(measured from the vertical) must the 3.00-kg mass be released in order to begin to 

lift the 6.00-kg block from the table? 
 

 

 



F
n

f

mg
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Figure 13. 

Reasoning. It is necessary to use several concepts to solve this problem. First, we 

use the law of conservation of energy to find the speed of mass m1 at its lowest 

position on a vertical circle as a function of   and the radius of the circle. Next, we 

apply Newton’s second law to the 3.00-kg mass at its lowest position to find the 

tension as a function of the given parameters. Finally, we note that the 6.00-kg 

block lifts from the table when the upward force exerted on it by the cord exceeds 

the force of gravity acting on the block. This procedure enables us to find the 

required angle. 

 

Solution. Applying the law of conservation of energy to the 3.0-kg mass, we obtain  

ffii UKUK  , 

                                                0
2

1
0 2

11  vmgym i ,                                           (1) 

where v is the speed of the 3.00-kg mass at its lowest position. (Note that 0iK  

since the 3.00-kg mass starts from rest, and 0fU  because at the lowest position 

the potential energy vanishes.) From the geometry in Figure 13  we see that 

)cos1(cos  RRRyi . Substituting this relation into Eq. (1), we obtain 

                                                    )cos1(22  gRv .                                             (2) 

Now we apply Newton’s second law to the 3.00-kg mass when it is at its lowest 

position: 

R

v
mgmT

2

11  , 

                                                    
R

v
mgmT

2

11  .                                                (3) 

This same force acts on the 6.00-kg block, and to lift it from the table, the resultant 

normal force must be zero, that is, gmT 2 . Using this condition and Eqs. (2) and 

(3), we derive                           

R

gR
mgmgm

)cos1(2
112


 . 

Solving this equation for  and substituting the given parameters, we obtain 

 

m m


1 2

Smooth peg
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2

1
0.32

0.60.33

2

3
cos

1

21 






m

mm
, 

o060. . 

Exercise.  If the initial angle is  = 40.0°, find the speed of the 3.00-kg mass and 

the tension in the cord when the 3.00-kg mass is at its lowest position. 

Answer. 2.35 m/s, 43.2 N. 

 

EXAMPLE 14  

m m + 1 2
m

m
1

2
1iv vf h

 
Figure 14. 

A ballistic pendulum (see Figure 14) is a system used to measure the speed of 

rapidly moving projectile, such as a bullet. The bullet is fired into a large block of 

wood suspended from light wires. The bullet is stopped by the block, and the entire 

system swings at a height h. Because the collision is perfectly inelastic, momentum 

is conserved.  Equation for the momentum conservation gives the speed of the 

system after collision in the   impulse approximation. The kinetic energy after 

collision is 

                                     
2

21 )(
2

1
fvmmK  .                                                         (1) 

With 02 iv , equation for momentum conservation becomes 

                                              
21

11

mm

vm
v i

f


 .                                                          (2) 

Substituting this value of iv1  into Eq. (1), we obtain   

 21

2
1

2
1

2 mm

vm
K i


 , 

where iv1  is the initial speed of the bullet. Note that this kinetic energy is less than 

the initial kinetic energy of the bullet. After collision, however, the total energy 

remains constant; the kinetic energy at the lowest position is transformed into the 

potential energy at the height h: 

 
 

.

,
2

1

21
1

21
21

2
1

2
1

gh
m

mm
v

ghmm
mm

vm

i

i








 





 

Hence, it is possible to obtain the initial speed of the bullet by measuring h and the 

two masses. Why would it be incorrect to equate the initial kinetic energy of the 
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bullet to the final gravitational energy of the bullet block combination? 

 

Exercise. In a pendulum experiment, suppose that  h = 5.0 cm, m1 = 5.0 g, and m2 = 

1.0 kg. Find (a) the initial speed of the projectile, and (b) the energy loss due to the 

collision. 

Answer. 199 m/s, 98.5 J. 

 

EXAMPLE 15  
Two masses m1 and m2 are connected by a light cord that passes over a pulley of 

radius R having the moment of inertia I about its axle, as shown in  Figure 15. The 

mass m2 slides on a frictionless horizontal surface. 

Determine the acceleration of the two masses using the 

concepts of angular momentum and torque. 

 

Solution. First, we calculate the angular momentum of 

the system, which consists of the two masses plus the 

pulley. Then we calculate the torque about the axis 

passing along the axle of the pulley through 0. At the 

 Figure 15.  instant m1 and m2 have a speed v, the angular  momentum 

of m1 is m1vR, and that of m2 is m2vR.  At the same instant, the angular momentum 

of the pulley is RIvI / . Therefore, the total angular momentum of the pulley is 

 

                                        RIvvRmvRmL /21  .                                               (1) 

Now let us evaluate the total external torque on the system about the axle. Because 

it has zero moment arm, the force exerted by the axle on the pulley does not 

contribute to the torque. Furthermore, the normal force acting on m2 is balanced by 

its weight m2g, and so these forces do not contribute to the torque. The external 

force m1g produces a torque about the axle equal in magnitude to m1gR, where R is 

the moment arm of the force about the axle. This is the total external torque about 

0. Using this result together with Eq. (1) and Eq. (4.10), we obtain  

 

  .

,

,

211

211

dt

dv

R

I

dt

dv
RmmgRm

R

v
IRvmm

dt

d
gRm

dt

dL
ext















 

 

Because adtdv / , we can solve the above equation for a to obtain 

  2
21

1

/ RImm

gm
a


 . 

You may wonder why we neglected the forces that the cord exerts on the objects in 

evaluating the net torque about the axle. The reason is that these forces are internal 

m

m1

2

v

v
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to the system under consideration. Only the external torque contribute to the change 

in the angular momentum. 

 

EXAMPLE 16 

A projectile of mass m  and velocity vo is fired at a solid cylinder of mass M and 

radius R (Fig. 16). The cylinder is initially at rest and is mounted on a fixed 

horizontal axle that passes through the center of mass. The trajectory of motion of 

the projectile is perpendicular to the axle and ends at a distance d < R from the 

center. Find the angular speed of the system after the projectile strikes and adheres 

to the surface of the cylinder. 

Reasoning. Let us evaluate the angular 

momentum of the system (projectile + 

cylinder) about the axle of the cylinder. The 

net external torque on the system about this 

axle is zero. Hence, the angular momentum 

of the system is the same before and after 

collision. 

 

                   Figure 16.                      Solution.  Before collision, only the projectile 

has the angular momentum with respect to a point on the axle. The magnitude of 

this angular momentum is mvod, and it is directed along the axle away from us. 

After collision, the total angular momentum of the system is I, were I is the total 

moment of inertia about the axle (projectile + cylinder). Since the total angular 

momentum is constant, we obtain 

 )
2

1
( 22 mRMRIdmvo , 

22

2

1
mRMR

dmvo



 . 

This suggests another technique for measuring the speed of a bullet. 

 

Exercise. In this example, the mechanical energy is not conserved since the 

collision is inelastic. Show that 
22

2

1

2

1
omvI  . What are the factors responsible for 

the energy loss? 
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Part 2.  Mechanical Oscillations and Waves. 
 
7.0  Oscillations. General Information  

 
 Periodically repeated processes or motions are called oscillations. For 

example, swings of a clock pendulum, vibrations of a string or a tuning fork, and 

the voltage across the plates of a capacitor in a radio receiver circuit have this 

property of repetition.  

 Depending on the physical nature of repeating process, we distinguish 

mechanical, sound, electromagnetic, and other oscillations. Oscillations 

(vibrations) are widespread in nature and engineering. 

 Oscillations are called periodic if the value of an oscillating physical quantity 

(or better to say, the state of a system) is the same in identical time intervals.  

 Depending on the nature of the action on an oscillating system, we 

distinguish free (or natural) oscillations, forced oscillations, self-oscillations, and 

parametric oscillations. 

 Free or natural oscillations occur in a system left alone after an impetus was 

imparted to it or it was brought out of the equilibrium position. 

 The forced oscillations occur when the oscillating system is acted upon by a 

small external periodically changing force; the frequency of the force differs from 

the natural frequency of the system. 

 Self-oscillations, like forced ones, are excited by the action of external forces 

on the oscillating system, but the moments of time when these actions are exerted 

are set by the oscillating system itself – it controls the external action. 

 In parametric oscillations, an external action causes periodic changes in a 

parameter of the system, for example, in the length of a thread on which an 

oscillating body is suspended. 

 The time T needed for a physical system to repeat its state is called the 

period of oscillations. The reciprocal quantity, 
T

1
 , is called the frequency. The 

frequency in SI units is herz or cycle (one oscillation per second). The quantity 

 2  is called the cyclic frequency. 

 Harmonic oscillations are the simplest ones. There are oscillations when the 

oscillating quantity changes with time according to a sine or cosine law. This kind 

of oscillations is especially important for the following reasons: first, oscillations in 

nature and engineering are often close to harmonic ones in their character, and 

second, periodic processes having different time dependences can be represented as 

the superposition of several harmonic oscillations.  

 
7.1. Free (Natural) Harmonic Oscillations 
 Let us consider a mechanical system whose position can be defined by a 

single quantity x. The system is said to have one degree of freedom. In this case, 

the oscillating motion equation has the form (we chose a cosine law): 
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)cos( 0  tAx .                (7.1) 

Here A is the amplitude of oscillations, 0 is the natural cyclic frequency, and  is 

the initial phase.  Note: Eq. (7.1) can be written in a complex form  

                           )( 0 


ti
Ax .                (7.2) 

Differentiation of Eq. (7.1) with respect to time yields: 

                )
2

cos()sin( 0000


 tAtAx ,           (7.3) 

                )cos()cos( 0
2
00

2
0  tAtAx .           (7.4) 

Thus, the velocity and acceleration have the same time dependences, but are 

displaced in time by additional phase shifts 
2

π
 and respectively. Obviously,  

                        0max  Av ,                         (7.5) 
2
0max  Aa .                (7.6) 

 

7.2. Vector Diagram 

 
 One of the basic features of vector quantities is that they are summed by the 

parallelogram rule, i.e., their projections are algebraically added. Harmonic 

oscillations are widely known to be 

represented with the help of so-called 

vector diagrams (see Figure 2.1).  

Here, A1 and A2 are arbitrary vectors and 

A = A1 + A2 is their sum. Let us imagine 

that all three vectors are rotating (about 

point O in counterclockwise direction with 

angular speed 0). The time is counted 

from the moment when these vectors are at 

angles 1, 2, and to the x axis. 

Obviously, the time dependence of their 

projections can be expressed in the form:          
                     Figure 2.1.                                    

                    














)cos(

)cos(

)cos(

021

2022

1011

tAxxx

tAx

tAx

.               (7.7) 

The quantities on the right side of Eq. (7.7) represent harmonic oscillations. Thus, 

the vector A represents the resultant oscillation. It can be seen from the figure that  

 

)cos(2 1221
2
2

2
1

2  AAAAA ,                        (7.8)  
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2211

2211

coscos

sinsin
tan






AA

AA
.                           (7.9) 

Thus, the representation of harmonic oscillations by means of vectors makes it 

possible to reduce the addition of several oscillations (in the same directions) to the 

operation of vector addition. This procedure is especially useful in optics and 

electrical engineering. Of course, Eqs. (7.8) and (7.9) can be derived by 

trigonometric transformations. But the vector diagram method is much simpler and 

very effective. 

 If the frequencies of oscillations x1 and x2 are not the same, the vectors A1 

and A2 will rotate with different angular velocities. In this case, the resultant vector 

A varies in magnitude and rotates with a varying velocity. Consequently, in this 

case the resultant motion will be a complex oscillating process. It should be noted 

that any periodic (but not necessary harmonic) oscillation can be represented in the 

form of the Fourier transform in terms of sine (or cosine) functions representing the 

harmonic oscillations with frequencies , 2·, 3·and so on ( is called the basic 

frequency) 

       



)(

)cos()(
n

nn tnAtx .             (7.10) 

7.3. Beats 

 
 Of special interest is the case when two harmonic oscillations of the same 

direction being added differ only slightly in frequency. To avoid unnecessary 

complications, let us assume that the amplitudes of both oscillations are identical 

and their initial phases are zero. Thus, )cos(1 tAx  , ))cos((2 tAx  , 

and  By summing these expressions and using the trigonometric formula 

for the sum of cosines, we have 

          )ωcos())
2

ω
cos(2(21 ttAxxx


                                  (7.11) 
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Figure 2.2. 
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(in the second multiplier we disregard the term 
2


 in comparison with . The 

plot of function (7.11) is shown in Figure 2.2 (
10

1





). 

Owing to the condition , the multiplier in parentheses does not 

virtually change during the time the multiplier cos(t) completes several 

oscillations. So, oscillation (7.11) can be considered as a harmonic oscillation of 

frequency  whose amplitude changes by a periodic law. Obviously, the analytic 

expression for the amplitude has the form  

    )22(Figure )
2

ω
cos(2 b. tAamplitude


 .                        (7.12) 

The quantity                                  
ω

π2


AT                                    (7.13) 

is called the period of beats. 

 It should be noted that the multiplier )
2

cos(2 tA


 affects the oscillation 

phase (see points M1 and M2 in Figure 2.2a). 

 
7.4.  Addition of Mutually Perpendicular Oscillations 

 
 Let us consider a point particle which can oscillate both along the x and y 

axes. If both oscillations are induced, the particle will move along a curved 

trajectory (in general case) whose shape depends on the phase shift between the 

two oscillations. Assume also that the oscillation frequencies are identical. Thus,  

                )cos( 1 tAx , )cos( 2 tBy .                      (7.14) 

Equations (7.14) describing the trajectory are given in the parametric form. To 

obtain an equation of the trajectory in the conventional form, the parameter t should 

be excluded. After simple transformations, we obtain 

      )(sin)cos(2 12
2

122

2

2

2







BA

yx

B

y

A

x
.                (7.15) 

Equation (7.15) is well known to be the equation of an ellipse whose axes are 

oriented arbitrary relative to the x and y coordinate axes 

(see Figure 2.3). The orientation of the ellipse and the 

lengths of its semi-axes depend in a rather complicated way 

on the amplitudes A and B and the phase difference 

(). It should be noted, however, that the ellipse is 

always inscribed in a rectangle with sides equal to 2A and 

2B. The oscillations described by Eq. (7.15) are  called  the 
           Figure 2.3. 

y

x
+A

-B

-A
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 elliptic oscillations. Let us discuss some particular cases (Figure 2.4). 

1. The phase difference is n (n=0, 1, 2, …). Then we have (Figure 

2.4a) 

  x
A

B
y  .               (7.16) 

Figure 2.4. 

2. The phase difference is n+1). Then we have (Figure 2.4b) 

x
A

B
y  .               (7.17) 

     The oscillations of these two types are called linearly polarized oscillations. 

3. The phase shift is 
2


n. Then we have an ellipse whose axes are 

parallel to the x and y axes, and the point particle moves clockwise (Figure 

2.4c). If A = B, the ellipse degenerates into a circle (Figure 2.4d). 

4. The phase shift is 
2


n. Then again we have an ellipse whose 

axes are parallel to the x and y axes, but the point particle moves 

counterclockwise (Figure 2.4e). If A = B, the ellipse degenerates into a circle 

(Figure 2.4f). 

The oscillations of the last two types are called circularly polarized 

oscillations. In general, when two perpendicular oscillations are added, we have a 

resultant motion of a very complicated form, and the trajectory of motion can be 

open. But when n and m are integers, we can write 

      )ωcos( mtmAx  ,                       (7.18) 

       )ωcos( ntnBy  ,              (7.19) 
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and the trajectory of motion is closed. These rather intricate curves are called 

Lissajou’s figures. Figure 2.5 shows a simple trajectory obtained at a ratio of 

frequencies of 1:2 and a phase difference of 
2




0 x

y

a

b

                           

Figure 2.5.                                                  Figure  2.6. 

 

The equations of oscillations have the form 

                                                   
).

2
ω2cos(

),ωcos(






tBy

tAx

                                          (7.20) 

 If the ratio of frequencies is 1:2 and the phase shift is zero, this trajectory 

degenerates into an open curve (Figure 2.6) along which the particle moves back 

and forth. 

The equations of oscillations have the form 

                                                       
).ω2cos(

),ωcos(

tBy

tAx




                                            (7.21) 

 
7.5. Free Small-Amplitude Oscillations 
 

 An oscillating system (with a single degree of freedom x) whose equation of 

motion has the form  

         0ω2
0  xx                         (7.22) 

is called the linear harmonic oscillator. It should be noted that this equation is true 

for any oscillating system under conditions that the amplitude of oscillations is 

sufficiently small. The solution of Eq. (7.22) are Eqs. (7.1) and (7.2). 

The kinetic and potential energies of the linear oscillator can be written in the form:  

            )ω(sinω
2

1
0

22
0

2  tmAEk ,                       (7.23) 

            )ω(cosω
2

1
0

22
0

2  tmAEp .                      (7.24) 

Obviously, the total energy of an oscillating material point (for example, a spring 

pendulum) is  

0 

y

x

a

b
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                 2

0

2ω
2

1
mAE  .                        (7.25) 

Using Eqs. (7.23) and (7.24), we easily obtain  

                1
ω2

0

22

2

2

2


Am

p

A

x
,              (7.26) 

i.e., an ellipse (in the x-p coordinate plane). The area of the ellipse is  

       0

2ωπmAS  .                 (7.27) 

Thus, the total energy of oscillations can be represented as follows: 

                
π2

ω0S
E  .               (7.28) 

It must be taken into consideration that for a spring pendulum 

            
m

k
0 ,               (7.29) 

where k is the spring rigidity. In other situations 0 can be expressed in some other 

way. 

 A mathematical or simple pendulum is defined as an ideal system consisting 

of a weightless and unstretchable string on which a mass concentrated at one point 

is suspended. A sufficiently close approximation to a simple pendulum is a small 

heavy sphere suspended on a long thin thread (Figure 2.7). 

                                                              Figure 2.7. 

The system has a single degree of freedom (the angle . Using the basic equation 

of rotational motion Mε J , we obtain  

 sin2 mgml   or 0sin 
l

g
 .                                   (7.30) 

Let us consider only small-amplitude oscillations (sin). Introducing the 

notation                                     
2
0ω

l

g
,                         (7.31) 

we arrive at the equation 

          0ω2
0  .              (7.32) 

By analogy with Eq. (7.22), its solution has the form  

                   0ω2
0  .                                 (7.33) 

.

mg



O

l
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Here A is the angular amplitude, and  is the initial angular phase.  

    Consequently, for small-amplitude oscillations the angular displacement of a 

simple pendulum changes with time according to a harmonic law.  It is easy to see 

that the period of oscillations is 

                                                            
g

l
T π2 .                                              (7.34) 

   If an oscillating body cannot be treated as a point particle, the pendulum is called 

a physical or compound pendulum (Fig. 2.8). 

Figure 2.8. 

 

   Denoting the rotary inertia of the pendulum about the axis passing through the 

suspension point O by the symbol I, we obtain  

                                                           sinmglI  .                                        (7.35) 

For small amplitude oscillations, Eq. (7.35) transforms into Eq.  (7.32): 

                                                           02
0  . 

 Here 0 stands for the following quantity: 

               
I

mgl
2

0ω .             

Hence,  

                  
mgl

I
T π2 .              (7.36) 

A comparison of these equations shows that a simple pendulum of length 

   
ml

I
lr                (7.37) 

has the same period of oscillations as the given compound pendulum. The quantity 

lr is called the reduced length of the physical pendulum. 

 The point on the straight line joining the point of suspension (O) and the 

center of mass (C) at a distance of the reduced length from the rotation axis is 

called the center of oscillations of the physical pendulum (O). It can be shown (we 

recommend you to do this) that when the pendulum is suspended by its center of 

.. .

.O

O'

mg



C

l
lr
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oscillations O, its reduced length and, consequently, its oscillation period will be 

the same. Hence, the point of suspension and the center of oscillations are 

interchangeable. 

 

7.6. Damped Oscillations 
 

 If a point particle oscillates in a medium, the friction force acts upon the 

particle. The force of friction (for sufficiently small velocities) is supposed to be 

proportional to the value of the velocity, i.e., 

   xrFfr
 .               

The quantity r is called the resistance coefficient. The equation of Newton’s 

second law has the form  

xrkxxm   .              (7.38) 

Introducing the notation 
m

r
2  and 

m

k
2

0 , we can rewrite Eq. (7.38) as 

follows: 

             02 2

0  xxx  .              (7.39) 

This differential equation describes damping oscillations of the system. Its solution 

is  

               )cos(0   teAx t
.             (7.40) 

Here A0 and  are arbitrary constants and 22
0  . 

 The motion of a system described by Eq. (7.40) can be considered a 

harmonic oscillation of frequency  with an amplitude varying by the law (see 

Figure 2.9) 

       
teAtA  0)( .              (7.41) 

The upper dashed curve in Figure 2.9 depicts the function A(t), x0 = A0cos.  

 Figure 2.9. 
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The rate of damping is determined by the quantity 
m

r

2
  defined as the damping 

factor. It is easy to see that the damping factor is the reciprocal of the time interval 

needed for the amplitude to be diminished e times. Taking into account Eq. (7.40), 

the period of damped oscillations can be represented as  

       
22

0

2




T .            (7.41a) 

When the resistance of the medium is insignificant, 
0

2




T . The period of 

oscillations grows with increasing damping factor. If 0 , the motion is called 

aperiodic. 

 The ratio of the amplitudes corresponding to moments of time that differ by 

the period  

          Te
TtA

tA 
 )(

)(
              (7.42) 

is called the damping decrement, and its logarithm is called the logarithmic 

decrement: 

  T
TtA

tA













)(

)(
ln .              (7.43) 

The logarithmic decrement is the reciprocal of the number of complete cycles of 

motion (Ne) after which the amplitude decreases e times. 

 The oscillatory system is also characterized by the quantity 

         eNQ  π
λ

π
.              (7.44) 

The total energy of oscillating system is proportional to the square of the amplitude, 

i.e., 

   
teEE  2

0 .              (7.45) 

Time differentiation of this equation gives 

           E
dt

dE
 2 .              (7.46) 

For small-amplitude oscillations under condition βω0  , the reduction of the 

energy for the period can be found by multiplying Eq. (7.45) by T: 

 TEE  2               (7.47) 

or  

                   TEE  2 .              (7.48) 

Hence,  

           









 22

1

2

1 Q

TE

E
.              (7.49) 
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7.7. Forced Oscillations 
 

 When the driving force varies by a harmonic law (this situation is often 

observable), the oscillations are described by the equation 

             )cos(2 0
2
0 tfxxx   .             (7.50) 

Here  is the damping factor, 0 is the natural frequency of the system, 
m

F
f 0

0   (F0 

is the amplitude of the driving force), and  is the frequency of the force. 

 Equation (7.50) is nonhomogeneous. The general solution of a 

nonhomogeneous equation is the sum of the general solution of the corresponding 

homogeneous equation (the right side is zero) and a partial solution of the       

nonhomogeneous equation. We already know the general solution of homogeneous 

equation (see Eq. (7.4)). Let us write it in the form 

 )cos(0   teAx t
,              (7.51) 

where 22
0  , and A0 and  are arbitrary constants. The symbol  without 

prime stands for the frequency of the driving force. After a certain period of time, 

the damped oscillations vanish, and only a partial solution ought to be taken into 

consideration. 

 Rather simple but cumbersome calculations give the following partial 

solutions:  

                 )cos(  tAx .                       (7.52) 

Here  

     
2222

0

0

4)( 


m

F
A ,              (7.53) 

               
22

0

2
tan




 .              (7.54) 

The dependence of the amplitude of forced oscillations on the frequency of the 

driving force is shown in Figure 2.10.       

                                                            Figure 2.10.  
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The curves correspond to the indicated values of parameter . These curves are 

called resonance curves. Using Eq. (7.53) and the condition  

  0
d

dA
,               (7.55) 

it is not too difficult (we invite our readers to do this as an exercise) to obtain  

       
22

0

0
max

2 


m

F
A ,              (7.56) 

               22
0r .                    (7.57) 

Here Amax is the amplitude in resonance, r is the resonance frequency, i.e., the 

frequency at which the amplitude is maximum. It is clear that the larger is the value 

of  the lower is the resonance curve. 

 

7.8. Parametric Resonance 
 

 In the previous section we dealt with an external force which causes the 

direct displacement of an oscillating system. There is another kind of external 

action by means of which great oscillations can be imparted to a system. This kind 

of action consists in periodical change of a parameter of the system in step with its 

oscillations. This phenomenon is called the parametric resonance and is described 

by the differential equation 

                        0)(  xtfx ,             (7.58) 

where f(t) is a periodic function of time. 

 Let us take as an example a simple pendulum 

whose length is being periodically changed (Figure 

2.11); it increased when the pendulum is at its 

extreme position and decreased when the pendulum 

is at its middle position. 

This being done, the pendulum starts swinging 

violently. This can be explained as follows: the 

negative work of the external force in stretching of 

the pendulum is smaller in magnitude than the 

positive work done in compressing the pendulum 

thread. As a result, the total work done by the 

external force during the period is positive. 
           Figure 2.11. 

 

7.9.  Waves. General Information 
 

 If particles of an elastic (solid, fluid, or gas) medium are made to oscillate, 

then due to interactions of the particles, these oscillations will propagate through 

the medium from particle to particle with a certain velocity v. The process of 

oscillation propagation in the elastic medium is called the elastic wave. The region 

.

1

2

3
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of the medium where the particles oscillate is called the wave field. The interface 

between the oscillating particles and the particles at rest, which do not oscillate, is 

called the wave front. The locus of the points oscillating in the same phase is 

known as the wave surface. Wave surfaces remain stationary, while the wave front 

is in continuous motion. Wave surfaces can have arbitrary shapes. In the simplest 

cases, they are planes, cylinders, or spheres. The wave in these cases is called 

plane, cylindrical, or spherical. In the plane wave, the wave surfaces are a 

multitude of parallel planes, in the cylindrical wave – of coaxial cylinders, and in 

the spherical wave – of concentric spheres. 

 The particles of the medium in which the wave propagates are not made to 

perform the translation motion, they only oscillate about their equilibrium 

positions. If the particles of the medium oscillate parallel to the direction of  the 

wave motion, the wave is called longitudinal. If oscillations are perpendicular to 

the direction of wave motion, the wave is called transverse. Elastic transverse 

waves can appear only in media having a shear resistance. Therefore, only 

longitudinal waves can appear in gases and fluids. Both longitudinal and transverse 

waves can propagate in solids. 

 

7.10. Wave Equation 
 

 The wave propagation in a medium is described by the differential equation  

               0
1

2

2

2

2 





tv
.              (7.59) 

In Cartesian reference frame it has the form 

                     
2

2

22

2

2

2

2

2 1

tvzyx 

















.             (7.60) 

Here 
2
 is called the Laplacian operator, v is the phase velocity of the wave (for 

monochromatic waves this quantity coincides with the velocity of wave 

propagation),  is the displacement of the particles of the medium. In general, a 

solution of Eq. (7.59) is very complicated, depending on the initial and boundary 

conditions.   

 It can be rather easily solved for three basic types of space symmetry: plane, 

axial, and central. As a result, we obtain 

plane waves: )sin( kxtA  ,              (7.61) 

     cylindrical waves: )sin( krt
r

A
 ,              (7.62) 

        spherical waves: )sin( krt
r

A
 .              (7.63) 

Here A is the wave amplitude,  is the wave frequency, k is the wave number,  

  v
k



,               (7.64)  
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r is the distance from the axis of symmetry (Eq. (7.62)) or from the center of 

symmetry (Eq. (7.63)). 

 The plane wave (Eq. (7.61)) propagates from left to right (i.e., along the x 

axis). Indeed, the quantity in parenthesis at a distance x from a given point x after 

the moment t can be repeated at the moment t+t if  

kxtxxktt  )()( . 

So we have xkt  , or  

v
k

t

x








,               (7.65) 

i.e., the phase velocity of wave. 

 If the sign in parenthesis is changed, the wave propagates from right to left. 

The distance between two neighboring points having the same phase is called the 

wavelength . It follows from Eq. (7.61) that 

)(  xkkx , i.e.,  2k . 

So  

     
k




2
, 






2
k .     (7.66) 

Figure 2.12 shows the wave form of the transverse wave as a function of time. 

To make the particles of the 

medium to oscillate, the wave must 

give them a certain energy. Thus, the 

wave propagating in a medium 

transfers the energy. The energy dw 

carried through the area dS 

perpendicular to the direction of wave 

propagation during time dt, 

          
tS

w
j








,           (7.67) 

is called the energy flux density. This 

quantity is a vector and can be 

represented in the form  
        Figure 2.12.                                

                                     vj  ,             (7.68) 

where  is the energy density at a given point. The energy flux density may be 

different at different points of space. At a given point, it varies with time by a sine 

square law. Its average value is  

                vvj
22

2

1
 A .                        (7.69) 

Equation (7.69) holds for an arbitrary wave. It should be noted that when we 

consider the intensity of wave at a given point, we have in mind the time-average 

value of the energy flux density transferred by the wave. The concept of the energy 

x



-A

A
M

O


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flux density was introduced into physics by the Russian physicist N. Umov at the 

end of the nineteenth century, and the quantity j is usually called Umov’s vector. 

 Only longitudinal waves can propagate in gaseous media. The speed of 

propagation is given by the relation 

    



p

v .               (7.70) 

Here p is the pressure,  is the gas density, and  is the ratio of the gas heat 

capacities at constant pressure and constant volume.   

 At atmospheric pressure and standard temperature, most gases are close to an 

ideal gas in their properties. Therefore, we can assume that the ratio 


p
 equals 

M

RT
 

and rewrite the last equation in the from 

M

RT
v


 .                (7.71) 

 The foregoing shows that longitudinal and transverse waves can propagate in 

solids. The phase velocity of longitudinal elastic waves is 

       



E

v ,                    (7.72) 

where E is Young’s modulus, and  is the density of the medium. 

 The phase velocity of transverse elastic waves is 

                                             



v .                (7.73) 

Here, is the shear modulus. 

 

7.11. Standing Waves 
 

 If several waves propagate in an elastic medium simultaneously, the 

oscillations of the particles are geometrically added. This statement follows from 

the experiments and is called the superposition principle. 

 If the oscillations due to separate waves at each point of the medium have a 

constant phase shift, the waves are called coherent. The interaction of coherent 

waves when they are superposed is called interference. 

 A very important case of interference is observed in case of superposition of 

two oncoming plane waves having the same amplitudes. The resulting oscillatory 

process is called a standing wave. Standing waves are produced when the waves 

are reflected from obstacles. The wave striking an obstacle and the oncoming 

reflected wave produce a standing wave as a result of superposition. 

 The equations of two plane waves propagating along the x axis in opposite 

directions are 
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).cos(

),cos(

22

11





kxtA

kxtA
              (7.74) 

Adding these two equations, we obtain  

                       )
2

cos()
2

cos(2 2112
21





 tkxA .             (7.75) 

To simplify it, let us choose the origin of x and t so that the terms (2 - 1) and      

(1 + 2) vanish. Then Eq. (7.75) can be written in the form 

      t
x

A 


 cos))2cos(2( .              (7.76) 

Thus, at every point of standing wave the oscillations have the same frequency as 

the opposite waves and the amplitude depending on x. At the points whose 

coordinates meet the condition 

        )2 1 0( 2 ,...,,nn
x




               (7.77) 

the amplitude of the oscillations reaches its maximum. These points are called the 

antinodes of the standing wave 

             )2 1 0( 
2

,...,,nnX anti 


 .                      (7.78) 

It should be emphasized that an antinode is not a single point, but a plane whose 

points are specified by Eq. (7.78). At the points whose coordinates meet the 

condition   

    )2 1 0(  )
2

1
(2 ,...,,nn

x



                    (7.79) 

the amplitude of the standing waves vanishes. These points are called the nodes of 

the standing waves 

   )2 1 0(  ,
2

)
2

1
( ,...,,nnX node 


 .            (7.80) 

A node, like an antinode, is not a single point, but a plane whose points are 

specified by Eq. (7.80). Figure 2.12 shows that the distance between the adjacent 

antinodes is equal to that between the ajacent nodes and is 
2


.  

The antinodes and nodes are displaced by a quarter of wavelength. The arrows 

show the velocities of the particles. 

 

7.12.  Doppler Effect 
 

 If the source and the receiver of waves are stationary relative to the medium 

in which the waves are propagating, the frequency of oscillations recorded by the 

receiver will be equal to the frequency 0 of oscillations of the source. If the source 

or the receiver (or both) are moving relative to the medium, then the frequency  
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recorded by the receiver may differ from 0. This phenomenon is called the 

Doppler effect 

      
s

r

vv

vv




 0 .                    (7.81) 

Here vr is the velocity of the receiver, vs is the velocity of the source, and v is the 

velocity of waves relative to the medium. The upper sign in Eq. (7.81) is chosen 

when the distance between the source and the receiver decreases, and vice versa 

when the distance between them increases. 

 If the directions of the velocities vs and vr do not coincide with the straight 

line passing through the source and the receiver, the projections of the vectors vs 

and vr onto this straight line must be substituted for vs and vr in Eq. (7.81). 

 

EXAMPLE 18 
A body is in simple harmonic motion along the x axis. Its displacement varies with 

time according to the equation 

)
4

cos(0.4


 tx , 

where t is in seconds and the angles in the parentheses  are in radians.  

(a) Determine the amplitude, frequency, and period of the motion. 

 

Solution. Comparing this equation with the general equation for simple harmonic 

motion, )cos(  tAx , we see that  A = 4.00 m and   rad/s; therefore, we 

find 
1s 5.02/2/ f and T = 1/f = 2.00 s. 

 

(b) Calculate the velocity and acceleration of the body at time t. 

 

Solution 

 

  ).
4

cos(0.4)
4

cos(0.4

),
4

sin(0.4)
4

sin(0.4

2 











tt
dt

d
t

dt

dv
a

tt
dt

d
t

dt

dx
v

 

 

 (c) Using the results of part (b), determine the position, velocity, and acceleration 

of the body at t = 1.00 s. 

 

Solution. Noting that the angles in the trigonometric functions are in radians, we 

obtain for t = 1.00 s 

m 83.2
4

5
cos0.4)

4
cos(0.4 







 



 tx , 

m/s 89.8
4

5
sin0.4 







 
v , 
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22 m/s 9.27
4

5
cos0.4 







 
a . 

(d) Determine the maximum speed and the maximum acceleration of the body. 

 

Solution. From general expressions for v and a found in part (b), we see that the 

maximum values of the sine and cosine functions are unity. Therefore, v varies 

between 4.0 m/s, and a varies between 4.0
2
 m/s

2
. Thus, vmax = 4.0 m/s, and 

amax = 4.0
2
 m/s

2
. The same results can be obtained using vmax = A and amax = 

2
A, 

where A = 4.0 m and = rad/s. 

 

(e) Find the displacement of the body between t = 0 and t = 1.0 s. 

 

Solution. The x coordinate at t = 0 is 

m 83.2
4

0cos0.40 






 
x . 

In part (c) we have already found that the coordinate at t = 1.0 s is x = -2.83 m; 

therefore, the displacement between t = 0 and t = 1.0 s is  

x = x - xo = − 2.83 − 2.83 = − 5.66 m 

Because the particle velocity changes its sign during the first second, the magnitude 

of x is not the same as the distance traveled for the first second. 

 

Exercise. What is the phase of the motion at t = 2.0 s? 

Answer. .rad
4

9  

 

EXAMPLE 19 
A sinusoidal wave traveling in the positive x direction has an amplitude of 15.0 cm, 

a wavelength of 40.0 cm, and a frequency of 8.0 Hz. The vertical displacement of 

the medium at t = 0 and x = 0 is also 15.0 cm, as shown in Figure 19. Find the 

angular wave number, period, angular frequency, and speed of the wave. 

Figure 19. 

 

Solution. Using expressions for the angular wave number, period, angular 

frequency, and speed of the wave, we obtain 

y, cm

x, cm

40 cm

15 cm
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.3200.400.8

,3.500.822

,125.0
0.8

11

,157.0
0.40

22
















fv

fw

f
T

k

 

 

(b) Determine the phase  , and write a general expression for the wave function. 

 

Solution Since A = 15.0 cm and y = 15.0 cm at x = 0 and t = 0, their substitution 

into Eq. (7.1) yields 

)sin(1515  or 1)sin(  . 

Since  sin)sin( , we see that 2/ rad (or −90°). Hence, the wave 

function is of the form 

)cos()
2

sin( tkxAtkxAy 


 . 

That the wave function must have this form, can be seen by inspection noting that 

the cosine argument is displaced by 90° from the sine function. Substituting the 

values for A, k, and  into this expression, we obtain  

  )3.50157.0cos(0.15 txy  . 

 

EXAMPLE 20 
An object moves in a smooth, straight tunnel between two points on the Earth's 

surface (Fig. 20). Show that the object moves in a simple harmonic motion and find 

the period of its motion. Assume that the Earth’s density is uniform throughout its 

volume. 

The object moves along the tunnel through the Earth. 

The component of the gravitational force gF  along 

the x axis is the driving force for the motion. Note 

that this component always acts toward the origin of 

coordinates 0. 

 

Solution. When the object is in the tunnel, the 

gravitational force exerted to the object acts toward 

the Earth’s center and is given by the formula 

r
R

GmM
F

E

E
g 3

 . 

      Figure 20. 

The y component of this force is balanced by the normal force exerted by the tunnel 

wall, and the x component is 

.
.

0

x

x

y

Fr


m
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 cos
3

r
R

GmM
F

E

E
x . 

Since the x coordinate of the object is  cosrx , we can write 

x
R

GmM
F

E

E
x 3

 . 

Applying Newton’s second law to the motion along x, we obtain 

max
R

GmM
F

E

E
x 

3
, 

xwx
R

GM
a

E

E 2

3
 . 

 
But this is the equation of simple harmonic motion with angular speed , where  

3
E

E

R

GM
 . 

The period is                                       

min 3.84s 1006.5
1098.51067.6

)1037.6(
22

2 3

2411

363







E

E

GM

R

w
T  

 

This period is the same as that of a satellite orbiting just above the Earth’s surface. 

Note that the result is independent of the length of the tunnel.  

 

EXAMPLE 21  
Calculate the escape speed from the Earth for a 5000-kg spacecraft, and determine 

the kinetic energy it must have at the Earth’s surface in order to escape from the 

Earth’s gravitational field.  

 

Solution. Using the equation for the escape speed with kg 1098.5 24EM  and 

m 11037.6 6ER , we obtain 

m/s 1012.1
1037.6

1098.51067.622 4

6

2411




E

E
esc

R

GM
v . 

The kinetic energy of the spacecraft is 

J 1014.3
2

1 112
 escmvK . 

Finally, you should note that Eq. (5.10) can be extended to any planet, that is, in 

general the escape speed from the surface of any planet of mass M and radius R is 

R

GM
vesc 2 . 
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EXAMPLE 22 
Calculate the work required for an Earth’s satellite of mass m to pass from a 

circular orbit of radius ER2  to the orbit of radius ER3 .  

Solution. Using the equation for the total energy , 
r

GMm
E

2
 , we obtain for the 

total initial and final energies 

 

E

E
i

R

mGM
E

4
 , 

E

E
f

R

mGM
E

6
 .  

Therefore, the work required to increase the energy of the system is  


E

E
if

R

mGM
EEW

6
 

E

E

E

E

R

mGM

R

mGM

124
 . 

For example, if we take m = l000 kg, we find that the work required is W=5.210
9 

J, 

which is the energy equivalent of 150 liters of gasoline. 

If we wish to determine how the energy is distributed after the work on the system 

has been done, we find that the change in the kinetic energy is 

E

E

R

mGM
K

12
   (it decreases), 

while the  corresponding change in the potential energy is  

R

mGM
U E

6
   (it increases). 

 Thus, the work done by the system is 
E

E

R

mGM
UKW

12
 , as we calculated 

above. In other words, part of the work done goes to increasing the potential energy 

and part goes to decreasing the kinetic energy. 
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Part 3. Molecular Physics and Thermodynamics 
 
8.1. General Information 

 
 Molecular physics is a branch of physics studying the structure and 

properties of substances on the basis of the so-called molecular-kinetic concepts. 

According to these concepts, any body (solid, liquid, or gaseous) consists of an 

enormous number of very small particles – molecules (atoms can be considered as 

monatomic molecules). The molecules of a substance are in disordered chaotic 

motion (at least in gases and liquids) having no preferred direction. Its intensity 

depends on the temperature of the substance. For example, there are 2.7·10
19

 

molecules per 1 cm
3
 in the air under standard conditions. It is quite obvious that to 

solve Newtonian equations for such a number of molecules is a useless task, and 

some other methods of consideration are to be applied. Two mutually 

complementary methods (thermodynamic and statistical) are known to be widely 

used for this purpose.  

 The objective of statistical physics based on the molecular-kinetic theory and 

mathematical concepts of the theory of probability is to interpret directly observed 

properties of bodies as the net result of action of molecules. Statistical physics does 

not deal with individual molecules. Only average quantities characterizing the 

motion of an enormous number of particles are under consideration. 

 Thermodynamics also studies various properties of bodies and changes in the 

state of a substance. However, thermodynamics studies macroscopic properties of 

bodies and natural phenomena without being interested in their microscopic 

structure. Thermodynamics allows one to arrive at conclusions how a process goes 

on without taking molecules and atoms into consideration and without treating the 

process from a microscopic standpoint. 

 

8.2. Basic Results of Thermodynamics 

 
 Thermodynamics is a macroscopic phenomenological theory of heat. A 

physical system is described by a few parameters which can be controlled and 

measured. Relationships between these parameters and general laws by which the 

parameters are being changed are deduced from axioms regarded as experimental 

facts. Systems under consideration are equilibrium systems, i.e., systems whose 

macroscopic parameters (average microscopic values) do not change too rapidly. It 

would be better to call this theory the thermostatics, but the above-mentioned 

definition (thermodynamics) is conventional. Classical thermodynamics was 

formulated in the 19th century. It is a criterion for the validity of any statistical 

theory developed for “usual” macroscopic systems. 

 Thermodynamic system can be characterized by its properties (total mass, 

chemical structure, and so on) and how it is separated from the outer space (walls 

of a vessel, boundary surfaces, external fields, and so on). Using the concept of 
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“thermodynamic system” we have in mind any system of bodies. An example of 

such a system is a liquid and vapor in equilibrium.  

 A parameter does not always have a definite value. For example, if the 

temperature at different points of a body is not the same, then a definite value of the 

parameter T cannot be ascribed to the body. In this case, the body is said to be in a 

nonequilibrium state. If such a body is isolated from other bodies and left alone, its 

temperature will level out and will take the same value for all points. Thus, the 

body will pass over to an equilibrium state. The same may also occur with other 

parameters. The process of transition of a system from a nonequilibrium state to an 

equilibrium one is called a relaxation process or just relaxation. The time needed 

for such a transition is called the relaxation time. Thus, in an equilibrium state all 

the macroscopic parameters remain constant until the external conditions are 

changed. 

 A process, i.e., a transition of a system from one state to another, consisting 

of a continuous sequence of equilibrium states is called an equilibrium or 

quasistatic. An equilibrium process can be conducted in the reverse direction. The 

system will pass through the same states as in the forward process, but in the 

opposite order. This is why equilibrium processes are also called reversible. A 

process by which a system after a number of changes returns to its initial state is 

called a cyclic process or a cycle.  

 All the macroscopic parameters can be subdivided into two groups. External 

parameters are defined by external bodies or fields; internal parameters are 

defined by the system itself when the external parameters are fixed. For example, in 

Figure 3.1a, V is an external parameter, and p is an internal parameter; in Figure 

3.1b the situation is vice versa. 

V=const

p

V

M

p = = const
mg

S

 
                          Figure 3.1a.                               Figure 3.1b. 
 

Basic axioms of thermodynamics are given below. 

Equilibrium axiom. Every thermodynamic system under invariable external 

conditions has an equilibrium state in which all its parameters do not change with 

time and the system cannot leave this state spontaneously. 

Additivity postulate. Energy of a thermodynamic system equals the sum of 

energies of its parts (subsystems). 

Temperature postulate. Adiabatically isolated equilibrium systems when 

brought into contact, form an equilibrium thermodynamic system only when the 

initial temperatures of subsystems are the same. This statement is known to be 
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called the zero law of thermodynamics. In accordance with the additivity and 

temperature postulates, the temperature is introduced in thermodynamics as all 

parameters defining equilibrium systems (or subsystems). All inter equilibrium 

parameters are functions of external parameters and temperature. 

 Energy conservation law. This law is the extrapolation of the same law of 

classical Newtonian mechanics to thermodynamic systems and expresses the 

conservation law of motion in its general form. It allows one to introduce the heat 

quantity as the energy imported to the system in contact of the given system with 

external bodies rather then by mechanical work. Let us use the following notations: 

dE is the energy increment, A  is the elementary work done by the system on 

external bodies, and Q  is the amount of heat imported to the system. Then 

       AdEQ  .                 (8.1) 

Here, the designations Q  and A  are used to emphasize the fact that these 

quantities are partial differentials compared to dE which is the perfect one. Eq. 

(8.1) is usually called the first law of thermodynamics. It can be formulated as 

follows: the amount of heat imported to a system is spent to  increase  the internal 

energy of the system and to produce the work done by the system on external 

bodies. 

 The second law of thermodynamics. The postulates formulated by Clausius 

and Kelvin are known to be the essence of the second law of thermodynamics. 

Clausius’ statement: processes are impossible whose only final result would be the 

heat flow from a colder body to a warmer one. Kelvin’s statement: processes are 

impossible whose only final result would be the removal of a definite amount of 

heat from a body and the complete conversion of this heat into work. Later it was 

shown that the second statement could be obtained from the first one and vice 

versa. From both postulates, it follows that a perpetual motion machine of the 

second kind, i.e., a periodically operating engine that receives heat from a single 

reservoir and completely converts this heat into work, is impossible. 

 The most important result of the second law is the possibility to introduce the 

new function of state – the entropy S in accordance with the formula  

                                   TdsQ   (ds is the perfect differential).              (8.2) 

So, substituting Eq. (8.2) into Eq. (8.1) and having in mind that  

                  pdVdA ,        (8.3) 

we arrive at the basic differential equation 

pdVdETds  .                 (8.4) 

For nonequilibrium processes, Eq. (8.4) transforms into 

pdVdETds  .        (8.5) 

It is also proved that the increment S cannot be negative for adiabatic processes, 

i.e., 

 

 0S .          (8.6) 

The above relation can be formulated as the law of increasing of entropy 
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         0
dt

dS
 (t is time).        (8.7) 

Nernst’s theorem  

    0 ,0  TS .        (8.8) 

This theorem is known as the third law of thermodynamics. In other words, it can 

be formulated as follows: when the temperature of a body tends to absolute zero, its 

entropy tends to zero, or it is impossible to reach the absolute zero temperature. 

 

Problems solved by classical thermodynamics 

 

 Classical thermodynamics sets a close relation between thermal and caloric 

equations of state. The equations of state including T, P, and V are called thermic 

(thermal), for example, the Clapeyron equation of state for an ideal gas 

RTPVm          (8.9) 

and the van der Waals equation of state for a real gas 

      RTbV
V

a
P m

m

 ))((
2

.     (8.10) 

Here P is the pressure exerted on the gas from the outside (equal to the pressure of 

the gas on the walls of the vessel it occupies), a and b are the van der Waals 

constants, R is the molar gas constant equal to 
Kmol

J
 318


. , T is the temperature, 

and Vm is the volume occupied by one mole of the gas at the given P and T (thus, 

m

V
Vm


 , where m is the mass of the gas, and  is the molar mass). The equation of 

state that relates the energy E to the external parameters and temperature, is called 

the caloric equation. For example, the equation for the energy of an ideal gas has 

the form 

RTE
2

3
 .      (8.11) 

For the molar specific heat, we have 

  RCV
2

3
 .               (8.12) 

 

Work of an ideal gas in different processes 

 

 The work done by a body on external bodies when it passes from state 1 to 

state 2 is  

          
2

1

12

V

V

PdVA .      (8.13) 

Graphically, it is expressed by the hatched area (see Figure 3.2). 
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In a process, a gas, in addition to the equation of state, meets some other conditions 

determined by the nature of process. For example, the condition  P = const is met in 

the isobaric process. The condition   

V = const holds in an isochoric 

process. The condition T = const 

describes an isothermal process. A 

process going on without heat 

exchange with surroundings is called 

adiabatic. Processes in which the heat 

capacity of a body remains constant 

are defined as polytropic ones.  

The equations of these processes and 

the expressions for the work done are 

given below. 
                        

                              Figure 3.2. 

1. Isobaric process. P = const, const
T

V
,  V = Vo(1 + t) (Gay-Lussac’s law). 

Here Vo is the gas volume at t = 0
o
C and  

1K
15.273

1  . (See Figures below.) 

Obviously, )( 12 VVPA  .  

2. Isochoric process. V = const, const
T

P
, and P = Po(1 + t). 

Here Po is the gas pressure at     

t = 0
o
C and  

1K
15.273

1  . 

(See Figures.) 

 

Obviously, 0A . 
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3. Isothermal process. T = const, PV = const. (See Figures below.) 

 






















2

1

1

2 lnln
P

P
RT

m

V

V
RT

m
A . 

4. Adiabatic process. 0dQ . 

Equation of an adiabat of an ideal gas (Poisson equation) is  

    .constPV  

Here 
V

P
C

C
 , CV is the heat capacity at constant volume, and CP is the heat 

capacity at constant pressure (see the Figure below).    

The work done is                       

             
  



























 1

2

11
1 V

VRTm
A . 

 

For one mole of an ideal gas 

         RCC VP  .                              (8.14) 

The quantity   

          
V

P
C

C
                                                (8.15) 

depends on the number of degrees of 

freedom. For monatomic gases, =1.67; for 

diatomic gases, =1.40; for triatomic gases =1.33. The value of  is determined by 

the number and nature of the degrees of freedom of the molecule.  

Using the equation of an isotherm, we have 

         
V

P

dV

dP
 ,                        (8.16) 

and for adiabatic processes 

              
V

P

dV

dP
 .              (8.17) 

Thus, the slope of the adiabat is  times greater compared to the isotherm (see 

Figure 3.3). 

P

V

T > T12

T1

T2

P

V

1

2

P

P

V V

1

1

2

2

P

VV V1 2

P

P

1

2
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8.2 Polytropic processes  
 

 c = const. The equation of a polytrope 

for an ideal gas is 

      constnpV ,               (8.18) 

where                   

v

p

cc

cc
n




 .                                     (8.19) 

The quantity n determined by Eq. (8.18)                 

is called the polytropic exponent or 

index.                              

 
                            Figure 3.3.                   

          






























1

2

11 1
1

n

V

V

n

RTm
A .     (8.20) 

The four isoprocesses treated above belong to the category of polytropic processes 

(see the Table). 

Process n 

Isobaric  

Isochoric 

Isothermal  

Adiabatic  

0 

 

1 
  

 

8.3. Heat machines. The Carnot cycle 
 

  A heat engine (machine) is a cyclic device made for heat-mechanic energy 

transformation. The main parts of the heat engine are: a heater, a cooler, and a 

working body (usually a gas). A gas absorbs the heat Q1 from the heater, expands, 

does some work, deposits the heat Q2 to the cooler, and returns to its initial state. 

The work done is  

21 QQA  .                 (8.21) 

Here, Q1 is the heat transferred to the gas from the heater, and Q2 is the heat 

transferred from the gas to the cooler. The efficiency of the heat engine is 

1

21

Q

QQ 
 .     (8.22) 

The maximum theoretical efficiency is  

                      
1

21
max

T

TT 
 .     (8.23) 

Here, T1 is the temperature of the heater, and T2 is the temperature of the cooler. 

Obviously,  

P

V

Adiabat

Isotherm
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1max  . The value of max given by Eq. (8.23) can only be achieved in an ideal 

cyclic process which is called the Carnot 

cycle. The Carnot cycle (see Figure 3.4) 

consists of two isotherms and two 

adiabats.  

Path 1-2 corresponds to the isothermal 

expansion, and path 2-3 represents the 

adiabatic expansion of the gas. And vice 

versa, path 3-4 represents the isothermal 

compression, and path 4-1 corresponds to 

the adiabatic compression of the gas. 

 The Carnot cycle can be 

represented in a simple form when using 

the T-S diagram (see Figure 3.5).       

                    

         Figure 3.4.                                       In accordance with equation dQ 

= T·dS, we have          

               
T

dQ
S .        

(8.24) 
Thus,  

     
1

1
12

T

Q
S  ,       (8.25) 

     
2

2
34

T

Q
S  ,       (8.26) 

or                    

               0
2

2

1

1 
T

Q

T

Q
.                 (8.27) 

The total change of the entropy for a             Figure 3.5.      

cyclic reversible process is zero.  

 
Example 23 
An ideal gas occupies a volume of 100 cm

2
 at a temperature of 20

o
C and a pressure 

of 100 Pa. Determine the number of gas moles in the container. 

 

Solution. (a) The quantities given are volume, pressure, and temperature:               

V = 100 cm
3 

= 110
-4 

m
3
, p = 100 Pa, and T = 20

o
C = 293K. Using equation PV = 

RT, we obtain 

.mol104.4
29331.8

101100 6
4










RT

pV
 

.

.
.

.
P

V

1

2

3
4

T1

T2

Q
1

Q'
2

T

T1

T2

SS1S2
0

Q1

Q
2

1 2

34
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Note that you must express T as an absolute temperature (K) when using the ideal 

gas law. 

(b) Calculate the number of molecules in the container taking advantage of the fact 

that Avogadro’s number is 6.0210
23

 mol
-1

. 

.molecules1047.21002.61011.4 18236  
ANN  

 

Example 24 
Pure helium gas is pumped into a tank containing a movable piston. The initial 

volume, pressure, and temperature of the gas are 1510
-3

 m
3
, 200 kPa, and 300 K. 

The volume is decreased to 1210
-3

 m
3
 and the pressure is increased to 350 kPa. 

Find the final temperature of the gas. (Assume that helium behaves like an ideal 

gas.) 

 

Solution. As no gas escapes from the tank, the number of moles remains constant; 

therefore, using PV=RT at the initial and final points, we obtain  

f

ff

i

ii

T

VP

T

VP
 , 

where i and f refer to the initial and final states. Solving this equation for Tf, we 

obtain  

K. 420
101510200

300101210350
)(

33

33











i
ii

ff
f T

VP

VP
T  

 
Example 25 
A sealed glass bottle containing air at atmospheric pressure (101 kPa) and having a 

volume of 30 cm
3
 is at 27

o
C. It is then tossed into an open fire. When the 

temperature of the air in the bottle reaches 200
o
C, what is the pressure inside the 

bottle? Assume any changes of the bottle volume are negligible. 

 

Solution. We start with the expression  

f

ff

i

ii

T

VP

T

VP
 . 

Since the initial and final volumes of the gas are assumed equal, this expression 

reduces to  

f

f

i

i

T

P

T

P
 . 

This gives 

kPa 15910101
300

437
)( 3  i

i

f
f P

T

T
P . 

Obviously, the higher the temperature, the higher the pressure exerted by the 

trapped air.  
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Exercise.  Show that 1.00 mole of any gas at atmospheric pressure (101 kPa) and 

standard temperature (237 K) occupies a volume of 22.4 L. 

Exercise. A bubble of marsh gas rises from the bottom of a fresh water lake located 

at a depth of 4.2 m and having a temperature of 5
o
C to the surface, where the water 

temperature is 12
o
C. What is the ratio of the bubble diameter for two positions? 

(Assume that the bubble gas is in thermal equilibrium with water at each position). 

(Answer: 1.13) 

  

Example 26 
A student eats a dinner rated at 2000 food Calories. He wish to do an equivalent of 

work in the gymnasium by lifting a 50-kg mass. How many times must he raise the 

mass to expend this amount of energy? Assume that he raises it at 2 m each time 

and regains no energy when it is dropped to the floor. 

Solution. Since 1 food calorie = 110
3
 cal, the work required is 210

6
 cal. 

Converting this to J, we have for the work required W = 210
6
4.186 = 8.3710

6
 J. 

The work done in lifting the mass at height h is equal to mgh, and the work done in 

lifting it n times is nmgh. We equate it to the total work required: 

W = nmgh = 8.3710
6
 J. n = W/mgh = (8.3710

6
)/(59.82) = 8.5410

3
 times. 

If the student is in good shape and lifts the weight once every 5s, it will take him 

about 12 h to perform this feat. Clearly, it is much easier to lose weight by dieting.     

 

Example 27 
Calculate the work done by 1 mole of an ideal gas kept at 0

o
C during expansion 

from 3 to 10 liters. 

Solution. The work done by the gas is given by the equation 
fv

iv

PdVW . Since the 

gas is ideal and the process is quasi-static, we can apply PV = RT for each point of 

the path. Therefore, we have 

                                     
i

f
fv

iv

fv

iv V

V
RTdV

V

RT
PdVW ln


  .                             

Substituting these values into equation  gives W = 18.31273ln(10/3) = 2.710
3
 J. 

The thermal energy that must be supplied to the gas from the reservoir to keep T 

constant is also 2.710
3
 J.  

 

Exercise. An ideal gas is enclosed in a cylinder that has a movable piston on the 

top. The piston has a mass of 8000 g and an area of 5 cm
2
 and is free to slide up and 

down, keeping the pressure of the gas constant. How much work is done by 0.2 

mole of the gas if its temperature is raised from 20
o
 C to 300

o
C? 
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Exercise. One mole of an ideal gas does 3000 J of work on the surroundings as it 

expands isothermally to a final pressure of 1 atm and a volume of 25 L. Determine 

(a) the initial volume and (b) the temperature of the gas. 

Exercise. Five moles of an ideal gas expand isothermally at 127
o
C and increase 

their initial volume four times. Find (a) the work done by the gas and (b) the 

thermal energy transferred to the system, both in joules.  

 

Exercise. During controlled expansion, the pressure of a gas is P = 12e
-bV

 atm, 

3m 12

1
b , where the volume is in m

3
 (see the Figure 27). Determine the work 

performed when the gas expands from 12 m
3 
to 36 m

3
.     

Figure 27. 

Exercise. One mole of an ideal gas initially at 300 K is cooled at constant volume 

so that the final pressure is one-fourth of the initial pressure. Then the gas expands 

at constant pressure until it reaches the initial temperature. Determine the work 

done by the gas. 

 

Example 28 
A tank with a volume of 0.300 cm

3
 contains 2 moles of helium gas at 20

o
C. 

Assuming that helium behaves like an ideal gas, (a) find the thermal energy of the 

system. (b) What is the average kinetic energy per molecule? 

 

Solution. (a) Using equation E = 2/3RT, with = 2 and T = 293 K, we obtain E = 

(3/2)28.31293 = 7.310
3
 J. (b) From equation 1/2mv

2 
= 3/2kT, we see that the 

average kinetic energy per molecule is 1/2mv
2 

= 3/21.3810
-23
293 = 6.0710

-21
 J.  

 

Example 29 
A cylinder contains 3 moles of helium gas at a temperature of 300 K. (a) How 

much heat must be transferred to the gas to increase its temperature to 500 K if it is 

heated at constant volume? (b) How much thermal energy must be transferred to 

the gas at constant pressure to raise its temperature to 500 K? (c) What is the work 

done by the gas in this process? 

 

Solution. (a) For the constant volume process, the work done is zero. Therefore, 

from the first law of thermodynamics, we obtain Q1 = 3/2RCvT. But Cv = 

12.5 J/molK for He and T = 200 K; therefore, Q1 = 312.5200 = 7.510
3
 J.  

V,m 3

P,atm

10 20 30 40

4

12
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(b) Using the Table, we obtain Q2 = nCpT = 3208200 = 12.510
3
 J. (c) W =       

Q2 − Q1 = 12.510
3
 − 7.510

3 
= 510

3
 J. 

 

Example 30 
Air in the cylinder of a diesel engine at 20

o 
C is compressed from an initial pressure 

of 1 atm and volume of 800 cm
3
 to a volume of 600 cm

3
. Assuming that the air 

behaves as an ideal gas (= 1.4) and that the compression is adiabatic and 

reversible, find the final pressure and temperature. 

 

Solution. Using the equation for reversible adiabatic process, 
  ffii VPVP , we 

find that .atm 6.37)
60

800
(00.1)( 4.1  

f

i
if

V

V
PP  Because PV=RT is always valid 

during the process and no gas escapes from the cylinder, we obtain 

  
f

ff

i

ii

T

VP

T

VP
   .

VP

VP
TT

ii

ff
if K 826293

8001

606.37





  

 

9. Statistical Distributions  
 
9.1. General Information  
  

 In many physical applications it is very important to know how molecules 

are distributed in space and how they are distributed by velocity magnitudes. In 

order to describe the distribution of molecules, two probability density functions, 

f(v) and f(r), are introduced. Their physical sense is as follows:    

    dvvfdp )(               (9.1) 

is the probability to find a molecule having a velocity from ,dvvv   to  and 

             rr dfdp )(         (9.2) 

is the probability to find a molecule in a position r within the differential volume 

dr. (We are sure that our readers possess knowledge of elementary concepts of the 

theory of probabilities). 

 Hence, the number of molecules whose velocity components are within the 

limits from vx to vx+dvx, from vy to vy+dvy, and from vz to vz+dvz can be written in 

the form 

  zyxzvyvxv dvdvdvvNfdN )(,,  .                (9.3) 

Here, N is the total number of molecules. In analogous way, the number of 

molecules with coordinates from x to x+dx, from y to y+dy, and from z to z+dz can 

be represented as follows       

        dxdydzNfdN zyx )r(,,  .       (9.4) 

The specific form of the probability density functions f(v) and f(r) depends on the 

classical or quantum approach to the problem and may also be dependent on the 
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F v( )

v

1.0

0.5

0

e-v2 v 2

type of forces acting between the particles. In this section, we are going to discuss 

only four types of distributions: the Maxwell, the Boltzmann, the Fermi-Dirac, and 

the Bose-Einstein distributions. All these distributions can be deduced from the 

most general distribution known as the Gibbs distribution. 

 

9.2. The Maxwell Distribution 

 
 The Maxwell distribution is obeyed for particles interacting by the short-

range forces, i.e., for neutral atoms and molecules. However, one must be very 

careful when using this distribution for a charged plasma or gravitationally 

interacting particles. The analytical expression of Maxwell’s distribution has the 

form 

          
2

2

2

3

)
2

exp()
2

(4)( v
kT

mv

kT

m
vf 


 .      (9.5) 

The plot of this function is shown in Figure 3.6 (see below). 

 
  
 

 

 

 

 

 

           

 

 

 
 

Figure 3.6. 

As v increases, the factor exp(-v
2
) diminishes more rapidly than the factor v

2
 

grows, and the function, which begins from zero, reaches its peak and then 

asymptotically tends to zero. The area enveloped by the curve is equal to unity.  

 The most probable velocity vprob can be easily found by differentiating Eq. 

(9.5) with respect to v and then by determining the root of the equation f (v) = 0. 

As a result, we obtain 

       
m

kT
vprob

2
 .       (9.6) 

The mean velocity of molecules <v> is given by the relation 

             



0

)( dvvvfv .       (9.7) 

After necessary manipulations, we have  

                 
m

kT
v




8
.        (9.8) 
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The square root of <v
2
> is called the mean square velocity 

  



0

22  dv)v(fvv ,       (9.9) 

and  

             
m

kT
vv vsm

32

...  .       (9.10) 

Thus,  

            221:131:13:8:2 : v : ..vv .v.s.mprob  .   (9.11) 

Using Eqs. (9.5) and (9.6), we can find the maximum value of the function f(v) 

  
kT

m

e
vf prob




2

4
)( .     (9.12) 

It can be seen from Eqs. (9.6) and (9.8) that when the temperature grows (or the 

mass of the molecule diminishes), the peak of the curve moves to the right and 

becomes lower. The area under the curve remains unchanged. 

 For some applications, it is very convenient to use Maxwell’s distribution  

for the quantity U=v/vm.prob  

 224
)( UeUf U 


  .     (9.13) 

Using the obvious relation 

     dEEfdvvf )()(  ,     (9.14) 

we obtain the Maxwell energy distribution  

               E
kT

E
AEf  )·exp()( ,    (9.15) 

where 

                   23)(
2 


 kTA .     (9.16) 

 Calculations show that the velocity of 70% of all the molecules differs from 

the most probable value by no more than 50%. Only 0.04% of molecules have 

velocities exceeding vm.prob more then three times. And only one of 12 billions 

(12·10
9
) molecules, on average, has a velocity exceeding 5· vm.prob. 

 At room temperature the mean velocity of oxygen molecules is about         

500 m/s, and that one of hydrogen molecules, having a mass of 1/16 of oxygen 

molecule, is about 2000 m/s. 

 

9.3. The Boltzmann Distribution 

 
 The Boltzmann distribution for the probability density function has the form  

         kT

U

eAf

)(

)(

r

r


       (9.17) 
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Here, U(r) is the potential energy of particle at a point with the radius-vector r. The 

constant A can be determined from the normalization condition 





0

1)( dVf r .                                         (9.18) 

Here, dV is a volume element. The density of particles at a given point can be 

represented by the formula  

     )(· rfNn  ,     (9.19) 

where N is the number of particles. For example, in the potential field of the Earth’s 

gravitation, the so-called barometric formula is well known 

kT

mgh

enn


 0 ,               (9.20) 

or                 kT

mgh

epp


 0 ,              (9.21) 

where n0, and p0 are the density of particles and the pressure at see level, 

respectively, and h is the altitude. The analogous formulas can be written for the 

particles in a centrifuge 

       kT

rm

enn 2
0

22

 ,               (9.22) 

kT

rm

epp 2
0

22

 .     (9.23) 

Here, n0 and p0 are the density of particles and pressure at the central point of the 

centrifuge, and r is the distance between the central point and the given one. 

 The Maxwell and Boltzmann distributions can be combined into the 

Maxwell-Boltzmann’s law, according to which the number of molecules whose 

velocities are within the limits from v to v+dv and whose coordinates are within the 

limits from r to r+dr is  

rdvd
kT

mvU
AdN )

2
exp(

2
 .    (9.24) 

Here A is the normalization factor equal to 
23

0 )π2( kTmn . 

 The potential energy U and the kinetic energy mv
2
/2, and therefore the total 

energy E, can take continuous values in distribution (9.24). 

  If the total energy of particle can take on only discrete values E1, E2, …, then 

the Boltzmann distribution has the form  

 )exp(
kT

E
AN i

i  ,     (9.25) 

where Ni is the number of particles in the state with the energy Ei, A is the constant 

determined by the condition  

  NNi ,      (9.26) 

and N is the number of particles.  
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Example 31 
What is the density of air at an altitude of 12 km compared to that at 

sea level?         
 

Solution. The density of our atmosphere decreases exponentially with altitude by 

the law  

                  kTmgyenyn  0)( .                                                     (1) 

We assume a temperature of 0
o
C (T = 273 K) and an average molecular mass of   

28.8 a.u. = 4.7810
-26

 kg. Taking y = 12 km, the exponent in Eq. (1) is calculated to 

be 49.1
2731038.1

10128.91078.4
23

326











kT

mgy
. Thus, Eq. (1) gives 

0
49.1

00 225.0)( nenenyn kTmgy   . That is, the air density at an altitude of     

12 km is only 22.5% of the air density at sea level.   

 

Example 32 
Determine the average height y of a molecule in the atmosphere at a temperature of 

300 K. 

 

Solution. The exponential function    
kTmgye  that appears in the law for the 

atmosphere can be interpreted as a probability distribution that gives the relative 

probability of finding a gas molecule at height y. Thus, the probability distribution 

p(y) is proportional to the density distribution n(y). The expression for the average 

height is 





















0

/

0

/

0

0

)(

)(

dye

dyye

dyyn

dyyyn

y
kTmgy

kTmgy

, 

where the height of the molecule can change from 0 to . The numerator represents 

the sum of the heights of the particles multiplied by their number, while the 

denominator is the sum of the numbers of particles. After the integration, we find 

(taking advantage of the integral 
n

xn n
dxex





 !

0

) 

        mgkT
mgkT

mgkT
y /

/

)/( 2

 .          (1)          

Substituting numerical values into Eq. (1), we obtain  

y = 1.3810
-23
300/4.7810

-26
9.8 = 8837 m. 
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Example 33 

Consider a gas at a temperature of 2500 K whose atoms 

can occupy only two energy levels separated by 1.5 eV 

(see the Figure 33). Determine the ratio of the number of 

atoms on the higher energy level to their number on the 

lower energy level. 

 
            Figure 33. 

Solution. The Boltzmann distribution law gives the relative number of atoms on a 

given energy level. In our case, the atom has two possible energies, E1  and E2, 

where E1 is the lower energy level. Hence, the ratio of the number of atoms on the 

higher energy level to the number on the lower level is 

kTEE

kTE

KTE

e
en

en

En

En /)(

/
0

/
0

1

2 12

1

2

)(

)( 





 . 

In this problem, E2 - E1 = 1.5 eV, and since 1 eV = 1.610
-19

 J and kT = 0.216 eV. 

Therefore, the required ratio is  

494.6216.0/5.1

1

2 1064.9
)(

)(   ee
En

En
. 

This result shows that at T = 2500 K, only a small fraction of atoms is on the higher 

energy level. The number of atoms on the higher level increases for higher 

temperatures, but the distribution law indicates that in equilibrium there are always 

more atoms on the lower level than on the higher level.   

 

Example 34 
Calculate the mean free path and collision frequency for nitrogen molecules at 20

o
C 

and 1.00 atm. Assume a molecular diameter of 210
-7

 cm. 

 

Solution. Assuming the gas as ideal, we can use the equation PV = NkT to obtain 

the number of molecules per unit volume under these conditions: 

325

23

5

mmolecules/ 105.2
2931038.1

1001.1







kT

P

V

N
nV . 

Hence, the mean free path is  

m 1025.2
105.21022

1

2

1 7

25102












Vnd
l . 

This value is approximately 10 times greater than the molecular diameter. Since the 

average speed of the nitrogen molecule at 20
o
C is about 511 m/s, the collision 

frequency is  

1-9

7
s 1027.2

1025.2

511





e

v
f  

E

E

E

E=1.5 eV

1

2
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( m/s 511
102814.3

29331.888
3










M

RT
v ). 

The molecule collides with other molecules at an average rate of about two billion 

times each second! The mean path l is not the same as the average separation 

between the particles. In fact, the average separation d between the particles is 

given approximately by nV
-1/3

. In this example, the average molecular separation is 

m 104.3
)105.2(

11 9

3/1253/1





Vn

d . 

 

Exercise.  Find the rms velocity of nitrogen molecules under standard conditions, 

0
o
C and 1 atm. Recall that 1 mole of any gas occupies a volume of 22.4 liters under 

standard conditions. 

 

Exercise. A spherical balloon with a volume of 4000 cm
3
 contains inside helium at 

a pressure of 120 kPa. How many moles of helium are in the balloon if each helium 

atom has an average kinetic energy of 3.610
-27

 J? (Answer: 3.32 mol.) 

 

Exercise. A cylinder contains a mixture of helium and argon gas in equilibrium at 

150
o
C. What is the average kinetic energy of each gas molecule? (Answer:  

8.7610
-21 

J.) 

 

Exercise. (a) Determine the temperature at which the rms velocity of He atom 

equals 500 m/s. (b) What is the rms velocity of He on the surface of the Sun, where 

the temperature is 5800 K? (Answer: 40.1 K, 6.01 km/s.) 

 

Exercise. If the rms velocity of helium atom at room temperature is 1350 m/s, what 

is the rms velocity of oxygen (O2) molecule at this temperature? (Answer:          

477 m/s.) 

 

Exercise. During a 30-s interval, 5.00 hailstones strike a glass window having an  

area of 0.60 m
2
 at an angle of 45

o
 to the window surface. Each hailstone has a mass 

of 5.0 g and a velocity of 8.0 m/s. Given that the collisions are elastic, find the 

average force and pressure on the window. 

 

Exercise. What is the thermal energy of 100 g of He gas at 77K? How much more 

energy must be supplied to heat this gas to 24
o
 C? (Answer: 24.0 kJ, 68.7 kJ.) 

 

Exercise. A container has a mixture of two gases: n1 moles of gas 1 having molar 

specific heat C1 and n2 moles of gas 2 of molar specific heat C2. (a) Find the molar 

specific heat of the mixture. (b) What is the molar specific heat if the mixture has m 

gases comparing n1, n2,…,nm moles and molar specific heat C1, C2,…,Cm, 

respectively. 
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Exercise. During the compression stroke of a gasoline engine, the pressure 

increases from 1 to 20 atm. Given that the process is adiabatic and reversible and 

that the gas is ideal with =1.40, (a) by what factor does the volume change and (b) 

by what factor does the temperature change? (Answer: (a) 0.118, so the 

compression ratio 50.8
Vi

Vt ; (b) 2.35.) 

Exercise. One mole of an ideal diatomic gas occupies a volume of one liter at a 

pressure of 0.10 atm. The gas undergoes a process in which the pressure is 

proportional to volume. At the end of the process, the speed of sound in the gas has 

doubled from its initial value. Determine the amount of heat transferred to the gas. 

(Answer: 91.2 J.) 

Example 35 
Calculate the change in entropy of 2.00 moles of an ideal gas that undergoes free 

expansion and increases three times its initial volume. 

 

Solution. The free expansion of the gas is clearly neither reversible nor quasi-static 

process. The work done by the gas against vacuum is zero, and since the walls are 

insulating, no thermal energy is transferred during expansion. That is, W = 0 and   

Q = 0. Using the first law, we see that the change in the internal energy is zero; 

therefore, Ui = Uf. Since the gas is ideal, U depends on the temperature only. So we 

conclude that Ti = Tf. That is, we find an equivalent reversible path that shares the 

same initial and final states. A simple choice is isothermal reversible expansion 

during which the gas pushes slowly a piston. Since T is constant in this process, 

equation for S gives 

 
1

  dQ
TT

dQ
S . 

But dQ  is simply the work (W) done by the gas during the isothermal expansion 

from Vi to Vf. Using this result, we find ( 
f

i

V

V

PdVW ) 

 
V

V
RdV

TV

RT
PdV

T
dQ

T
S

i

f
  


 ln

11
. 

Using this equation with = 2, and Vf = 3Vi, we find that 

J/K. 3.183ln31.82 S  

 

Example 36 
Suppose 1.00 kg of water at 0

o
C is mixed with an equal mass of water at 100

o
C. 

After equilibrium is reached, the mixture has a temperature of 50
o
C. What is the 

change in the system entropy? 

Solution. The change in entropy can be calculated from the equation 

2

1
2211 lnln

T

T
cm

T

T
cmS

i

f
 . 
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Using the values m1 = m2 = 1 kg, c1 = c2 = 4186 J/kgK, T1 = 0
o
C (273 K), T2 = 

100
o
C (373 K), and Tf = 50

o
C (323 K), we obtain 

J/K 102602704
373

323
ln41861

273

323
ln41861 S . 

That is, as a result of this irreversible process, the increase in entropy of the cold 

water is greater than the decrease in entropy of warm water. Consequently, the 

increase in entropy of the system is 102 J/K. 

 

Exercise. A heat engine absorbs 360 J of thermal energy and performs 25 J of work 

in each cycle. Find (a) the efficiency of the engine and (b) the thermal energy 

expelled in each cycle. (Answer: (a) 6.94%, (b) 335 J.) 

 

Exercise. The heat absorbed by an engine is three times greater than the work it 

performs. (a) What is its thermal efficiency? (b) What fraction of the heat absorbed 

is expelled to the cold reservoir? (Answer: (a) 0.333, (b) 0.667.) 

 

Exercise. An ideal gas is compressed to half its initial volume while its temperature 

is held constant. (a) If 1000 J of energy is removed from the gas during 

compression, how much work is done on the gas? (b) What is the change in the 

internal energy of the gas during compression? (Answer: (a)100 kJ, (b) 0.) 

 

Exercise. A refrigerator has a coefficient of performance equal to 5. If the 

refrigerator absorbs 120 J of thermal energy from a cold reservoir in each cycle, 

find (a) the work done in each cycle and (b) the thermal energy expelled to the hot 

reservoir. (Answer: (a) 24.0 J, (b) 144 J.) 

 

Exercise. How much work is required, using an ideal Carnot refrigerator, to 

remove 1 J of thermal energy from a helium gas at 4.0 K and to reject this thermal 

energy to a room-temperature (293 K) environment? (Answer: 72.2 J.) 

 

10. Transport phenomena 
 
 The break of equilibrium is accompanied by the flow of molecules, heat, 

electric charge, and so on. The relevant processes are called transport phenomena. 

 In this section we briefly discuss three transport phenomena: diffusion, 

thermal conductivity, and internal friction or viscosity. 

 Diffusion. It has been established experimentally that the flow of molecules 

of the ith species through a surface S perpendicular to the z axis is determined by 

the expression  

  S
dz

dn
DN i

i  ,                  (10.1) 

where D is a proportionality factor called the diffusion coefficient, and ni is the 

concentration of molecules. Multiplying both sides of Eq. (10.1) by the mass of a 
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molecule of the ith species mi, we obtain the expression for the mass flow of the ith 

species 

         S
dz

d
DM i

i 


,        (10.2) 

where i = nimi is the partial density of the ith species. Eqs. (10.1) and (10.2) are 

called Fick’s law. The diffusion coefficient D is determined by the formula  

        λ
3

1
vD  ,      (10.3) 

where v is the average speed of molecules, and  is their mean free path. 

 Thermal conductivity. Experiments show that if there is a temperature 

gradient along the z axis in a medium, a heat flux is produced whose magnitude is 

determined by the formula  

     S
dz

dT
q  .      (10.4) 

Here, q is the heat flux through the surface S perpendicular to the z axis, dT/dz is 

the temperature gradient (more exactly, the projection of the temperature gradient 

onto the z axis),  is the proportionality factor depending on the properties of the 

medium and called the thermal conductivity. Eq. (10.4) is known to be the Fourier 

law. The quantity  is given by the formula 

         vcvλ
3

1
,       (10.5) 

where cv is the specific heat capacity, and  is the density of the medium. 

 Internal friction. Experiments show that the force of friction between two 

layers of a fluid is determined by the formula 

        S
dz

dU
F  ,     (10.6) 

where  is the viscosity (the viscosity coefficient), dU/dz is the quantity showing 

how rapidly the velocity of the fluid changes in the direction z perpendicular to the 

direction of layer motion (the gradient of U), S is the surface area over which the 

force F acts. According to Newton’s second law, the interaction of two layers with 

the force F can be considered as a process in the course of which the momentum 

equal to F in magnitude is transmitted from one layer to another for unit time. 

Therefore, Eq. (10.6) can be written in the form 

       S
dz

dU
K  ,              (10.7) 

where K is the momentum transmitted in one second from layer to layer through the 

surface S (i.e., the momentum flux through S). The viscosity coefficient is 

determined by the expression  

                          λ
3

1
v .                        (10.8) 

Note: the mean free path of molecules is given by  
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1
λ


 , 

where d is the molecule diameter, and n is the number of molecules per unit 

volume. 
  

 

 


